Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = traditional medicine bioprospecting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3410 KiB  
Article
Squama Manitis Extract Exhibits Broad-Spectrum Antibacterial Activity Through Energy and DNA Disruption Mechanisms
by Li Chen, Kunping Song, Mengwei Cheng, Aloysius Wong, Xuechen Tian, Yixin Yang, Mia Yang Ang, Geok Yuan Annie Tan and Siew Woh Choo
Biology 2025, 14(8), 949; https://doi.org/10.3390/biology14080949 - 28 Jul 2025
Viewed by 434
Abstract
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against [...] Read more.
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against clinically significant pathogens, including both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) species (MIC = 31.25 mg/mL), achieving significant reduction in bacterial viability within 24 h. Through integrated multi-omics analysis combining scanning electron microscopy and RNA sequencing, we reveal SME’s unprecedented tripartite mechanism of action: (1) direct membrane disruption causing cell envelope collapse, (2) metabolic paralysis through coordinated suppression of TCA cycle and fatty acid degradation pathways, and (3) inhibition of DNA repair systems (SOS response and recombination downregulation). Despite its potent activity, SME shows low cytotoxicity toward mammalian cells (>90% viability) and can penetrate Gram-negative outer membranes. These features highlight SME’s potential to address drug-resistant infections through synthetic lethality across stress response, energy metabolism, and DNA integrity pathways. While advocating for synthetic alternatives to endangered animal products, this study establishes SME as a polypharmacological template for resistance-resilient antimicrobial design, demonstrating how traditional knowledge and modern systems biology can converge to guide sustainable anti-infective development. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

33 pages, 3944 KiB  
Review
Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia
by Edoardo Andrea Cutolo, Rosanna Campitiello, Roberto Caferri, Vittorio Flavio Pagliuca, Jian Li, Spiros Nicolas Agathos and Maurizio Cutolo
Mar. Drugs 2024, 22(7), 304; https://doi.org/10.3390/md22070304 - 28 Jun 2024
Cited by 5 | Viewed by 4388
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. [...] Read more.
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology. Full article
(This article belongs to the Special Issue Marine Immunomodulatory Compounds)
Show Figures

Figure 1

18 pages, 2435 KiB  
Article
Exploring Southern Ecuador’s Traditional Medicine: Biological Screening of Plant Extracts and Metabolites
by Nicole Bec, Christian Larroque and Chabaco Armijos
Plants 2024, 13(10), 1422; https://doi.org/10.3390/plants13101422 - 20 May 2024
Cited by 1 | Viewed by 2441
Abstract
Ecuador stands as a nation inheriting a profound ancestral legacy in the utilization of medicinal plants, reflective of the rich biodiversity embraced by various ethnic groups. Despite this heritage, many of these therapeutic resources remain insufficiently explored concerning their toxicity and potential pharmacological [...] Read more.
Ecuador stands as a nation inheriting a profound ancestral legacy in the utilization of medicinal plants, reflective of the rich biodiversity embraced by various ethnic groups. Despite this heritage, many of these therapeutic resources remain insufficiently explored concerning their toxicity and potential pharmacological effects. This study focused on a comprehensive evaluation of cytotoxicity and the potential subcellular targets within various extracts and nine isolated metabolites from carefully selected medicinal plants. Assessing their impact on the breast cancer cell line (MCF7), we subsequently examined the most active fractions for effects on the cell cycle, microtubule network, centrosome duplication, γH2AX foci, and E-cadherin. The investigated crude extracts and isolated compounds from Ecuadorian medicinal plants demonstrated cytotoxic effects, influencing diverse cellular pathways. These findings lend credence to the traditional uses of Ecuadorian medicinal plants, which have served diverse therapeutic purposes. Moreover, they beckon the exploration of the specific chemicals, whether in isolation or combination, responsible for these observed activities. Full article
(This article belongs to the Special Issue Plant Extracts)
Show Figures

