Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = toxin A (TcdA) and toxin B (TcdB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2951 KB  
Article
Comparative Relatedness of Clostridioides difficile Strains Isolated from Humans and Companion Dogs in South Korea
by Joo Yeol Kim, Su Min Kwak, Jae Hong Jeong, Jae Young Oh, Kwang-Won Seo, Dongheui An, Dokyun Kim, Seok Hoon Jeong, Chang-Ki Kim, Kwang Jun Lee and Jong-Chan Chae
Antibiotics 2025, 14(12), 1231; https://doi.org/10.3390/antibiotics14121231 - 6 Dec 2025
Viewed by 392
Abstract
Background/Objectives: Clostridioides difficile is an anaerobic Gram-positive bacterium and a leading cause of healthcare-associated diarrhea. In this study, C. difficile strains isolated from human patients with diarrhea and companion dogs in South Korea were compared to reveal the potential transmission between different [...] Read more.
Background/Objectives: Clostridioides difficile is an anaerobic Gram-positive bacterium and a leading cause of healthcare-associated diarrhea. In this study, C. difficile strains isolated from human patients with diarrhea and companion dogs in South Korea were compared to reveal the potential transmission between different hosts. Methods: A total of 304 C. difficile strains were isolated, including 217 human isolates and 87 dog isolates. The strains were characterized for antimicrobial susceptibility and genotypic features, including antimicrobial resistant genes and toxin genes. In addition, comparative genomic analyses were performed to investigate their genetic relatedness. Results: Although antimicrobial susceptibility test revealed no significant difference in overall resistance, human isolates had higher resistance to moxifloxacin and cefotetan, while dog isolates showed slightly higher resistance to clindamycin and ampicillin. Resistance to vancomycin (3.7%), rifampin (8.3%), and chloramphenicol (0.9%) was observed only in human isolates. Toxin genes (tcdA and tcdB) were found in 57.1% of human isolates and 43.7% of dog isolates, while binary toxin genes (cdtA and cdtB) were detected only in isolates from humans. Multilocus sequence typing (MLST) analysis identified 34 sequence types (STs) in human isolates and 16 in dog isolates. Among them, 15 STs were detected in the isolates from both origins; notably, ST203 and ST42 were the predominant taxa that were equally derived from humans and dogs. Although tcdA and tcdB have not been previously reported in ST203, they were detected in 7 out of 34 ST203 isolates. The whole genomes of 36 representative isolates belonging to ST42 and ST203 were classified according to the STs of the source origin. Conclusions: These results indicate that similar C. difficile strain populations are present in both humans and companion dogs, which is compatible with interspecies dissemination or circulation of shared strain populations, and may also reflect host adaptation. Full article
Show Figures

Figure 1

28 pages, 7749 KB  
Article
Effects of Bile on Pathogenic Vibrio, Aeromonas, and Clostridioides spp. Toxin Effector Domains
by Jaylen E. Taylor, David B. Heisler, Eshan Choudhary, Elena Kudryashova and Dmitri S. Kudryashov
Biomolecules 2025, 15(11), 1539; https://doi.org/10.3390/biom15111539 - 1 Nov 2025
Viewed by 715
Abstract
Bile acids, the primary components of bile, are cholesterol-derived molecules synthesized in the liver and secreted to the small intestine. Besides their primary digestive roles, bile acids have antimicrobial properties and serve as an environmental cue for intestinal pathogens, modulating the expression of [...] Read more.
Bile acids, the primary components of bile, are cholesterol-derived molecules synthesized in the liver and secreted to the small intestine. Besides their primary digestive roles, bile acids have antimicrobial properties and serve as an environmental cue for intestinal pathogens, modulating the expression of virulence factors, e.g., toxins and effector proteins. Whereas timely recognition and neutralization of pathogenic toxin effectors by the host is critical, our understanding of the effects of bile on their structure and function is limited. In this work, we found that bile effectively protected cultured IEC-18 enterocytes from the mixture of Aeromonas hydrophila secreted toxins, containing hemolysin, aerolysin, and RtxA (MARTX). To explore whether these effects have broad specificity, we employed biochemical and biophysical techniques to test the in vitro effects of bile and bile acids on several effector domains of MARTX and VgrG toxins from Vibrio cholerae and Aeromonas hydrophila, and catalytic domains of TcdA and TcdB toxins from Clostridioides difficile. Bile compromised the structural integrity of the tested effectors to various degrees in a protein charge-dependent manner. Bile and bile acids promoted exposure of hydrophobic residues and the unfolding of most, but not all, of the tested effectors, facilitating their precipitation and cleavage by chymotrypsin. Bile also inhibited specific activities of the tested effector enzymes, partially due to imposed oxidation of their catalytic residues. To summarize, this work validated bile as a non-proteinaceous factor of innate immunity, capable of compromising the structural integrity and function of the effector domains of various bacterial toxins. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

