Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. C. difficile Cultivation
2.3. Molecular Analysis
2.3.1. DNA Extraction
2.3.2. Whole Genome Sequencing Analysis
2.3.3. Multilocus Sequencing Typing Analysis
2.3.4. Antimicrobial Resistance Gene Analysis
3. Results
3.1. C. difficile Cultivation
3.2. Molecular Analysis
3.2.1. Ribotyping and Multilocus Sequencing Typing Analysis
3.2.2. Antimicrobial Resistance Gene Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Magdesian, K.G.; Dujowich, M.; Madigan, J.E.; Hansen, L.M.; Hirsh, D.C.; Jang, S.S. Molecular characterization of Clostridium difficile isolates from horses in an intensive care unit and association of disease severity with strain type. J. Am. Vet. Med. Assoc. 2006, 228, 751–755. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Stämpfli, H.R.; Duffield, T.; Peregrine, A.S.; Trotz-Williams, L.A.; Arroyo, L.G.; Brazier, J.S.; Weese, J.S. Clostridium difficile PCR ribotypes in calves, Canada. Emerg. Infect. Dis. 2006, 12, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Adney, W.S.; Shideler, R.K. Isolation of Clostridium difficile and detection of cytotoxin in the feces of diarrheic foals in the absence of antimicrobial treatment. J. Clin. Microbiol. 1987, 25, 1225–1227. [Google Scholar] [CrossRef]
- Weese, J.S.; Staempfli, H.R.; Prescott, J.F. A prospective study of the roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet. J. 2001, 33, 403–409. [Google Scholar] [CrossRef]
- Perrin, J.; Buogo, C.; Gallusser, A.; Burnens, A.P.; Nicolet, J. Intestinal carriage of Clostridium difficile in neonate dogs. J. Vet. Med. B 1993, 40, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Investig. 2020, 32, 213–221. [Google Scholar] [CrossRef]
- Båverud, V.; Gustafsson, A.; Franklin, A.; Aspán, A.; Gunnarsson, A. Clostridium difficile: Prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet. J. 2003, 35, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Båverud, V.; Gustafsson, A.; Franklin, A.; Lindholm, A.; Gunnarsson, A. Clostridium difficile-associated with acute colitis in mature horses treated with antibiotics. Equine Vet. J. 1997, 29, 279–284. [Google Scholar] [CrossRef]
- Louh, I.K.; Greendyke, W.G.; Hermann, E.A.; Davidson, K.W.; Falzon, L.; Vawdrey, D.K.; Shaffer, J.A.; Calfee, D.P.; Furuya, E.Y.; Ting, H.H. Clostridium difficile Infection in Acute Care Hospitals: Systematic Review and Best Practices for Prevention. Infect. Control. Hosp. Epidemiol. 2017, 38, 476–482. [Google Scholar] [CrossRef]
- Ray, A.J.; Deshpande, A.; Fertelli, D.; Sitzlar, B.M.; Thota, P.; Sankar C, T.; Jencson, A.L.; Cadnum, J.L.; Salata, R.A.; Watkins, R.R.; et al. A Multicenter Randomized Trial to Determine the Effect of an Environmental Disinfection Intervention on the Incidence of Healthcare-Associated Clostridium difficile Infection. Infect. Control. Hosp. Epidemiol. 2017, 38, 777–783. [Google Scholar] [CrossRef]
- Weese, J.S.; Armstrong, J. Outbreak of Clostridium difficile-associated disease in a small animal veterinary teaching hospital. J. Vet. Intern. Med. 2003, 17, 813–816. [Google Scholar] [PubMed]
- Villagómez-Estrada, S.; Blanco, J.L.; Melo-Duran, D.; Martín, C.; Harmanus, C.; Kuijper, E.J.; García, M.E. Detection of Clostridium difficile in the environment in a veterinary teaching hospital. Anaerobe 2019, 57, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Madewell, B.R.; Tang, Y.J.; Jang, S.; Madigan, J.E.; Hirsh, D.C.; Gumerlock, P.H.; Silva, J. Apparent outbreaks of Clostridium difficile-associated diarrhea in horses in a veterinary medical teaching hospital. J. Vet. Diagn. Invest. 1995, 7, 343–346. [Google Scholar] [CrossRef]
