Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Genomic DNA Extraction from C. difficile Using Chelex 100®
2.3. Microwave Apparatus and Exposure Details
2.4. Scanning Electron Microscopy Studies of C. difficile
2.5. Measurement of DNA Released from Microwave Irradiated Samples
2.6. Electrochemical Nucleic Acid Detection of tcdA and tcdB Genes within DNA Released from Microwaved C. difficile in Water
2.7. Electrochemical Nucleic Acid Detection of tcdA and tcdB Genes from Clinical Fecal Specimens
2.8. Statistical Analysis
3. Results
3.1. Microwave-Mediated Spore and Vegetative Cell Lysis
3.2. The Release of Target DNA from Microwaved C. difficile Spores
3.3. Electrochemical Detection of tcdA and tcdB in Microwaved C. difficile
3.4. Determination of the Lower Limit of Electrochemical Detection in Sterile Water
3.5. Determination of the Lower Limit of Electrochemical Detection in Feces
3.6. Comparison of the Specificity and Sensitivity of the Microwave-Enhanced Electrochemical Detection Assay to a Toxin-Sensitive Enzyme Immunoassay (EIA)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in US burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Joshi, L.T. Clostridioides difficile spores tolerate disinfection with sodium hypochlorite disinfectant and remain viable within surgical scrubs and gown fabrics. Microbiology 2023, 169, 001418. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P. Clostridioides difficile infection (CDI) during the COVID-19 pandemic. Anaerobe 2022, 74, 102518. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Dimitrov, G.; Gergova, R.; Hadzhiyski, P.; Markovska, R. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev. Clin. Pharmacol. 2023, 16, 925–938. [Google Scholar] [PubMed]
- Schäffler, H.; Breitrück, A. Clostridium difficile—From colonization to infection. Front. Microbiol. 2018, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.T.; Mali, B.L.; Geddes, C.D.; Baillie, L. Extraction and Sensitive Detection of Toxins A and B from the Human Pathogen Clostridium difficile in 40 Seconds Using Microwave-Accelerated Metal-Enhanced Fluorescence. PLoS ONE 2014, 9, e104334. [Google Scholar] [CrossRef] [PubMed]
- Barbut, F.; Petit, J. Epidemiology of Clostridium difficile-associated infections. Clin. Microbiol. Infect. 2001, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Lim, V.W.; Tomaru, T.; Chua, B.; Ma, Y.; Yanagihara, K. Budget Impact Analysis of Adopting a One-Step Nucleic Acid Amplification Testing (NAAT) Alone Diagnostic Pathway for Clostridioides difficile in Japan Compared to a Two-Step Algorithm with Glutamate Dehydrogenase/Toxin Followed by NAAT. Diagnostics 2023, 13, 1463. [Google Scholar] [CrossRef] [PubMed]
- UK Government. Clostridioides Difficile: Guidance, Data and Analysis. 2022. Available online: https://www.gov.uk/government/collections/clostridium-difficile-guidance-data-and-analysis (accessed on 15 January 2024).
- Pancholi, P.; Kelly, C.; Raczkowski, M.; Balada-Llasat, J.M. Detection of toxigenic Clostridium difficile: Comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J. Clin. Microbiol. 2012, 50, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Elfassy, A.; Kalina, W.V.; French, R.; Nguyen, H.; Tan, C.; Sebastian, S.; Wilcox, M.H.; Davies, K.; Kutzler, M.A.; Jansen, K.U.; et al. Development and clinical validation of an automated cell cytotoxicity neutralization assay for detecting Clostridioides difficile toxins in clinically relevant stools samples. Anaerobe 2021, 71, 102415. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Baron, E.J.; Peterson, L.R.; Persing, D.H. Laboratory Diagnosis of Clostridium difficile Infection: Can Molecular Amplification Methods Move Us out of Uncertainty? J. Mol. Diagn. JMD 2011, 13, 573–582. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 16 January 2024).
- Imtiaz, A.; Lees, J.; Choi, H.; Joshi, L.T. An Integrated Continuous Class-F−1 Mode Power Amplifier Design Approach for Microwave Enhanced Portable Diagnostic Applications. IEEE Trans. Microw. Theory Tech. 2015, 63, 3007–3015. [Google Scholar] [CrossRef]
- International Telecommunication Union. 19 October 2009. 1.15. Industrial, Scientific and Medical (ISM) Applications (of Radio Frequency Energy). Available online: https://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1056-1-200704-I!!PDF-E.pdf (accessed on 11 December 2023).
