Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,343)

Search Parameters:
Keywords = traditional usages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8429 KiB  
Review
Design and Fabrication of Customizable Urban Furniture Through 3D Printing Processes
by Antreas Kantaros, Theodore Ganetsos, Zoe Kanetaki, Constantinos Stergiou, Evangelos Pallis and Michail Papoutsidakis
Processes 2025, 13(8), 2492; https://doi.org/10.3390/pr13082492 - 7 Aug 2025
Abstract
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the [...] Read more.
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the creation of functional, aesthetically pleasing, and user-centered furniture solutions. Through additive manufacturing processes, urban furniture can be tailored to meet the unique needs of diverse communities, allowing for the extended usage of sustainable materials, modular designs, and smart technologies. The flexibility of 3D printing also promotes the fabrication of complex, intricate designs that would be difficult or cost-prohibitive using traditional methods. Additionally, 3D-printed furniture can be optimized for specific environmental conditions, providing solutions that enhance accessibility, improve comfort, and promote inclusivity. The various advantages of 3D-printed urban furniture are examined, including reduced material waste and the ability to rapidly prototype and iterate designs alongside the potential for on-demand, local production. By embedding sensors and IoT devices, 3D-printed furniture can also contribute to the development of smart cities, providing real-time data for urban management and improving the overall user experience. As cities continue to encourage and adopt sustainable and innovative solutions, 3D printing is believed to play a crucial role in future urban infrastructure planning. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 1288 KiB  
Article
A Multi-Dimensional Psychological Model of Driver Takeover Safety in Automated Vehicles: Insights from User Experience and Behavioral Moderators
by Ruiwei Li, Xiangyu Li and Xiaoqing Li
World Electr. Veh. J. 2025, 16(8), 449; https://doi.org/10.3390/wevj16080449 - 7 Aug 2025
Abstract
With the rapid adoption of automated driving systems, ensuring safe and efficient driver takeover has become a crucial challenge for road safety. This study introduces a novel psychological framework for understanding and predicting takeover behavior in conditionally automated vehicles, leveraging an extended Theory [...] Read more.
With the rapid adoption of automated driving systems, ensuring safe and efficient driver takeover has become a crucial challenge for road safety. This study introduces a novel psychological framework for understanding and predicting takeover behavior in conditionally automated vehicles, leveraging an extended Theory of Planned Behavior (TPB) model enriched by real-world driver experience. Drawing on survey data from 385 automated driving system users recruited in Shaoguan City, China, through face-to-face questionnaire administration covering various ADS types (ACC, lane-keeping, automatic parking), we demonstrate that driver attitudes, perceived behavioral control, and subjective norms are significant determinants of takeover intention, collectively explaining nearly half of its variance (R2 = 48.7%). Importantly, our analysis uncovers that both intention and perceived behavioral control have robust, direct effects on actual takeover behavior. Crucially, this work is among the first to reveal that individual user characteristics—such as driving experience and ADS (automated driving system) usage frequency—substantially moderate these psychological pathways: experienced or frequent users rely more on perceived control and attitude, while less experienced drivers are more susceptible to social influences. By advancing a multi-dimensional psychological model that integrates personal, social, and experiential moderators, our findings deliver actionable insights for the design of adaptive human–machine interfaces, tailored driver training, and targeted safety interventions in the context of automated driving. Using structural equation modeling with maximum likelihood estimation (χ2/df = 2.25, CFI = 0.941, RMSEA = 0.057), this psychological approach complements traditional engineering models by revealing that takeover behavior variance is explained at 58.3%. Full article
Show Figures