Figure 1

22 pages, 2809 KiB  
Article
Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling
by Desy Liana, Chatchakorn Eurtivong and Anuchit Phanumartwiwath
Antioxidants 2024, 13(1), 74; https://doi.org/10.3390/antiox13010074 - 5 Jan 2024
Cited by 12 | Viewed by 3818
Abstract
Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the [...] Read more.
Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the anti-staphylococcal, and antioxidant potentials of several medicinal plants bio-prospected from traditional medicine related to AD pathogenesis. Essential oils and hexane fractions were prepared and analyzed using gas chromatography–mass spectrometry. Boesenbergia rotunda hexane extract displayed anti-Staphylococcus aureus (MIC = 10 µg/mL) and antioxidant activities (IC50 = 557.97 and 2651.67 µg/mL against DPPH and NO radicals, respectively). A major flavonoid, pinostrobin, was further nonchromatographically isolated. Pinostrobin was shown to be a potent 5-LOX inhibitor (IC50 = 0.499 µM) compared to nordihydroguaiaretic acid (NDGA; IC50 = 5.020 µM) and betamethasone dipropionate (BD; IC50 = 2.077 µM) as the first-line of AD treatment. Additionally, pinostrobin inhibited COX-2 (IC50 = 285.67 µM), which was as effective as diclofenac sodium (IC50 = 290.35 µM) and BD (IC50 = 240.09 µM). This kinetic study and molecular modeling showed the mixed-type inhibition of NDGA and pinostrobin against 5-LOX. This study suggests that B. rotunda and its bioactive pinostrobin have promising properties for AD therapy. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

13 pages, 2172 KiB  
Review
Behind the Scenes of PluriZyme Designs
by Ana Robles-Martín, Sergi Roda, Rubén Muñoz-Tafalla and Victor Guallar
Eng 2024, 5(1), 91-103; https://doi.org/10.3390/eng5010006 - 3 Jan 2024
Cited by 1 | Viewed by 2468
Abstract
Protein engineering is the design and modification of protein structures to optimize their functions or create novel functionalities for applications in biotechnology, medicine or industry. It represents an essential scientific solution for many of the environmental and societal challenges ahead of us, such [...] Read more.
Protein engineering is the design and modification of protein structures to optimize their functions or create novel functionalities for applications in biotechnology, medicine or industry. It represents an essential scientific solution for many of the environmental and societal challenges ahead of us, such as polymer degradation. Unlike traditional chemical methods, enzyme-mediated degradation is selective and environmentally friendly and requires milder conditions. Computational methods will play a critical role in developing such solutions by enabling more efficient bioprospecting of natural polymer-degrading enzymes. They provide structural information, generate mechanistic studies, and formulate new hypotheses, facilitating the modeling and modification of these biocatalysts through enzyme engineering. The recent development of pluriZymes constitutes an example, providing a rational mechanism to integrate different biochemical processes into one single enzyme. In this review, we summarize our recent efforts in this line and introduce our early work towards polymer degradation using a pluriZyme-like technology, including our latest development in PET nanoparticle degradation. Moreover, we provide a comprehensive recipe for developing one’s own pluriZyme so that different laboratories can experiment with them and establish new limits. With modest computational resources and with help from this review, your first pluriZyme is one step closer. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

17 pages, 3100 KiB  
Article
Sloanea chocoana and S. pittieriana (Elaeocarpaceae): Chemical and Biological Studies of Ethanolic Extracts and Skincare Properties
by Patricia Quintero-Rincón, Nayive Pino-Benítez, Elkin Galeano, Cris Rojo-Uribe, Ana C. Mesa-Arango and Oscar A. Flórez-Acosta
Plants 2023, 12(23), 3953; https://doi.org/10.3390/plants12233953 - 24 Nov 2023
Cited by 4 | Viewed by 2017
Abstract
The Colombian Chocó is known for its rich biodiversity and to harbor plant species that are under-explored, including the genus Sloanea. This study aimed to analyze the chemical composition of derivatized ethanolic extracts from S. chocoana and S. pittieriana using BSTFA and [...] Read more.
The Colombian Chocó is known for its rich biodiversity and to harbor plant species that are under-explored, including the genus Sloanea. This study aimed to analyze the chemical composition of derivatized ethanolic extracts from S. chocoana and S. pittieriana using BSTFA and TMCS through GC–MS, and to assess cell viability of immortalized human non-tumorigenic keratinocytes (HaCaT) and periodontal ligament fibroblast cells using crude extracts through MTS assay. Antioxidant and photoprotective properties were determined using DPPH assay and spectrophotometry. Antifungal activity of extracts against Candida species was developed following the CLSI standard M27, 4th ed. The sun protective factor (SPF) and UVA/UVB ratio values were calculated using the Mansur equation and the Boots star rating system. The critical wavelength (λc) was determined by calculating the integrated optical density curve’s area. The transmission of erythema and pigmentation was calculated through equations that use constants to calculate the flux of erythema and pigmentation. The GC–MS analysis identified 37 compounds for S. chocoana and 38 for S. pittieriana, including alkaloids, triterpenoids, and polyphenolics, among others. Both extracts exhibited proliferative effects on periodontal ligament fibroblasts, did not affect the viability of HaCaT cells, and showed excellent antioxidant activities (46.1% and 43.7%). Relevant antifungal activity was observed with S. pittieriana extract against Candida albicans (GM–MIC: 4 µg/mL), followed by C. auris and C. glabrata (GM–MIC: 32 µg/mL), while S. chocoana extract was active against C. albicans and C. glabrata (GM–MIC: 16 and 32 µg/mL, respectively). High SPF values (31.0 and 30.0), λc (393.98 and 337.81 nm), UVA/UVB ratio (1.5 and 1.2), and low percentage of transmission of erythema and pigmentation were determined for S. chocoana and S. pittieriana, respectively. Results showed that species of Sloanea constitute a promising alternative as ingredients for developing skincare products, and exhaustive studies are required for their sustainable uses. Full article
Show Figures