- Gartshore, A.; Kidd, M.; Joshi, L.T. Applications of Microwave Energy in Medicine. Biosensors 2021, 11, 96. [Google Scholar] [CrossRef]
- Morgan, A.J.; Naylon, J.; Gooding, S.; John, C.; Squires, O.; Lees, J.; Porch, A. Efficient microwave heating of microfluidic systems. Sens. Actuators B Chem. 2013, 181, 904–909. [Google Scholar] [CrossRef]
- Porch, A.; Slocombe, D.; Edwards, P.P. Microwave absorption in powders of small conducting particles for heating applications. Phys. Chem. Chem. Phys. 2013, 15, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Tennant, S.M.; Zhang, Y.; Galen, J.E.; Geddes, C.D.; Levine, M.M. Ultra-fast and sensitive detection of non-typhoidal Salmonella using microwave-accelerated metal-enhanced fluorescence (“MAMEF”). PLoS ONE 2011, 6, e18700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Agreda, P.; Kelley, S.; Gaydos, C.; Geddes, C.D. Development of a microwave-accelerated metal-enhanced fluorescence 40 second, <100 cfu/mL point of care assay for the detection of Chlamydia trachomatis. Biomed. Eng. IEEE Trans. 2011, 58, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip 2010, 10, 1725–1728. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, S.L.J.; Brazier, J.S.; O’Neill, G.L.; Duerden, B.I. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J. Clin. Microbiol. 1999, 37, 461. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, J.A.; Thomas, E.; Mandal, S.; Williams, O.; Porch, A. Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon 2015, 81, 174–178. [Google Scholar] [CrossRef]
- Cuenca, J.A.; Bugler, K.; Taylor, S.; Morgan, D.; Williams, P.; Bauer, J.; Porch, A. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys.—Condens. Matter 2016, 28, 106002. [Google Scholar] [CrossRef]
- Techlab. C. DIFFICILE TOX A/B. 2008. An ELISA for the Detection of Clostridium difficile Toxins A and B. [C. DIFFICILE TOX A/B II™-TECHLAB, Inc.]. Available online: https://www.techlab.com/diagnostics/c-difficile/c-difficile-tox-ab-ii/ (accessed on 7 February 2024).
- Purvis, D.R.; Sensortec Ltd. Method of Electrochemical Analysis of an Analyte. U.S. Patent 8,163,163, 24 April 2012. [Google Scholar]
- Dawson, L.F.; Peltier, J.; Hall, C.L.; Harrison, M.A.; Derakhshan, M.; Shaw, H.A.; Fairweather, N.F.; Wren, B.W. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci. Rep. 2021, 11, 3244. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, D.; Weese, J.S. Evaluation of commercial kits for extraction of DNA and RNA from Clostridium difficile. Anaerobe 2012, 18, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.D.; Bellows, W.K.; Guillard, R.R. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 1988, 117, 279–283. [Google Scholar] [CrossRef]
- Kim, S.Y.; Shin, S.J.; Song, C.H.; Jo, E.K.; Kim, H.J.; Park, J.K. Destruction of Bacillus licheniformis spores by microwave irradiation. J. Appl. Microbiol. 2009, 106, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.C.; Chankhamhaengdecha, S.; Singhakaew, S.; Ounjai, P.; Janvilisri, T. Inactivation of Clostridium difficile spores by microwave irradiation. Anaerobe 2016, 38, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ellison, B.; Gibson, C.; Grant, N.; Hyland, G.; Lloyd, D.; Magee, J.; Pooley, D.; Stewart, W.; MRBP RESEARCH Ltd. Apparatus and Method for Analysing a Biological Sample in Response to Microwave Radiation. U.S. Patent Application 10/484,378, 9 September 2004. [Google Scholar]
- Joshi, L.T.; Phillips, D.S.; Williams, C.F.; Alyousef, A.; Baillie, L. Contribution of spores to the ability of Clostridium difficile to adhere to surfaces. Appl. Environ. Microbiol. 2012, 78, 7671–7679. [Google Scholar] [CrossRef] [PubMed]
- Robotham, J.; Wilcox, M. Updated Guidance on the Diagnosis and Reporting of Clostridium difficile. Department of Health, PHE, UK. 2012. Available online: https://www.gov.uk/government/publications/updated-guidance-on-the-diagnosis-and-reporting-of-clostridium-difficile (accessed on 15 January 2024).
