Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,742)

Search Parameters:
Keywords = trade-off cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

22 pages, 7990 KiB  
Article
Detection of Cracks in Low-Power Wind Turbines Using Vibration Signal Analysis with Empirical Mode Decomposition and Convolutional Neural Networks
by Angel H. Rangel-Rodriguez, Jose M. Machorro-Lopez, David Granados-Lieberman, J. Jesus de Santiago-Perez, Juan P. Amezquita-Sanchez and Martin Valtierra-Rodriguez
AI 2025, 6(8), 179; https://doi.org/10.3390/ai6080179 - 6 Aug 2025
Abstract
Condition monitoring and fault detection in wind turbines are essential for reducing repair and maintenance costs. Early detection of faults enables timely interventions before the damage worsens. However, existing methods often rely on costly scheduled inspections or lack the ability to effectively detect [...] Read more.
Condition monitoring and fault detection in wind turbines are essential for reducing repair and maintenance costs. Early detection of faults enables timely interventions before the damage worsens. However, existing methods often rely on costly scheduled inspections or lack the ability to effectively detect early stage damage, particularly under different operational speeds. This article presents a methodology based on convolutional neural networks (CNNs) and empirical mode decomposition (EMD) of vibration signals for the detection of blade crack damage. The proposed approach involves acquiring vibration signals under four conditions: healthy, light, intermediate, and severe damage. EMD is then applied to extract time–frequency representations of the signals, which are subsequently converted into images. These images are analyzed by a CNN to classify the condition of the wind turbine blades. To enhance the final CNN architecture, various image sizes and configuration parameters are evaluated to balance computational load and classification accuracy. The results demonstrate that combining vibration signal images, generated using the EMD method, with CNN models enables accurate classification of blade conditions, achieving 99.5% accuracy while maintaining a favorable trade-off between performance and complexity. Full article
Show Figures

Figure 1

30 pages, 2099 KiB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

27 pages, 1062 KiB  
Article
Dynamic Supply Chain Decision-Making of Live E-Commerce Considering Netflix Marketing Under Different Power Structures
by Yawen Liu, Mohammed Gadafi Tamimu and Junwu Chai
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 202; https://doi.org/10.3390/jtaer20030202 - 6 Aug 2025
Abstract
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This [...] Read more.
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This transition is further expedited by Netflix-like entertainment marketing methods, which have demonstrated the capacity to enhance consumer retention by as much as 40%. As organizations adjust to this evolving landscape, it is essential to optimize supply chain strategies to align with these dynamic, consumer-centric environments. This paper examines the complexity of decision-making in live e-commerce supply chains, specifically regarding Netflix-inspired marketing strategies. The primary aim of this study is to design a game-theoretic framework that examines the interactions between producers and online celebrity retailers (OCRs) across different power dynamics. As live commerce integrates digital retail with immersive experiences, businesses must optimize pricing, quality, and marketing strategies in real-time. We present engagement-driven marketing as a strategic variable and incorporate consumer regret and switching costs into the demand function. To illustrate practical trade-offs in strategy, we incorporate a multi-criteria decision-making (MCDM) layer with AHP-TOPSIS, assessing profit, consumer surplus, engagement score, and channel efficiency. The experiment results indicate that Netflix-style marketing markedly increases demand and profit in retailer-led frameworks, whereas centralized tactics enhance overall channel performance. TOPSIS analysis prioritizes high-effort, high-engagement methods, whereas the Stackelberg experiment underscores the influence of power dynamics on profit distribution. This study presents an innovative integrative decision-making methodology for enhancing live-streaming commerce tactics in data-driven and consumer-focused markets. Full article
Show Figures

Figure 1

16 pages, 5519 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

41 pages, 7308 KiB  
Review
Challenges and Opportunities for Extending Battery Pack Life Using New Algorithms and Techniques for Battery Electric Vehicles
by Pedro S. Gonzalez-Rodriguez, Jorge de J. Lozoya-Santos, Hugo G. Gonzalez-Hernandez, Luis C. Felix-Herran and Juan C. Tudon-Martinez
World Electr. Veh. J. 2025, 16(8), 442; https://doi.org/10.3390/wevj16080442 - 5 Aug 2025
Abstract
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs [...] Read more.
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs by exploring advances in degradation modeling, adaptive Battery Management Systems (BMSs), electronic component simulations, and real-world usage profiling. The authors have systematically analyzed over 80 recent studies using a PRISMA-guided review protocol. A novel comparative framework highlights gaps in current literature, particularly regarding real-world driving impacts, ripple current effects, and second-life battery applications. This review article critically compares model-driven, data-driven, and hybrid model approaches, emphasizing trade-offs in interpretability, accuracy, and deployment feasibility. Finally, the review links battery life extension to broader sustainability metrics, including circular economy models and predictive maintenance algorithms. This review offers actionable insights for researchers, engineers, and policymakers aiming to design longer-lasting and more sustainable electric mobility systems. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

