Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (478)

Search Parameters:
Keywords = traditional settlements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1789 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
36 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

32 pages, 6681 KiB  
Article
Spatial Distribution Characteristics and Cluster Differentiation of Traditional Villages in the Central Yunnan Region
by Tao Chen, Sisi Zhang, Juan Chen, Jiajing Duan, Yike Zhang and Yaoning Yang
Land 2025, 14(8), 1565; https://doi.org/10.3390/land14081565 - 30 Jul 2025
Viewed by 222
Abstract
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects [...] Read more.
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects the Central Yunnan region of Southwest China—characterized by its complex geography and multi-ethnic habitation—as the research area. Employing ArcGIS spatial analysis techniques alongside clustering algorithms, we examine the spatial distribution characteristics and clustering patterns of 251 traditional villages within this region. The findings are as follows. In terms of spatial distribution, traditional villages in Central Yunnan are unevenly dispersed, predominantly aggregating on mid-elevation gentle slopes; their locations are chiefly influenced by rivers and historical courier routes, albeit with only indirect dependence on waterways. Regarding single-cluster attributes, the spatial and geomorphological features exhibit a composite “band-and-group” pattern shaped by river valleys; culturally, two dominant modes emerge—“ancient-route-dependent” and “ethnic-symbiosis”—reflecting an economy-driven cultural mechanism alongside latent marginalization risks. Concerning construction characteristics, the “Qionglong-Ganlan” and Han-style “One-seal” residential features stand out, illustrating both adaptation to mountainous environments and the cumulative effects of historical culture. Based on these insights, we propose a three-tiered clustering classification framework—“comprehensive-element coordination”, “feature-led”, and “potential-cultivation”—to inform the development of contiguous and typological protection strategies for traditional villages in highland, multi-ethnic regions. Full article
Show Figures

Figure 1

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 153
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 275
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 88349 KiB  
Article
Dynamic Assessment of Street Environmental Quality Using Time-Series Street View Imagery Within Daily Intervals
by Puxuan Zhang, Yichen Liu and Yihua Huang
Land 2025, 14(8), 1544; https://doi.org/10.3390/land14081544 - 27 Jul 2025
Viewed by 258
Abstract
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in [...] Read more.
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in incomplete assessments. To bridge this methodological gap, this study presents an innovative approach combining advanced deep learning techniques with time-series street view imagery (SVI) analysis to systematically quantify spatio-temporal variations in the perceived environmental quality of pedestrian-oriented streets. It further addresses two central questions: how perceived environmental quality varies spatially across sections of a pedestrian-oriented street and how these perceptions fluctuate temporally throughout the day. Utilizing Golden Street, a representative living street in Shanghai’s Changning District, as the empirical setting, street view images were manually collected at 96 sampling points across multiple time intervals within a single day. The collected images underwent semantic segmentation using the DeepLabv3+ model, and emotional scores were quantified through the validated MIT Place Pulse 2.0 dataset across six subjective indicators: “Safe,” “Lively,” “Wealthy,” “Beautiful,” “Depressing,” and “Boring.” Spatial and temporal patterns of these indicators were subsequently analyzed to elucidate their relationships with environmental attributes. This study demonstrates the effectiveness of integrating deep learning models with time-series SVI for assessing urban environmental perceptions, providing robust empirical insights for urban planners and policymakers. The results emphasize the necessity of context-sensitive, temporally adaptive urban design strategies to enhance urban livability and psychological well-being, ultimately contributing to more vibrant, secure, and sustainable pedestrian-oriented urban environments. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

22 pages, 31625 KiB  
Article
The Construction and Analysis of a Spatial Gene Map of Marginal Villages in Southern Sichuan
by Jiahao Wan, Xiaoyang Guo, Zehua Wen and Xujun Zhang
Buildings 2025, 15(15), 2628; https://doi.org/10.3390/buildings15152628 - 24 Jul 2025
Viewed by 321
Abstract
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study [...] Read more.
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study takes Xuyong County in Luzhou City as a case and develops a three-tier analytical framework—“genome–spatial factors–specific indicators”—based on the space gene theory to identify, classify, and map spatial patterns in marginal villages of southern Sichuan. Through cluster analysis, common and distinctive spatial genes are extracted. Common genes—such as medium surface roughness (GeneN-2-b), medium building dispersion (GeneA-3-b), and low intelligibility (GeneT-2-b)—are prevalent across multiple village types, reflecting shared adaptive strategies to complex terrains, ecological constraints, and historical development. In contrast, distinctive genes—such as high building dispersion (GeneA-3-a) and linear boundaries (GeneB-1-c)—highlight unique spatial responses that are shaped by local cultural and environmental conditions. The results contribute to a deeper understanding of spatial morphology and adaptive mechanisms in rural settlements. This research offers a theoretical and methodological basis for village classification, conservation zoning, and spatial optimization, providing practical guidance for rural revitalization efforts focusing on both development and heritage protection. Full article
Show Figures