- Fang, F.C.; Polage, C.R.; Wilcox, M.H. Point-counterpoint: What is the optimal approach for detection of Clostridium difficile infection? J. Clin. Microbiol. 2017, 55, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; French, G.L. Diagnostic testing for Clostridium difficile: A comprehensive survey of laboratories in England. J. Hosp. Infect. 2011, 79, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Basu, I.; Freeman, J.; Swager, T.; Roberts, S.A. Improved detection of toxigenic Clostridium difficile using the Cepheid Xpert C difficile assay and impact on C difficile infection rates in a tertiary hospital: A double-edged sword. Am. J. Infect. Control 2013, 41, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Pasupuleti, V.; Rolston, D.D.; Jain, A.; Deshpande, N.; Pant, C.; Hernandez, A.V. Diagnostic accuracy of real-time polymerase chain reaction in detection of Clostridium difficile in the stool samples of patients with suspected Clostridium difficile infection: A meta-analysis. Clin. Infect. Dis. 2011, 53, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.R.; Young, S.A.; Davis, T.E.; Wang, Z.X.; Duncan, J.; Noutsios, C.; Liesenfeld, O.; Osiecki, J.C.; Lewinski, M.A. Evaluation of the cobas® Cdiff test for the Detection of Toxigenic Clostridium difficile in Stool Samples. J. Clin. Microbiol. 2017, 55, 3426. [Google Scholar] [CrossRef] [PubMed]
- Planche, T.; Aghaizu, A.; Holliman, R.; Riley, P.; Poloniecki, J.; Breathnach, A.; Krishna, S. Diagnosis of Clostridium difficile infection by toxin detection kits: A systematic review. Lancet Infect. Dis. 2008, 8, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.A.; Berry, C.E.; Morris, K.A.; Smith, R.; Young, S.; Davis, T.E.; Fuller, D.D.; Buckner, R.J.; Wilcox, M.H. Comparison of the Vidas C. difficile GDH automated enzyme-linked fluorescence immunoassay (ELFA) with another commercial enzyme immunoassay (EIA)(Quik Chek-60), two selective media, and a PCR assay for gluD for detection of Clostridium difficile in fecal samples. J. Clin. Microbiol. 2015, 53, 1931–1934. [Google Scholar] [CrossRef] [PubMed]
- Lanzas, C.; Dubberke, E.R. Effectiveness of screening hospital admissions to detect asymptomatic carriers of Clostridium difficile: A modeling evaluation. Infect. Control Hosp. Epidemiol. 2014, 35, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
Clinical Sample Number | Techlab Tox A/B QuikChek | MW Based Assay |
---|---|---|
0 | 0 | 0 |
1 | 0 | 0 |
2 | 0 | 0 |
3 | 0 | 0 |
4 | 0 | 0 |
5 | 0 | 0 |
6 | 0 | 0 |
7 | 0 | 0 |
8 | 0 | 0 |
9 | 0 | 0 |
10 | 0 | 0 |
11 | 0 | 0 |
12 | 0 | 0 |
13 | 0 | 0 |
14 | 0 | 1 |
15 | 0 | 1 |
16 | 0 | 0 |
17 | 1 | 1 |
18 | 1 | 1 |
19 | 1 | 1 |
20 | 1 | 1 |
21 | 1 | 0 |
22 | 0 | 0 |
23 | 1 | 0 |
24 | 1 | 0 |
25 | 0 | 0 |
26 | 1 | 0 |
27 | 1 | 0 |
28 | 0 | 0 |
29 | 0 | 0 |
30 | 0 | 0 |
31 | 1 | 0 |
32 | 1 | 0 |
33 | 1 | 0 |
34 | 1 | 0 |
35 | 1 | 0 |
36 | 1 | 0 |
37 | 1 | 0 |
38 | 1 | 0 |
39 | 1 | 0 |
40 | 1 | 0 |
41 | 1 | 0 |
42 | 0 | 0 |
43 | 1 | 1 |
44 | 1 | 1 |
45 | 1 | 1 |
46 | 1 | 1 |
47 | 1 | 1 |
48 | 1 | 1 |
49 | 1 | 1 |
50 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, L.T.; Brousseau, E.; Morris, T.; Lees, J.; Porch, A.; Baillie, L. Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples. Bioengineering 2024, 11, 632. https://doi.org/10.3390/bioengineering11060632
Joshi LT, Brousseau E, Morris T, Lees J, Porch A, Baillie L. Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples. Bioengineering. 2024; 11(6):632. https://doi.org/10.3390/bioengineering11060632
Chicago/Turabian StyleJoshi, Lovleen Tina, Emmanuel Brousseau, Trefor Morris, Jonathan Lees, Adrian Porch, and Les Baillie. 2024. "Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples" Bioengineering 11, no. 6: 632. https://doi.org/10.3390/bioengineering11060632
APA StyleJoshi, L. T., Brousseau, E., Morris, T., Lees, J., Porch, A., & Baillie, L. (2024). Rapid, Point-of-Care Microwave Lysis and Electrochemical Detection of Clostridioides difficile Directly from Stool Samples. Bioengineering, 11(6), 632. https://doi.org/10.3390/bioengineering11060632