Figure 1

19 pages, 4537 KiB  
Article
Learning the Value of Place: Machine Learning Models for Real Estate Appraisal in Istanbul’s Diverse Urban Landscape
by Ahmet Hilmi Erciyes, Toygun Atasoy, Abdurrahman Tursun and Sibel Canaz Sevgen
Buildings 2025, 15(15), 2773; https://doi.org/10.3390/buildings15152773 - 6 Aug 2025
Abstract
The prediction of real estate values is vital for taxation, transactions, mortgages, and urban policy development. Values can be predicted more accurately by statistical or advanced methods together when the size of the data is huge. In metropolitan cities like İstanbul, where size [...] Read more.
The prediction of real estate values is vital for taxation, transactions, mortgages, and urban policy development. Values can be predicted more accurately by statistical or advanced methods together when the size of the data is huge. In metropolitan cities like İstanbul, where size of the real estate data is vast and complex, mass appraisal methods supported by Machine Learning offer a scalable and consistent alternative. This study employs six algorithms: Artificial Neural Network, Extreme Gradient Boosting, K-Nearest Neighbors, Support Vector Regression, Random Forest, and Semi-Log Regression, to estimate the values of real estate on both the Asian and European continent parts of İstanbul. In total, 168,099 residential properties were utilized along with 30 of their features from both sides of the Bosphorus. The results show that RF yielded the best performance in Beşiktaş, while XGBoost performed best in Üsküdar. ANN also produced competitive results, although slightly less accurate than those of XGBoost and RF. In contrast, traditional SVR and SLR models underperformed, especially in terms of R2 and RMSE values. With its large-scale dataset, focusing on one of the greatest metropolitan areas, Istanbul, and the usage of multiple ML algorithms, this study stands as a comprehensive and practical contribution to the field of automated real estate valuation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 2933 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 - 4 Aug 2025
Viewed by 181
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

15 pages, 1832 KiB  
Article
PyBEP: An Open-Source Tool for Electrode Potential Determination from Battery OCV Measurements
by Jon Pišek, Tomaž Katrašnik and Klemen Zelič
Batteries 2025, 11(8), 295; https://doi.org/10.3390/batteries11080295 - 4 Aug 2025
Viewed by 173
Abstract
This paper introduces PyBEP, a Python-based tool for the automated and optimized selection of open-circuit potential (OCP) curves and calculation of stoichiometric cycling ranges for lithium-ion battery electrodes based on open-circuit voltage (OCV) measurements. Thereby, it overcomes key challenges in traditional approaches, which [...] Read more.
This paper introduces PyBEP, a Python-based tool for the automated and optimized selection of open-circuit potential (OCP) curves and calculation of stoichiometric cycling ranges for lithium-ion battery electrodes based on open-circuit voltage (OCV) measurements. Thereby, it overcomes key challenges in traditional approaches, which are often time-intensive and susceptible to errors due to manual curve digitization, data inconsistency, and coding complexities. The originality of PyBEP arises from the systematic integration of automated electrode chemistry identification, quality-controlled database usage, refinement of the results using incremental capacity methodology, and simultaneous optimization of multiple electrode parameters. The PyBEP database leverages high-quality, curated OCP data and employs differential evolution optimization for precise OCP determination. Validation against literature data and experimental results confirms the robustness and accuracy of PyBEP, consistently achieving precision of 10 mV or better. PyBEP also offers features like electrode chemical composition identification and quality enhancement of measurement data, further extending the battery modeling functionalities without the need for battery disassembly. PyBEP is open-source and accessible on GitHub, providing a streamlined, accurate resource for the battery research community, making PyBEP a unique and directly applicable toolkit for electrochemical researchers and engineers. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

24 pages, 8993 KiB  
Article
A Lightweight Spatiotemporal Graph Framework Leveraging Clustered Monitoring Networks and Copula-Based Pollutant Dependency for PM2.5 Forecasting
by Mohammad Taghi Abbasi, Ali Asghar Alesheikh and Fatemeh Rezaie
Land 2025, 14(8), 1589; https://doi.org/10.3390/land14081589 - 4 Aug 2025
Viewed by 223
Abstract
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. [...] Read more.
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. However, many existing models, despite their high predictive accuracy, face computational complexity and scalability challenges. This study introduces clustered and lightweight spatio-temporal graph convolutional network with gated recurrent unit (ClusLite-STGCN-GRU), a hybrid model that integrates spatial clustering based on pollutant time series for graph construction, Copula-based dependency analysis for selecting relevant pollutants to predict PM2.5, and graph convolution combined with gated recurrent units to extract spatiotemporal features. Unlike conventional approaches that require learning or dynamically updating adjacency matrices, ClusLite-STGCN-GRU employs a fixed, simple cluster-based structure. Experimental results on Tehran air quality data demonstrate that the proposed model not only achieves competitive predictive performance compared to more complex models, but also significantly reduces computational cost—by up to 66% in training time, 83% in memory usage, and 84% in number of floating-point operations—making it suitable for real-time applications and offering a practical balance between accuracy, interpretability, and efficiency. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