13 pages, 733 KB  
Article
Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment
by Alexandre S. Borges, Luiza S. Zakia, Serena Yu, Michael G. Surette and Luis G. Arroyo
Animals 2025, 15(18), 2703; https://doi.org/10.3390/ani15182703 - 15 Sep 2025
Viewed by 752
Abstract
In veterinary hospitals, the risk of C. difficile nosocomial acquired infections remains largely unknown, and only a few studies surveyed the environmental prevalence of C. difficile in these facilities. The aim of this study was to determine the prevalence of C. difficile in [...] Read more.
In veterinary hospitals, the risk of C. difficile nosocomial acquired infections remains largely unknown, and only a few studies surveyed the environmental prevalence of C. difficile in these facilities. The aim of this study was to determine the prevalence of C. difficile in the Ontario Veterinary College large animal hospital environment and to characterize the recovered isolates. Methods. The environment of the large animal clinic of a university veterinary hospital was tested for the presence of C. difficile. Samples were collected from 157 surface sites and cultured using selective enriched broth and selective agar media. Multiplex PCR method for the detection of C. difficile toxin A (tcdA), toxin B (tcdB) binary toxin (cdtAcdtB) genes; high-resolution capillary gel-based electrophoresis PCR-Ribotyping; multilocus sequence typing (MLST) and antimicrobial resistance predictions from sequenced genome were performed. Results. Thirteen isolates were recovered from 157 (8.3%) of multiple sampled sites of the main hospital. Ten distinct ribotypes, of which 7 were positive for toxin genes A and B, and all were negative for binary toxin genes. The two most common PCR ribotypes were 014 and 010. Isolates belong to the MLST Clade 1 and were further divided into 5 different sequence types. A high prevalence of AMR genes was observed in some isolates. Conclusions. C. difficile is present in different areas of the large animal hospital environment, particularly areas of high traffic and surfaces difficult to clean. Active surveillance and biosecurity measures should be in place to maintain a low environmental contamination and prevent nosocomial infections. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

18 pages, 1815 KB  
Review
Against Clostridioides difficile Infection: An Update on Vaccine Development
by Jingyao Wang, Qianquan Ma and Songhai Tian
Toxins 2025, 17(5), 222; https://doi.org/10.3390/toxins17050222 - 1 May 2025
Cited by 2 | Viewed by 2618
Abstract
Clostridioides difficile (C. difficile) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of C. difficile infection (CDI) are rising across the world. CDI is primarily [...] Read more.
Clostridioides difficile (C. difficile) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of C. difficile infection (CDI) are rising across the world. CDI is primarily driven by two homologous protein exotoxins, toxin A (TcdA) and toxin B (TcdB). Other putative virulence factors include binary toxin CDT, surface layer proteins, phosphorylated polysaccharides, and spore coat proteins. These C. difficile virulence factors are potential targets for vaccine development. Although several C. difficile vaccines have entered clinical trials, there is currently no approved vaccine on the market. This review outlines the intoxication mechanism during CDI, emphasizing the potential antigens that can be used for vaccine development. We aim to provide a comprehensive overview of the current status of research and development of C. difficile vaccines. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