27 pages, 5228 KiB  
Article
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO
by Xinyu Wang, Shuhui Ma, Shiting Wu, Zhaoye Li, Jinrong Cao and Peiquan Xu
Sensors 2025, 25(15), 4817; https://doi.org/10.3390/s25154817 - 5 Aug 2025
Abstract
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical [...] Read more.
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical vision pipelines or recent deep-learning paradigms, struggle to simultaneously satisfy the stringent demands of industrial scenarios: high accuracy on sub-millimeter flaws, insensitivity to texture-rich backgrounds, and real-time throughput on resource-constrained hardware. Although contemporary detectors have narrowed the gap, they still exhibit pronounced sensitivity–robustness trade-offs, particularly in the presence of scale-varying defects and cluttered surfaces. To address these limitations, we introduce MBY (MBDNet-Attention-YOLO), a lightweight yet powerful framework that synergistically couples the MBDNet backbone with the YOLO detection head. Specifically, the backbone embeds three novel components: (1) HGStem, a hierarchical stem block that enriches low-level representations while suppressing redundant activations; (2) Dynamic Align Fusion (DAF), an adaptive cross-scale fusion mechanism that dynamically re-weights feature contributions according to defect saliency; and (3) C2f-DWR, a depth-wise residual variant that progressively expands receptive fields without incurring prohibitive computational costs. Building upon this enriched feature hierarchy, the neck employs our proposed MultiSEAM module—a cascaded squeeze-and-excitation attention mechanism operating at multiple granularities—to harmonize fine-grained and semantic cues, thereby amplifying weak defect signals against complex textures. Finally, we integrate the Inner-SIoU loss, which refines the geometric alignment between predicted and ground-truth boxes by jointly optimizing center distance, aspect ratio consistency, and IoU overlap, leading to faster convergence and tighter localization. Extensive experiments on two publicly available steel-defect benchmarks—NEU-DET and PVEL-AD—demonstrate the superiority of MBY. Without bells and whistles, our model achieves 85.8% mAP@0.5 on NEU-DET and 75.9% mAP@0.5 on PVEL-AD, surpassing the best-reported results by significant margins while maintaining real-time inference on an NVIDIA Jetson Xavier. Ablation studies corroborate the complementary roles of each component, underscoring MBY’s robustness across defect scales and surface conditions. These results suggest that MBY strikes an appealing balance between accuracy, efficiency, and deployability, offering a pragmatic solution for next-generation industrial quality-control systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 1841 KiB  
Article
Valorizing Biomass Waste: Hydrothermal Carbonization and Chemical Activation for Activated Carbon Production
by Fidel Vallejo, Diana Yánez, Luis Díaz-Robles, Marcelo Oyaneder, Serguei Alejandro-Martín, Rasa Zalakeviciute and Tamara Romero
Biomass 2025, 5(3), 45; https://doi.org/10.3390/biomass5030045 - 5 Aug 2025
Viewed by 20
Abstract
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, [...] Read more.
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, and activation duration on mass yield and iodine adsorption capacity. KOH-activated carbons achieved superior iodine numbers (up to 1289 mg/g) but lower mass yields (18–35%), reflecting enhanced porosity at the cost of material loss. Conversely, H3PO4 activation yielded higher mass retention (up to 54.86%) with moderate iodine numbers (up to 1117.3 mg/g), balancing porosity and yield. HTC pretreatment at 190 °C reduced the ash content, thereby enhancing the stability of hydrochar. These findings highlight the trade-offs between adsorption performance and process efficiency, with KOH suited for high-porosity applications (e.g., water purification) and H3PO4 for industrial scalability. The study advances biomass waste valorization, aligning with circular economy principles and offering sustainable solutions for environmental and industrial applications, such as water purification and energy storage. Full article
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Biocontrol of Phage Resistance in Pseudomonas Infections: Insights into Directed Breaking of Spontaneous Evolutionary Selection in Phage Therapy
by Jumpei Fujiki, Daigo Yokoyama, Haruka Yamamoto, Nana Kimura, Manaho Shimizu, Hinatsu Kobayashi, Keisuke Nakamura and Hidetomo Iwano
Viruses 2025, 17(8), 1080; https://doi.org/10.3390/v17081080 - 4 Aug 2025
Viewed by 238
Abstract
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for [...] Read more.
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for innovative countermeasures to AMR, which will cause an estimated 10 million deaths annually by 2050. However, the emergence of phage-resistant variants presents challenges similar to AMR, thus necessitating a deeper understanding of phage resistance mechanisms and control strategies. The highest priority must be to prevent the emergence of phage resistance. Although phage cocktails targeting multiple receptors have demonstrated a certain level of phage resistance suppression, they cannot completely suppress resistance in clinical settings. This highlights the need for strategies beyond simple resistance suppression. Notably, recent studies examining fitness trade-offs associated with phage resistance have opened new avenues in phage therapy that offer the potential of restoring antibiotic susceptibility and attenuating pathogen virulence despite phage resistance. Thus, controlling phage resistance may rely on both its suppression and strategic redirection. This review summarizes key concepts in the control of phage resistance and explores evolutionary engineering as a means of optimizing phage therapy, with a particular focus on Pseudomonas infections. Harnessing evolutionary dynamics by intentionally breaking the spontaneous evolutionary trajectories of target bacterial pathogens could potentially reshape bacterial adaptation by acquisition of phage resistance, unlocking potential in the application of phage therapy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Viewed by 145
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