20 pages, 3108 KiB  
Article
Dynamic Expectation–Satisfaction Relationship in Sustainable Experiences with Product: A Comparative Study of Durable Goods, FMCG, and Digital Products
by Zhenhua Wu, Kenta Ono and Yuting Wu
Sustainability 2025, 17(15), 7045; https://doi.org/10.3390/su17157045 - 3 Aug 2025
Viewed by 215
Abstract
This study adopts a dynamic Expectancy–Disconfirmation framework to investigate the evolving nature of user satisfaction across three product categories: durable goods, fast-moving consumer goods (FMCG), and digital products. A 25-day longitudinal experiment involving 128 participants was conducted, during which users engaged with their [...] Read more.
This study adopts a dynamic Expectancy–Disconfirmation framework to investigate the evolving nature of user satisfaction across three product categories: durable goods, fast-moving consumer goods (FMCG), and digital products. A 25-day longitudinal experiment involving 128 participants was conducted, during which users engaged with their most recently purchased products and provided repeated subjective evaluations over time. The findings reveal dynamic changes in the influence of expectations and perceived performance on satisfaction throughout the product usage cycle. For durable goods and FMCG, both expectations and perceived performance gradually declined, accompanied by a weakening effect of expectations on satisfaction. In contrast, digital products exhibited greater volatility, lacking a stable experiential baseline and resulting in greater fluctuations in satisfaction trajectories. Moreover, external contextual and emotional factors were found to play a more significant role in shaping satisfaction with physical products, beyond the scope of the traditional expectancy–performance model. These insights offer theoretical and managerial implications for sustainable product and experience design. In particular, they highlight the importance of implementing experience-stabilizing strategies in digital consumption contexts to support user well-being and enhance continuous product utilization, thereby maximizing product potential and reducing waste. Full article
Show Figures

Figure 1

22 pages, 1288 KiB  
Article
How Multicriteria Environmental Assessment Alters Sustainability Rankings: Case Study of Hempcrete and Prefabricated Walls
by Tinkara Ošlovnik and Matjaž Denac
Sustainability 2025, 17(15), 7032; https://doi.org/10.3390/su17157032 - 2 Aug 2025
Viewed by 202
Abstract
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been [...] Read more.
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been preferential in comparison to other traditional building materials due to its lower global warming impact. Claims regarding the environmental benefits of hemp-containing construction materials based on the single impact category could be misleading; therefore, life cycle assessment (LCA) studies including multiple environmental indicators should be implemented. This study aims to compare two alternative wall designs regarding their environmental impacts. The comparative LCA study for hempcrete and prefabricated walls used in residential buildings was assessed using IPCC and ReCiPe life cycle impact assessment methods. The study highlighted a significant discrepancy depending on the number of environmental indicators considered, as well as between characterised and weighted LCA results. A hempcrete wall was recognised as a slightly (13.63%) better alternative when assessed by the single-issue IPCC method, while its total burden assessed by the ReCiPe method was recognised to be significantly (2.78 times) higher. Based on the results from this case study, regulators could re-evaluate the appropriateness of reporting LCA results solely on the midpoint level, particularly when limited to a single impact indicator, while producers in the construction sector should recognise the threat of greenwashing when reporting using a single impact indicator only. Full article
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 209
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

22 pages, 6172 KiB  
Article
Ethnomedicinal Properties of Wild Edible Fruit Plants and Their Horticultural Potential Among Indigenous Isan Communities in Roi Et Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Min Khant Naing and Tammanoon Jitpromma
Horticulturae 2025, 11(8), 885; https://doi.org/10.3390/horticulturae11080885 - 1 Aug 2025
Viewed by 244
Abstract
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the [...] Read more.
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the diversity, traditional uses, phenology, and conservation status of these species to inform sustainable management and conservation efforts. Field surveys and ethnobotanical interviews with 200 informants (100 men, 100 women; random ages) were conducted across 20 local communities to identify species diversity and usage patterns, while phenological observations and conservation assessments were performed to understand reproductive cycles and species vulnerability between January and December 2023. A total of 68 species from 32 families were recorded, with peak flowering in March–April and fruiting in May–June. Analyses of Species Use Value (0.19–0.48) and Relative Frequency of Citation (0.15–0.44) identified key species with significant roles in food security and traditional medicine. Uvaria rufa had the highest SUV (0.48) and RFC (0.44). Informant consensus on medicinal applications was strong for ailments such as gastrointestinal and lymphatic disorders. Economically important species were also identified, with some contributing notable income through local trade. Conservation proposed one species as Critically Endangered and several others as Vulnerable. The results highlight the need for integrated conservation strategies, including community-based initiatives and recognition of Other Effective area-based Conservation Measures (OECMs), to ensure the preservation of biodiversity, traditional knowledge, and local livelihoods. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