25 pages, 5923 KB  
Review
Deciphering the Structural and Functional Paradigms of Clostridioides difficile Toxins TcdA and TcdB
by Mohammad Qutub, Amol Tatode, Ujban Md Hussain, Tanvi Premchandani, Jayshree Taksande, Milind Umekar and Deepak Thakre
Bacteria 2025, 4(2), 21; https://doi.org/10.3390/bacteria4020021 - 3 Apr 2025
Cited by 3 | Viewed by 3321
Abstract
Clostridioides difficile Infection (CDI) continues to be a major cause of antibiotic-associated diarrhea and pseudomembranous colitis, fueled in large measure by virulence factors TcdA and TcdB. These giant glucosyltransferase toxins interfere with host cytoskeletal integrity and inflammatory signaling by inhibiting Rho GTPase; however, [...] Read more.
Clostridioides difficile Infection (CDI) continues to be a major cause of antibiotic-associated diarrhea and pseudomembranous colitis, fueled in large measure by virulence factors TcdA and TcdB. These giant glucosyltransferase toxins interfere with host cytoskeletal integrity and inflammatory signaling by inhibiting Rho GTPase; however, the detailed structural dynamics, receptor selectivity, and subcellular trafficking mechanisms remain in part unspecified. This review integrates recent insights from cryo-electron microscopy (cryo-EM) and X-ray crystallography to describe the quaternary architecture of TcdA/B, emphasizing conformational changes key to pore formation and endosomal escape. We also examine the genomic heterogeneity of hypervirulent C. difficile strains (e.g., ribotype 027), correlating toxin gene polymorphisms (e.g., tcdC mutations) with increased toxin production and virulence. Mechanistic explanations of toxin-driven inflammasome activation and epithelial barrier dysfunction are situated within host immune evasion mechanisms, including microbiota-derived bile acid regulation of toxin stability. Subsequent innovative therapeutic strategies, encompassing the utilization of engineered neutralizing antibodies that specifically target the autoprocessing domain alongside structure-guided small-molecule inhibitors, are subjected to a rigorous evaluation. By integrating structural biology, systems-level omics, and clinical epidemiology, this review establishes a comprehensive framework for understanding C. difficile toxin pathogenesis and guiding next-generation precision antimicrobials. Full article
Show Figures

Figure 1

16 pages, 1498 KB  
Article
The Use of Gel Electrophoresis to Separate Multiplex Polymerase Chain Reaction Amplicons Allows for the Easy Identification and Assessment of the Spread of Toxigenic Clostridioides difficile Strains
by Tomasz Bogiel, Patrycja Kwiecińska, Robert Górniak, Piotr Kanarek and Agnieszka Mikucka
Gels 2024, 10(12), 818; https://doi.org/10.3390/gels10120818 - 12 Dec 2024
Cited by 2 | Viewed by 5479
Abstract
Clostridioides difficile is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The [...] Read more.
Clostridioides difficile is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of C. difficile strains. Additionally, the frequency of C. difficile toxin genes and the genotypes of toxin-producing strains were determined. Ninety-nine C. difficile strains were used in the detection of the presence of genes encoding all of these toxins using the multiplex PCR method. In 85 (85.9%) strains, the presence of tcdA genes encoding enterotoxin A was detected. In turn, in 66 (66.7%) isolates, the gene encoding toxin B (tcdB) was present. The lowest number of strains tested was positive for genes encoding a binary toxin. Only 31 (31.3%) strains possessed the cdtB gene and 22 (22.2%) contained both genes for the binary toxin subunits (the cdtB and cdtA genes). A relatively large number of the strains tested had genes encoding toxins, whose presence may result in a severe course of disease. Therefore, the accurate diagnosis of patients, including the detection of all known C. difficile toxin genes, is very important. The multiplex PCR method allows for the quick and accurate determination of whether the tested strains of this bacterium contain toxin genes. Agarose gel electrophoresis is a useful tool for visualizing amplification products, allowing one to confirm the presence of specific C. difficile toxin genes as well as investigate their dissemination for epidemiological purposes. Full article
(This article belongs to the Special Issue Gels in Separation Science)
Show Figures