- Weese, J.S.; Staempfli, H.R.; Prescott, J.F. Isolation of environmental Clostridium difficile from a veterinary teaching hospital. J. Vet. Diagn. Invest. 2000, 12, 449–452. [Google Scholar] [CrossRef]
- Murphy, C.P.; Reid-Smith, R.J.; Boerlin, P.; Weese, J.S.; Prescott, J.F.; Janecko, N.; Hassard, L.; A McEwen, S. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can. Vet. J. 2010, 51, 963–972. [Google Scholar]
- Persson, S.; Torpdahl, M.; Olsen, K. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008, 14, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Fawley, W.N.; Knetsch, C.W.; MacCannell, D.R.; Harmanus, C.; Du, T.; Mulvey, M.R.; Paulick, A.; Anderson, L.; Kuijper, E.J.; Wilcox, M.H.; et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS ONE 2015, 10, e0118150. [Google Scholar] [CrossRef]
- Derakhshani, H.; Bernier, S.P.; Marko, V.A.; Surette, M.G. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools. BMC Genom. 2020, 21, 519. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Griffiths, D.; Fawley, W.; Kachrimanidou, M.; Bowden, R.; Crook, D.W.; Fung, R.; Golubchik, T.; Harding, R.M.; Jeffery, K.J.M.; Jolley, K.A.; et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 2010, 48, 770–778. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 2021, 7, 000685. [Google Scholar] [CrossRef]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Dong, W.; Fan, X.; Guo, Y.; Wang, S.; Jia, S.; Lv, N.; Yuan, T.; Pan, Y.; Xue, Y.; Chen, X.; et al. An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases. Nat. Commun. 2024, 15, 8084. [Google Scholar] [CrossRef] [PubMed]
- Candela, T.; Marvaud, J.C.; Nguyen, T.K.; Lambert, T. A cfr-like gene cfr (C) conferring linezolid resistance is common in Clostridium difficile. Int. J. Antimicrob. Agents 2017, 50, 496–500. [Google Scholar] [CrossRef]
- Schoster, A.; Staempfli, H. Epidemiology and Antimicrobial Resistance in Clostridium difficile with Special Reference to the Horse. Curr. Clin. Microbiol. Rep. 2016, 3, 32–41. [Google Scholar] [CrossRef]
- Uchida-Fujii, E.; Niwa, H.; Senoh, M.; Kato, H.; Kinoshita, Y.; Mita, H.; Ueno, T. Clostridioides difficile infection in thoroughbred horses in Japan from 2010 to 2021. Sci. Rep. 2023, 13, 13099. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208, Erratum in N. Engl. J. Med. 2022, 386, 2348. [Google Scholar] [CrossRef]
- Barbut, F. How to eradicate Clostridium difficile from the environment. J. Hosp. Infect. 2015, 89, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Borji, S.; Rostamian, M.; Kadivarian, S.; Kooti, S.; Dashtbin, S.; Hosseinabadi, S.; Abiri, R.; Alvandi, A. Prevalence of Clostridioides difficile contamination in the healthcare environment and instruments: A systematic review and meta-analysis. Germs 2022, 12, 361–371. [Google Scholar] [CrossRef]
- Riley, T.V.; Adams, J.E.; O’NEill, G.L.; Bowman, R.A. Gastrointestinal carriage of Clostridium difficile in cats and dogs attending veterinary clinics. Epidemiol. Infect. 1991, 107, 659–665. [Google Scholar] [CrossRef]