Figure 1

49 pages, 21554 KiB  
Article
A Disappearing Cultural Landscape: The Heritage of German-Style Land Use and Pug-And-Pine Architecture in Australia
by Dirk H. R. Spennemann
Land 2025, 14(8), 1517; https://doi.org/10.3390/land14081517 - 23 Jul 2025
Viewed by 227
Abstract
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the [...] Read more.
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the Americas, significantly shaped local communities, especially due to religious cohesion among Lutheran migrants. These settlers established distinct, enduring rural enclaves characterized by linguistic, religious and architectural continuity. The paper examines three manifestations of these cultural landscapes. A rich toponymic landscape was created by imposing on natural landscape features and newly founded settlements the names of the communities from which the German settlers originated. It discusses the erosion of German toponyms under wartime nationalist pressures, the subsequent partial reinstatement and the implications for cultural memory. The study traces the second manifestation of a cultural landscapes in the form of nucleated villages such as Hahndorf, Bethanien and Lobethal, which often followed the Hufendorf or Straßendorf layout, integrating Silesian land-use principles into the Australian context. Intensification of land use through housing subdivisions in two communities as well as agricultural intensification through broad acre farming has led to the fragmentation (town) and obliteration (rural) of the uniquely German form of land use. The final focus is the material expression of cultural identity through architecture, particularly the use of traditional Fachwerk (half-timbered) construction and adaptations such as pug-and-pine walling suited to local materials and climate. The paper examines domestic forms, including the distinctive black kitchen, and highlights how environmental and functional adaptation reshaped German building traditions in the antipodes. Despite a conservation movement and despite considerable documentation research in the late twentieth century, the paper shows that most German rural structures remain unlisted and vulnerable. Heritage neglect, rural depopulation, economic rationalization, lack of commercial relevance and local government policy have accelerated the decline of many of these vernacular buildings. The study concludes by problematizing the sustainability of conserving German Australian rural heritage in the face of regulatory, economic and demographic pressures. With its layering of intangible (toponymic), structural (buildings) and land use (cadastral) features, the examination of the cultural landscape established by nineteenth-century German immigrants adds to the body of literature on immigrant communities, settler colonialism and landscape research. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 297
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 3263 KiB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 288
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

22 pages, 5363 KiB  
Article
Accurate Extraction of Rural Residential Buildings in Alpine Mountainous Areas by Combining Shadow Processing with FF-SwinT
by Guize Luan, Jinxuan Luo, Zuyu Gao and Fei Zhao
Remote Sens. 2025, 17(14), 2463; https://doi.org/10.3390/rs17142463 - 16 Jul 2025
Viewed by 269
Abstract
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this [...] Read more.
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this study uses high-resolution unmanned aerial vehicle (UAV) remote sensing images to construct a specialized dataset for the extraction of rural settlements in alpine mountainous areas, while introducing an innovative shadow mitigation technique that integrates multiple spectral characteristics. This methodology effectively addresses the challenges posed by intense shadows in settlements and environmental occlusions common in mountainous terrain analysis. Based on the comparative experiments with existing deep learning models, the Swin Transformer was selected as the baseline model. Building upon this, the Feature Fusion Swin Transformer (FF-SwinT) model was constructed by optimizing the data processing, loss function, and multi-view feature fusion. Finally, we rigorously evaluated it through ablation studies, generalization tests and large-scale image application experiments. The results show that the FF-SwinT has improved in many indicators compared with the traditional Swin Transformer, and the recognition results have clear edges and strong integrity. These results suggest that the FF-SwinT establishes a novel framework for rural settlement extraction in alpine mountain regions, which is of great significance for regional spatial optimization and development policy formulation. Full article
Show Figures