17 pages, 5658 KiB  
Communication
When DNA Tells the Tale: High-Resolution Melting as a Forensic Tool for Mediterranean Cetacean Identification
by Mariangela Norcia, Alessia Illiano, Barbara Mussi, Fabio Di Nocera, Emanuele Esposito, Anna Di Cosmo, Domenico Fulgione and Valeria Maselli
Int. J. Mol. Sci. 2025, 26(15), 7517; https://doi.org/10.3390/ijms26157517 - 4 Aug 2025
Viewed by 230
Abstract
Effective species identification is crucial for the conservation and management of marine mammals, particularly in regions such as the Mediterranean Sea, where several cetacean populations are endangered or vulnerable. In this study, we developed and validated a High-Resolution Melting (HRM) analysis protocol for [...] Read more.
Effective species identification is crucial for the conservation and management of marine mammals, particularly in regions such as the Mediterranean Sea, where several cetacean populations are endangered or vulnerable. In this study, we developed and validated a High-Resolution Melting (HRM) analysis protocol for the rapid, cost-effective, and reliable identification of the four representative marine cetacean species that occur in the Mediterranean Sea: the bottlenose dolphin (Tursiops truncatus), the striped dolphin (Stenella coeruleoalba), the sperm whale (Physeter macrocephalus), and the fin whale (Balaenoptera physalus). Species-specific primers targeting mitochondrial DNA regions (cytochrome b and D-loop) were designed to generate distinct melting profiles. The protocol was tested on both tissue and fecal samples, demonstrating high sensitivity, reproducibility, and discrimination power. The results confirmed the robustness of the method, with melting curve profiles clearly distinguishing the target species and achieving a success rate > 95% in identifying unknown samples. The use of HRM offers several advantages over traditional sequencing methods, including reduced cost, speed, portability, and suitability for degraded samples, such as those from the stranded individuals. This approach provides a valuable tool for non-invasive genetic surveys and real-time species monitoring, contributing to more effective conservation strategies for cetaceans and enforcement of regulations against illegal trade. Full article
(This article belongs to the Special Issue Molecular Insights into Zoology)
Show Figures

Figure 1

33 pages, 8886 KiB  
Article
Unsupervised Binary Classifier-Based Object Detection Algorithm with Integrated Background Subtraction Suitable for Use with Aerial Imagery
by Gabija Veličkaitė, Ignas Daugėla and Ivan Suzdalev
Appl. Sci. 2025, 15(15), 8608; https://doi.org/10.3390/app15158608 (registering DOI) - 3 Aug 2025
Viewed by 202
Abstract
This research presents the development of a novel object detection algorithm designed to identify humans in natural outdoor environments using minimal computational resources. The proposed system, SARGAS, combines a custom convolutional neural network (CNN) classifier with MOG2 background subtraction and partial affine transformations [...] Read more.
This research presents the development of a novel object detection algorithm designed to identify humans in natural outdoor environments using minimal computational resources. The proposed system, SARGAS, combines a custom convolutional neural network (CNN) classifier with MOG2 background subtraction and partial affine transformations for camera stabilization. A secondary CNN refines detections and reduces false positives. Unlike conventional supervised models, SARGAS is trained in a partially unsupervised manner, learning to recognize feature patterns without requiring labeled data. The algorithm achieved a recall of 93%, demonstrating strong detection capability even under challenging conditions. However, the overall accuracy reached 65%, due to a higher rate of false positives—an expected trade-off when maximizing recall. This bias is intentional, as missing a human target in search and rescue applications carries a higher cost than producing additional false detections. While supervised models, such as YOLOv5, perform well on data resembling their training sets, they exhibit significant performance degradation on previously unseen footage. In contrast, SARGAS generalizes more effectively, making it a promising candidate for real-world deployment in environments where labeled training data is limited or unavailable. The results establish a solid foundation for further improvements and suggest that unsupervised CNN-based approaches hold strong potential in object detection tasks. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

Back to TopTop