- Båverud, V. Clostridium difficile diarrhea: Infection control in horses. Vet. Clin. N. Am. Equine Pract. 2004, 20, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Muzslay, M.; Wilson, P.; Onderdonk, A.B. A Novel Quantitative Sampling Technique for Detection and Monitoring of Clostridium difficile Contamination in the Clinical Environment. J. Clin. Microbiol. 2015, 53, 2570–2574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wojtacka, J.; Wysok, B.; Kocuvan, A.; Rupnik, M. High contamination rates of shoes of veterinarians, veterinary support staff and veterinary students with Clostridioides difficile spores. Transbound. Emerg. Dis. 2021, 69, 685–693. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Salmasian, H.; Cohen, B.; Abrams, J.A.; Larson, E.L. Receipt of Antibiotics in Hospitalized Patients and Risk for Clostridium difficile Infection in Subsequent Patients Who Occupy the Same Bed. JAMA Intern. Med. 2016, 176, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.P.C.; Liu, X.; Lo, S.; Chien, W.; Wan, X. Effects of environmental cleaning bundles on reducing healthcare-associated Clostridioides difficile infection: A systematic review and meta-analysis. J. Hosp. Infect. 2020, 106, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Fawley, W.N.; Wilcox, M.H. Molecular epidemiology of endemic Clostridium difficile infection. Epidemiol. Infect. 2001, 126, 343–530. [Google Scholar] [CrossRef]
- Kuijper, E.J.; Coignard, B.; Brazier, J.S.; Suetens, C.; Drudy, D.; Wiuff, C.; Pituch, H.; Reichert, P.; Schneider, F.; Widmer, A.F.; et al. Update of Clostridium difficile-associated disease due to PCR ribotype 027 in Europe. Euro. Surveill. 2007, 12, E1-2. [Google Scholar] [CrossRef]
- Arroyo, L.G.; Kruth, S.A.; Willey, B.M.; Staempfli, H.R.; E Low, D.; Weese, J.S. PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J. Med. Microbiol. 2005, 54, 163–166. [Google Scholar] [CrossRef]
- Arroyo, L.G.; Staempfli, H.; Weese, J.S. Molecular analysis of Clostridium difficile isolates recovered from horses with diarrhea. Vet. Microbiol. 2007, 120, 179–183. [Google Scholar] [CrossRef]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Front. Microbiol. 2017, 11, 2138. [Google Scholar] [CrossRef] [PubMed]
- Janezic, S.; Potocnik, M.; Zidaric, V.; Rupnik, M.; Paredes-Sabja, D. Highly Divergent Clostridium difficile Strains Isolated from the Environment. PLoS ONE 2016, 11, e0167101. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Brévers, B.; Avesani, V.; Van Broeck, J.; Leroux, A.; Amory, H.; Delmée, M.; Daube, G. Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet. Microbiol. 2014, 172, 309–317. [Google Scholar] [CrossRef]
- Silva, R.O.; Rupnik, M.; Diniz, A.N.; Vilela, E.G.; Lobato, F.C.F. Clostridium difficile ribotypes in humans and animals in Brazil. Mem. Inst. Oswaldo. Cruz. 2015, 110, 1062–1065. [Google Scholar] [CrossRef]
- Gonzales-Luna, A.J.; Carlson, T.J.; Dotson, K.M.; Poblete, K.; Costa, G.; Miranda, J.; Lancaster, C.; Walk, S.T.; Tupy, S.; Begum, K.; et al. PCR ribotypes of Clostridioides difficile across Texas from 2011 to 2018 including emergence of ribotype 255. Emerg. Microbes Infect. 2020, 9, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Keel, K.; Brazier, J.S.; Post, K.W.; Weese, S.; Songer, J.G. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J. Clin. Microbiol. 2007, 45, 1963–1964. [Google Scholar] [CrossRef]
- Kim, K.H.; Fekety, R.; Batts, D.H.; Brown, D.; Cudmore, M.; Silva, J.; Waters, D. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J. Infect. Dis. 1981, 143, 42–50. [Google Scholar] [CrossRef]
- Reigadas, E.; Vázquez-Cuesta, S.; Villar-Gómara, L.; Onori, R.; Alcalá, L.; Marín, M.; Muñoz, P.; Bouza, E. Role of Clostridioides difficile in hospital environment and healthcare workers. Anaerobe 2020, 63, 102204. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.H.; Fawley, W.N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J. Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. J. Hosp. Infect. 2003, 54, 109–114. [Google Scholar] [CrossRef]