15 pages, 675 KiB  
Article
A Trusted Multi-Cloud Brokerage System for Validating Cloud Services Using Ranking Heuristics
by Rajganesh Nagarajan, Vinothiyalakshmi Palanichamy, Ramkumar Thirunavukarasu and J. Arun Pandian
Future Internet 2025, 17(8), 348; https://doi.org/10.3390/fi17080348 - 31 Jul 2025
Viewed by 180
Abstract
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud [...] Read more.
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud systems. The primary objective of a cloud broker is to ensure the quality and outcomes of services offered to customers. However, traditional cloud brokers face limitations in measuring service trust, ensuring validity, and anticipating future enhancements of services across different cloud platforms. To address these challenges, the proposed intelligent cloud broker integrates an intelligence mechanism that enhances decision-making within a multi-cloud environment. This broker performs a comprehensive validation and verification of service trustworthiness by analyzing various trust factors, including service response time, sustainability, suitability, accuracy, transparency, interoperability, availability, reliability, stability, cost, throughput, efficiency, and scalability. Customer feedback is also incorporated to assess these trust factors prior to service recommendation. The proposed model calculates service ranking (SR) values for available cloud services and dynamically includes newly introduced services during the validation process by mapping them with existing entries in the Service Collection Repository (SCR). Performance evaluation using the Google cluster-usage traces dataset demonstrates that the ICB outperforms existing approaches such as the Clustering-Based Trust Degree Computation (CBTDC) algorithm and the Service Context-Aware QoS Prediction and Recommendation (SCAQPR) model. Results confirm that the ICB significantly enhances the effectiveness and reliability of cloud service recommendations for users. Full article
Show Figures

Figure 1

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 272
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

33 pages, 3600 KiB  
Article
Electronic Voting Worldwide: The State of the Art
by Paolo Fantozzi, Marco Iecher, Luigi Laura, Maurizio Naldi and Valerio Rughetti
Information 2025, 16(8), 650; https://doi.org/10.3390/info16080650 - 30 Jul 2025
Viewed by 316
Abstract
Electronic voting allows people to participate more easily in their country’s electoral events. Nevertheless, its adoption is still far from widespread. In this paper, we provide a detailed survey of the state of adoption worldwide and investigate which socio-economic factors may influence such [...] Read more.
Electronic voting allows people to participate more easily in their country’s electoral events. Nevertheless, its adoption is still far from widespread. In this paper, we provide a detailed survey of the state of adoption worldwide and investigate which socio-economic factors may influence such an adoption. Its usage is wider in North and South America, while remaining considerably lower in Europe and Asia and practically absent in Africa. We distinguish between e-voting, which maintains the traditional polling station structure while adding technological components, and i-voting, which enables remote participation from any location using personal devices. Five factors (country’s surface and population, Gross Domestic Product, Internet Usage, and Democracy Index) are investigated to predict adoption, and an accuracy of over 79% is achieved through a machine learning random forest model. Larger, wealthier, and more democratic countries are typically associated with a larger adoption of internet voting. Full article
(This article belongs to the Special Issue Feature Papers in Information in 2024–2025)
Show Figures

Graphical abstract

25 pages, 3785 KiB  
Article
Evolutionary Algorithms for the Optimal Design of Robotic Cells: A Dual Approximation for Space and Time
by Raúl-Alberto Sánchez-Sosa and Ernesto Chavero-Navarrete
Appl. Sci. 2025, 15(15), 8455; https://doi.org/10.3390/app15158455 - 30 Jul 2025
Viewed by 222
Abstract
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of [...] Read more.
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of real-world applications. In response, this study presents a dual approach to optimize both spatial design and traversal time in robotic cells, using bioinspired evolutionary algorithms. Initially, a genetic algorithm is employed to optimize the layout of the cell elements, reducing space usage and avoiding interferences between workstations. Subsequently, an ant colony optimization algorithm is used to optimize the robots’ trajectories, minimizing cycle time. Through simulations and a digital model of the cell, key metrics such as total space reduction, operational time improvement, and productivity increase are evaluated. The results demonstrate that the combination of both approaches achieves significant improvements, enabling an average reduction of 21.19% in the occupied area and up to 20.15% in operational cycle time, consistently outperforming traditional methods. This approach has the potential to be applied in various industrial configurations, representing a relevant contribution in the integration of artificial intelligence techniques for the enhancement of robotic systems. Full article
Show Figures

Graphical abstract

Back to TopTop