Figure 1

25 pages, 10843 KiB  
Article
Experimental and Numerical Study of a Cone-Top Pile Foundation for Challenging Geotechnical Conditions
by Askar Zhussupbekov, Assel Sarsembayeva, Baurzhan Bazarov and Abdulla Omarov
Appl. Sci. 2025, 15(14), 7893; https://doi.org/10.3390/app15147893 - 15 Jul 2025
Viewed by 233
Abstract
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads [...] Read more.
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads and horizontal soil deformations. To address these limitations, a hybrid foundation was developed that integrates an inverted conical base with a central pile shaft and a rolling joint interface between the foundation and the superstructure. Laboratory model tests, full-scale field loading experiments, and axisymmetric numerical simulations using Plaxis 2D (Version 8.2) were conducted to evaluate the foundation’s bearing capacity, settlement behavior, and load transfer mechanisms. Results showed that the cone-top pile foundation exhibited lower settlements and higher load resistance than columnar foundations under similar loading conditions, particularly in the presence of horizontal tensile strains. The load was effectively distributed through the conical base and transferred into deeper soil layers via the pile shaft, while the rolling joint reduced stress transmission to the structure. The findings support the use of cone-top pile foundations in soft soils, seismic areas and areas affected by underground mining, where conventional designs may be inadequate. This study provides a validated and practical design alternative for challenging geotechnical environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 17833 KiB  
Article
The Evolution of the Mosuo Settlement Space: An Empirical Analysis of the Lugu Lake Area
by Yi Xie, Jian Yang, Zhihong Wu and Ju Chen
Buildings 2025, 15(14), 2440; https://doi.org/10.3390/buildings15142440 - 11 Jul 2025
Viewed by 267
Abstract
As the global urbanization process accelerates, rural settlements in China are facing the challenges of rural hollowing and widening urban–rural disparities. The establishment of the national scenic area system has made scenic settlements a primary direction for tourism development. However, industrial transformation has [...] Read more.
As the global urbanization process accelerates, rural settlements in China are facing the challenges of rural hollowing and widening urban–rural disparities. The establishment of the national scenic area system has made scenic settlements a primary direction for tourism development. However, industrial transformation has led to significant restructuring of the human–land relationship and the spatial functions of these settlements, resulting in issues such as over-tourism, ecological degradation, and cultural loss. This paper focuses on the Mosuo settlements around Lugu Lake, selecting nine villages, including Gesha Village, Wuzhiluo Village, and Daluoshui Village, to explore the formation and expression of Mosuo spatial concepts. Through spatial measurement, area statistics, and the analysis of development paths, the core of the research is to propose that “there is consistency between conceptual order and spatial form,” revealing the multi-dimensional evolutionary mechanism of Mosuo settlement spatial morphology under the intertwining of traditional concepts, market logic, and institutional policies, providing a replicable Chinese reference for global cultural heritage rural areas. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 2459 KiB  
Article
A Comprehensive Study on the Assessment of CaCO3-, Nano-CaCO3-, and Glass Fiber Chopped Strand (GFCS)-Treated Clay in Terms of Bearing Capacity and Settlement Enhancements
by Baki Bağrıaçık, Barış Mahmutluoğlu and Abdulkadir Ürünveren
Appl. Sci. 2025, 15(14), 7779; https://doi.org/10.3390/app15147779 - 11 Jul 2025
Viewed by 244
Abstract
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil [...] Read more.
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil media by performing traditional and laboratory model experiments. Clay samples mixed with CaCO3 at 5%, nano-CaCO3 at 0.75% and GFCSs at 2.0% separately provided 1.49, 1.68 and 1.86 times increments in the bearing capacity values in comparison with plain clay, respectively. Mixtures of clay, GFCSs at 1.5% and nano-CaCO3 at 0.75% enabled the most optimal result of 2.58 times improved bearing capacities. Curing durations had a significant effect on increasing the bonding between nano-CaCO3 and clay which led to further improved conditions. Settlement enhancements of up to 6.80% were recorded for the mixtures of nano-CaCO3, GFCSs and clay as well. Thus, improvements were reached in terms of bearing capacity and settlements along with the applicability and economy of the related procedures, of which the details can be seen in the following sections of this study. Full article
Show Figures

Figure 1

22 pages, 2334 KiB  
Article
Prediction of Surface Deformation Induced by Ultra-Shallow-Buried Pilot Tunnel Construction
by Caijun Liu, Xiangdong Li, Yang Yang, Xing Gao, Yupeng Shen and Peng Jing
Appl. Sci. 2025, 15(13), 7546; https://doi.org/10.3390/app15137546 - 4 Jul 2025
Viewed by 235
Abstract
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes [...] Read more.
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes surface settlement into uniform soil shrinkage and non-uniform initial support deformation. A computational formula for horseshoe-shaped sections is derived and validated through field data from Kunming Rail Transit Phase I, demonstrating a 59% improvement in maximum settlement prediction accuracy (reducing error from 7.5 mm to 3.1 mm) compared to traditional methods. Its application to Beijing Metro Line 13 reveals two distinct deformation patterns: significant ground heave occurs at 2.5 times the tunnel width from the centerline, while maximum settlement concentrates above the excavation center and diminishes radially. To mitigate heave, early strengthening of the secondary lining is recommended to control initial horizontal deformation. These findings enhance prediction reliability and provide actionable insights for deformation control in similar urban tunneling projects, particularly under ultra-shallow burial conditions. Full article
Show Figures

Figure 1

Back to TopTop