Graphical abstract

15 pages, 2335 KB  
Article
A Mouse Model of Mild Clostridioides difficile Infection for the Characterization of Natural Immune Responses
by Assaf Mizrahi, Gauthier Péan de Ponfilly, Diane Sapa, Antonia Suau, Irène Mangin, Aurélie Baliarda, Sandra Hoys, Benoît Pilmis, Sylvie Lambert, Anaïs Brosse and Alban Le Monnier
Microorganisms 2024, 12(10), 1933; https://doi.org/10.3390/microorganisms12101933 - 24 Sep 2024
Viewed by 2306
Abstract
(1) Background: We describe a model of primary mild-Clostridioides difficile infection (CDI) in a naïve host, including gut microbiota analysis, weight loss, mortality, length of colonization. This model was used in order to describe the kinetics of humoral (IgG, IgM) and mucosal [...] Read more.
(1) Background: We describe a model of primary mild-Clostridioides difficile infection (CDI) in a naïve host, including gut microbiota analysis, weight loss, mortality, length of colonization. This model was used in order to describe the kinetics of humoral (IgG, IgM) and mucosal (IgA) immune responses against toxins (TcdA/TcdB) and surface proteins (SlpA/FliC). (2) Methods: A total of 105 CFU vegetative forms of C. difficile 630Δerm were used for challenge by oral administration after dysbiosis, induced by a cocktail of antibiotics. Gut microbiota dysbiosis was confirmed and described by 16S rDNA sequencing. We sacrificed C57Bl/6 mice after different stages of infection (day 6, 2, 7, 14, 21, 28, and 56) to evaluate IgM, IgG against TcdA, TcdB, SlpA, FliC in blood samples, and IgA in the cecal contents collected. (3) Results: In our model, we observed a reproducible gut microbiota dysbiosis, allowing for C. difficile digestive colonization. CDI was objectivized by a mean weight loss of 13.1% and associated with a low mortality rate of 15.7% of mice. We observed an increase in IgM anti-toxins as early as D7 after challenge. IgG increased since D21, and IgA anti-toxins were secreted in cecal contents. Unexpectedly, neither anti-SlpA nor anti-FliC IgG or IgA were observed in our model. (4) Conclusions: In our model, we induced a gut microbiota dysbiosis, allowing a mild CDI to spontaneously resolve, with a digestive clearance observed since D14. After this primary CDI, we can study the development of specific immune responses in blood and cecal contents. Full article
(This article belongs to the Special Issue Latest Research on Clostridioides difficile)
Show Figures

Figure 1

18 pages, 2565 KB  
Article
Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples
by Lovleen Tina Joshi, Emmanuel Brousseau, Trefor Morris, Jonathan Lees, Adrian Porch and Les Baillie
Bioengineering 2024, 11(6), 632; https://doi.org/10.3390/bioengineering11060632 - 20 Jun 2024
Cited by 2 | Viewed by 2180
Abstract
The rapid detection of the spore form of Clostridioides difficile has remained a challenge for clinicians. To address this, we have developed a novel, precise, microwave-enhanced approach for near-spontaneous release of DNA from C. difficile spores via a bespoke microwave lysis platform. C. difficile [...] Read more.
The rapid detection of the spore form of Clostridioides difficile has remained a challenge for clinicians. To address this, we have developed a novel, precise, microwave-enhanced approach for near-spontaneous release of DNA from C. difficile spores via a bespoke microwave lysis platform. C. difficile spores were microwave-irradiated for 5 s in a pulsed microwave electric field at 2.45 GHz to lyse the spore and bacteria in each sample, which was then added to a screen-printed electrode and electrochemical DNA biosensor assay system to identify presence of the pathogen’s two toxin genes. The microwave lysis method released both single-stranded and double-stranded genome DNA from the bacterium at quantifiable concentrations between 0.02 μg/mL to 250 μg/mL allowing for subsequent downstream detection in the biosensor. The electrochemical bench-top system comprises of oligonucleotide probes specific to conserved regions within tcdA and tcdB toxin genes of C. difficile and was able to detect 800 spores of C. difficile within 300 µL of unprocessed human stool samples in under 10 min. These results demonstrate the feasibility of using a solid-state power generated, pulsed microwave electric field to lyse and release DNA from human stool infected with C. difficile spores. This rapid microwave lysis method enhanced the rapidity of subsequent electrochemical detection in the development of a rapid point-of-care biosensor platform for C. difficile. Full article
Show Figures