Figure 1

21 pages, 2824 KiB  
Review
Sustainable Approaches for Biodiversity and Bioprospecting of Citrus
by Sony Kumari, Rony Bhowal and Penna Suprasanna
Sustainability 2023, 15(9), 7731; https://doi.org/10.3390/su15097731 - 8 May 2023
Cited by 8 | Viewed by 6482
Abstract
Citrus, belonging to the Rutaceae family, is a commercial fruit worldwide, and it is mainly recognized for its nutritional, anti-oxidant, and significant medicinal properties. Citruses are a group of multifaceted fruit crops with a rich traditional knowledge, deeply rooted in ethnic culture, and [...] Read more.
Citrus, belonging to the Rutaceae family, is a commercial fruit worldwide, and it is mainly recognized for its nutritional, anti-oxidant, and significant medicinal properties. Citruses are a group of multifaceted fruit crops with a rich traditional knowledge, deeply rooted in ethnic culture, and the fruits have been considered to be health-protecting and health-promoting food supplements since ancient times. The presence of secondary metabolites and their bioactivities has led to the development of new alternative drugs in recent years. Diverse secondary metabolites such as flavonoids, alkaloids, carotenoids, phenolic acids, and essential oils and their high bioactive properties have imparted great value to human health based on their anti-oxidative, anti-inflammatory, anti-cancer, cardiovascular protective, and neuroprotective effects. The indigenous Citrus species of India—mainly Northeast India—have distinctive and valuable genetic traits, such as resistance to biotic and abiotic stress, distinctive aroma, flavor, etc. Hence, these species are considered to be repertoires of valuable genes for molecular breeding aimed at quality improvement. There is a need for awareness and understanding among the citrus-producing countries of the exploitation of biodiversity and the conservation of Citrus for sustainable development and bioprospecting. The current review presents a holistic view of Citrus biodiversity from a global perspective, including phytochemical constituents and health benefits. Advanced biotechnological and genomic approaches for Citrus trait improvement have also been discussed to highlight their relevance in Citrus improvement. Full article
Show Figures

Figure 1

21 pages, 5868 KiB  
Review
Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade
by Saheed O. Anifowose, Wejdan S. N. Alqahtani, Badr A. Al-Dahmash, Florenz Sasse, Maroua Jalouli, Mourad A. M. Aboul-Soud, Ahmed Y. Badjah-Hadj-Ahmed and Yasser A. Elnakady
Molecules 2022, 27(23), 8307; https://doi.org/10.3390/molecules27238307 - 28 Nov 2022
Cited by 13 | Viewed by 3395
Abstract
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are [...] Read more.
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy. Full article
Show Figures

Figure 1

27 pages, 14897 KiB  
Article
In Vitro Anticancer Activity and Oxidative Stress Biomarkers Status Determined by Usnea barbata (L.) F.H. Wigg. Dry Extracts
by Violeta Popovici, Laura Bucur, Gabriela Vochita, Daniela Gherghel, Cosmin Teodor Mihai, Dan Rambu, Suzana Ioana Calcan, Teodor Costache, Iulia Elena Cucolea, Elena Matei, Florin Ciprian Badea, Aureliana Caraiane and Victoria Badea
Antioxidants 2021, 10(7), 1141; https://doi.org/10.3390/antiox10071141 - 20 Jul 2021
Cited by 29 | Viewed by 7230
Abstract
Lichens represent an important resource for common traditional medicines due to their numerous metabolites that can exert diverse pharmacological activities including anticancer effects. To find new anticancer compounds with fewer side effects and low tumor resistance, a bioprospective study of Usnea barbata (L.) [...] Read more.
Lichens represent an important resource for common traditional medicines due to their numerous metabolites that can exert diverse pharmacological activities including anticancer effects. To find new anticancer compounds with fewer side effects and low tumor resistance, a bioprospective study of Usnea barbata (L.) F.H. Wigg. (U. barbata), a lichen from the Călimani Mountains (Suceava county, Romania) was performed. The aim of this research was to investigate the anticancer potential, morphologic changes, wound healing property, clonogenesis, and oxidative stress biomarker status of four extracts of U. barbata in different solvents (methanol, ethanol, acetone, and ethyl acetate), and also of usnic acid (UA) as a positive control on the CAL-27 (ATCC® CRL-2095™) oral squamous carcinoma (OSCC) cell line and V79 (ATCC® CCL-93™) lung fibroblasts as normal cells. Using the MTT assay and according to IC50 values, it was found that the most potent anticancer property was displayed by acetone and ethyl acetate extracts. All U. barbata extracts determined morphological modifications (losing adhesion capacity, membrane shrinkage, formation of abnormal cellular wrinkles, and vacuolization) with higher intensity in tumor cells than in normal ones. The most intense anti-migration effect was established in the acetone extract treatment. The clonogenic assay showed that some U. barbata extracts decreased the ability of cancer cells to form colonies compared to untreated cells, suggesting a potential anti-tumorigenic property of the tested extracts. Therefore, all the U. barbata extracts manifest anticancer activity of different intensity, based, at least partially, on an imbalance in antioxidant defense mechanisms, causing oxidative stress. Full article
(This article belongs to the Special Issue Anticancer Antioxidants)
Show Figures