Figure 1

13 pages, 1000 KB  
Review
Clostridioides difficile Toxins: Host Cell Interactions and Their Role in Disease Pathogenesis
by Md Zahidul Alam and Rajat Madan
Toxins 2024, 16(6), 241; https://doi.org/10.3390/toxins16060241 - 24 May 2024
Cited by 25 | Viewed by 7200
Abstract
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of [...] Read more.
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI. Full article
Show Figures

Figure 1

29 pages, 2902 KB  
Review
Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection
by Evdokia Pourliotopoulou, Theodoros Karampatakis and Melania Kachrimanidou
Microorganisms 2024, 12(5), 1004; https://doi.org/10.3390/microorganisms12051004 - 16 May 2024
Cited by 10 | Viewed by 11674
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains [...] Read more.
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI. Full article
(This article belongs to the Special Issue Recent Advances in Clostridioides difficile Infection)
Show Figures

Figure 1

17 pages, 11828 KB  
Article
A Streamlined Method to Obtain Biologically Active TcdA and TcdB Toxins from Clostridioides difficile
by Diane Sapa, Anaïs Brosse, Héloïse Coullon, Gauthier Péan de Ponfilly, Thomas Candela and Alban Le Monnier
Toxins 2024, 16(1), 38; https://doi.org/10.3390/toxins16010038 - 11 Jan 2024
Cited by 2 | Viewed by 3295
Abstract
The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming [...] Read more.
The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming in C. difficile or performed in heterologous hosts. Therefore, we propose a streamlined method to obtain functional toxins in C. difficile. Two C. difficile strains were generated, each harboring a sequence encoding a His-tag at the 3′ end of C. difficile 630∆erm tcdA or tcdB genes. Each toxin gene is expressed using the Ptet promoter, which is inducible by anhydro-tetracycline. The obtained purification yields were 0.28 mg and 0.1 mg per liter for rTcdA and rTcdB, respectively. In this study, we successfully developed a simple routine method that allows the production and purification of biologically active rTcdA and rTcdB toxins with similar activities compared to native toxins. Full article
Show Figures

Figure 1

19 pages, 4903 KB  
Article
A Colonic Organoid Model Challenged with the Large Toxins of Clostridioides difficile TcdA and TcdB Exhibit Deregulated Tight Junction Proteins
by Martina Schneemann, Lucas Heils, Verena Moos, Franziska Weiß, Susanne M. Krug, January Weiner, Dieter Beule, Ralf Gerhard, Jörg-Dieter Schulzke and Roland Bücker
Toxins 2023, 15(11), 643; https://doi.org/10.3390/toxins15110643 - 4 Nov 2023
Cited by 1 | Viewed by 3957
Abstract
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: [...] Read more.
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. Results: Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. Conclusions: Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation. Full article
(This article belongs to the Special Issue Enterotoxins and Mucosal Pathomechanisms)
Show Figures

Figure 1

18 pages, 1512 KB  
Review
Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection
by Daira Rubio-Mendoza, Adrián Martínez-Meléndez, Héctor Jesús Maldonado-Garza, Carlos Córdova-Fletes and Elvira Garza-González
Microorganisms 2023, 11(10), 2525; https://doi.org/10.3390/microorganisms11102525 - 10 Oct 2023
Cited by 12 | Viewed by 4354
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10–30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic [...] Read more.
Clostridioides difficile infection (CDI) may recur in approximately 10–30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

20 pages, 5777 KB  
Article
Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective
by Khald Blau, Fabian K. Berger, Alexander Mellmann and Claudia Gallert
Microorganisms 2023, 11(10), 2497; https://doi.org/10.3390/microorganisms11102497 - 5 Oct 2023
Cited by 13 | Viewed by 3230
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile [...] Read more.
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3′)-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven “hypervirulent” RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential. Full article
Show Figures

Figure 1

23 pages, 9617 KB  
Review
Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI
by Leon M. T. Dicks
Microorganisms 2023, 11(9), 2161; https://doi.org/10.3390/microorganisms11092161 - 26 Aug 2023
Cited by 8 | Viewed by 4242
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. [...] Read more.
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

Back to TopTop