Figure 1

24 pages, 1251 KiB  
Review
Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America
by Mehreen Zeb and Chow H. Lee
Molecules 2021, 26(2), 251; https://doi.org/10.3390/molecules26020251 - 6 Jan 2021
Cited by 52 | Viewed by 9305
Abstract
Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied [...] Read more.
Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied and this has led to identification of their bioactive ingredients. North America, while home to one of the world’s largest and diverse ecological systems, has not subjected its natural resources especially its diverse array of mushroom species for bioprospecting purposes: Are mushrooms native to North America a good source for drug discovery? In this review, we compile all the published studies up to September 2020 on the bioprospecting of North American mushrooms. Out of the 79 species that have been investigated for medicinal properties, 48 species (60%) have bioactivities that have not been previously reported. For a mere 16 selected species, 17 new bioactive compounds (10 small molecules, six polysaccharides and one protein) have already been isolated. The results from our literature search suggest that mushrooms native to North America are indeed a good source for drug discovery. Full article
Show Figures

Figure 1

11 pages, 2471 KiB  
Communication
Enhancement of an In Vivo Anti-Inflammatory Activity of Oleanolic Acid through Glycosylation Occurring Naturally in Stauntonia hexaphylla
by Le Ba Vinh, Nguyen Thi Minh Nguyet, Liu Ye, Gao Dan, Nguyen Viet Phong, Hoang Le Tuan Anh, Young Ho Kim, Jong Seong Kang, Seo Young Yang and Inkyu Hwang
Molecules 2020, 25(16), 3699; https://doi.org/10.3390/molecules25163699 - 13 Aug 2020
Cited by 16 | Viewed by 3564
Abstract
Stauntonia hexaphylla (Lardizabalaceae) has been used as a traditional herbal medicine in Korea and China for its anti-inflammatory and analgesic properties. As part of a bioprospecting program aimed at the discovery of new bioactive compounds from Korean medicinal plants, a phytochemical study of [...] Read more.
Stauntonia hexaphylla (Lardizabalaceae) has been used as a traditional herbal medicine in Korea and China for its anti-inflammatory and analgesic properties. As part of a bioprospecting program aimed at the discovery of new bioactive compounds from Korean medicinal plants, a phytochemical study of S. hexaphylla leaves was carried out leading to isolation of two oleanane-type triterpene saponins, 3-O-[β-d-glucopyranosyl (1→2)-α-l-arabinopyranosyl] oleanolic acid-28-O-[β-d-glucopyranosyl (1→6)-β-d-glucopyranosyl] ester (1) and 3-O-α-l-arabinopyranosyl oleanolic acid-28-O-[β-d-glucopyranosyl (1→6)-β-d-glucopyranosyl] ester (2). Their structures were established unambiguously by spectroscopic methods such as one- and two-dimensional nuclear magnetic resonance and infrared spectroscopies, high-resolution electrospray ionization mass spectrometry and chemical reactions. Their anti-inflammatory activities were examined for the first time with an animal model for the macrophage-mediated inflammatory response as well as a cell-based assay using an established macrophage cell line (RAW 264.7) in vitro. Together, it was concluded that the saponin constituents, when they were orally administered, exerted much more potent activities in vivo than their sapogenin core even though both the saponins and the sapogenin molecule inhibited the RAW 264.7 cell activation comparably well in vitro. These results imply that saponins from S. hexaphylla leaves have a definite advantage in the development of oral medications for the control of inflammatory responses. Full article
Show Figures

Graphical abstract

37 pages, 3295 KiB  
Review
A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry and Pharmacological Properties
by Daphne E. González-Juárez, Abraham Escobedo-Moratilla, Joel Flores, Sergio Hidalgo-Figueroa, Natalia Martínez-Tagüeña, Jesús Morales-Jiménez, Alethia Muñiz-Ramírez, Guillermo Pastor-Palacios, Sandra Pérez-Miranda, Alfredo Ramírez-Hernández, Joyce Trujillo and Elihú Bautista
Molecules 2020, 25(14), 3283; https://doi.org/10.3390/molecules25143283 - 20 Jul 2020
Cited by 92 | Viewed by 17681
Abstract
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, [...] Read more.
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, fever, headache, nasal congestion, and cough. The chemical constituents of Ephedra species have been of research interest for decades due to their contents of ephedrine-type alkaloids and its pharmacological properties. Other chemical constituents such as phenolic and amino acid derivatives also have resulted attractive and have provided evidence-based supporting of the ethnomedical uses of the Ephedra species. In recent years, research has been expanded to explore the endophytic fungal diversity associated to Ephedra species, as well as, the chemical constituents derived from these fungi and their pharmacological bioprospecting. Two additional aspects that illustrate the chemical diversity of Ephedra genus are the chemotaxonomy approaches and the use of ephedrine-type alkaloids as building blocks in organic synthesis. American Ephedra species, especially those that exist in Mexico, are considered to lack ephedrine type alkaloids. In this sense, the phytochemical study of Mexican Ephedra species is a promising area of research to corroborate their ephedrine-type alkaloids content and, in turn, discover new chemical compounds with potential biological activity. Therefore, the present review represents a key compilation of all the relevant information for the Ephedra genus, in particular the American species, the species distribution, their ecological interactions, its ethnobotany, its phytochemistry and their pharmacological activities and toxicities, in order to promote clear directions for future research. Full article
Show Figures

Graphical abstract

34 pages, 4204 KiB  
Review
Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae
by Juan Rodrigo Salazar, Marco A. Loza-Mejía and Diego Soto-Cabrera
Molecules 2020, 25(7), 1649; https://doi.org/10.3390/molecules25071649 - 3 Apr 2020
Cited by 13 | Viewed by 5839
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the [...] Read more.
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases. Full article
(This article belongs to the Special Issue Repositioning Natural Products in Drug Discovery)
Show Figures

Graphical abstract

27 pages, 3806 KiB  
Review
Erythroxylum in Focus: An Interdisciplinary Review of an Overlooked Genus
by David A. Restrepo, Ernesto Saenz, Orlando Adolfo Jara-Muñoz, Iván F. Calixto-Botía, Sioly Rodríguez-Suárez, Pablo Zuleta, Benjamin G. Chavez, Juan A. Sanchez and John C. D’Auria
Molecules 2019, 24(20), 3788; https://doi.org/10.3390/molecules24203788 - 21 Oct 2019
Cited by 37 | Viewed by 22186
Abstract
The genus Erythroxylum contains species used by indigenous people of South America long before the domestication of plants. Two species, E. coca and E. novogranatense, have been utilized for thousands of years specifically for their tropane alkaloid content. While abuse of the narcotic [...] Read more.
The genus Erythroxylum contains species used by indigenous people of South America long before the domestication of plants. Two species, E. coca and E. novogranatense, have been utilized for thousands of years specifically for their tropane alkaloid content. While abuse of the narcotic cocaine has impacted society on many levels, these species and their wild relatives contain untapped resources for the benefit of mankind in the form of foods, pharmaceuticals, phytotherapeutic products, and other high-value plant-derived metabolites. In this review, we describe the current state of knowledge of members within the genus and the recent advances in the realm of molecular biology and biochemistry. Full article
(This article belongs to the Special Issue Advances in Plant Alkaloid Research)
Show Figures

Graphical abstract

9 pages, 677 KiB  
Article
Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil
by Luã Tainã Costa Reis, Magnus Régios Dias Da Silva, Silvia Lima Costa, Eudes Da Silva Velozo, Ronan Batista and Suzana Telles Da Cunha Lima
Medicines 2018, 5(1), 8; https://doi.org/10.3390/medicines5010008 - 15 Jan 2018
Cited by 3 | Viewed by 5049
Abstract
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: [...] Read more.
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists. Full article
(This article belongs to the Special Issue Bioactivities and Medical Use of Herbs and Plants)
Show Figures

Figure 1

Back to TopTop