- Stabler, R.A.; Dawson, L.F.; Valiente, E.; Cairns, M.D.; Martin, M.J.; Donahue, E.H.; Riley, T.V.; Songer, J.G.; Kuijper, E.J.; Dingle, K.E.; et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS ONE 2012, 7, e31559. [Google Scholar] [CrossRef]
- Martin, J.S.; Monaghan, T.M.; Wilcox, M.H. Clostridium difficile infection: Epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 206–216. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kichan Lee, K.; Byun, J.-W.; Kim, H.; So, B.; Ku, B.-K.; Kim, H.-Y.; Moon, B.-Y. Prevalence, genetic characteristics, and antimicrobial resistance of Clostridioides difficile isolates from horses in Korea. Anaerobe 2023, 80, 102700. [Google Scholar] [CrossRef]
- Newcomer, E.P.; Fishbein, S.R.S.; Zhang, K.; Hink, T.; Reske, K.A.; Cass, C.; Iqbal, Z.H.; Struttmann, E.L.; Burnham, C.-A.D.; Dubberke, E.R.; et al. Genomic surveillance of Clostridioides difficile transmission and virulence in a healthcare setting. mBio 2024, 15, e03300-23. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef]
- Dridi, L.; Tankovic, J.; Petit, J.-C. CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb. Drug Resist. 2004, 10, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Marín, M.; Martín, A.; Alcalá, L.; Cercenado, E.; Iglesias, C.; Reigadas, E.; Bouza, E. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob. Agents Chemother. 2015, 59, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Peltier, J.; Courtin, P.; El Meouche, I.; Catel-Ferreira, M.; Chapot-Chartier, M.-P.; Lemée, L.; Pons, J.-L. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile. Microbiology 2013, 159, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Isidro, J.; Santos, A.; Nunes, A.; Borges, V.; Silva, C.; Vieira, L.; Mendes, A.L.; Serrano, M.; Henriques, A.O.; Gomes, J.P.; et al. Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal. Emerg. Infect. Dis. 2018, 24, 741–745. [Google Scholar] [CrossRef]
Location | Site | No. Samples (Positive) | Sample ID | Ribotype | Toxin Profile |
---|---|---|---|---|---|
Reception Area | floor | 2 | |||
Computers | keyboards | 4 | |||
Horse stalls | floor | 8 | |||
wall | 8 (1) | Guelph54 | 25360 | A+B+CDT− | |
Horse examination Rooms | floor | 6 (1) | Guelph92 | 010 | A−B−CDT− |
wall | 6 | ||||
Cow stall 1 | floor | 6 | |||
wall | 4 | ||||
Cow stall 2 | floor | 2 (1) | Guelph19 | 014/5 | A+B+CDT− |
Bathroom | floor | 1 | |||
Large animal radiology room | floor | 2 | |||
Small ruminant stalls | floor | 4 | |||
wall | 4 | ||||
Barn hallways drains | 18 (2) | Guelph88 | 010 | A−B−CDT− | |
Guelph1 | 012 | A+B+CDT− | |||
Breezeway | floor | 13 (2) | Guelph9 | 010 | A−B−CDT− |
Guelph8 | 25358 | A−B−CDT− | |||
Barn hallways | floor | 16 (3) | Guelph185 | 25365 | A−B−CDT− |
Guelph82 | 25362 | A+B+CDT− | |||
Guelph78 | 014/5 | A+B+CDT− | |||
Surgical suits | floor | 4 | |||
Surgical induction room | floor | 2 (1) | Guelph94 | 25364 | A+B+CDT− |
Ruminant Isolation Unit | floor | 2 (1) | Guelph20 | 449 | A+B+CDT− |
MRI induction room | floor | 1 | |||
Wall | 1 | ||||
Nuclear Medicine room | floor | 1 | |||
Ruminants ward hallways | floor | 2 (1) | Guelph12 | 25393 | A−B−CDT− |
Surgical Recovery Room | floor | 2 | |||
Equine ward hallways | floor | 12 | |||
Equine Isolation-Exam Room | floor | 4 | |||
Equine Isolation Hallways | floor | 6 | |||
Equine Isolation Stalls | floor | 8 | |||
wall | 8 |
Isolate | ST | MLST Clade | tcdA | tcdB | aac(6′)-Ie/aph(2″)-Ia | aadE | ant(6)-Ia | aph(2″)-If | aph(3′)-IIIa | sat4 | erm(B) | erm(Q) | tet(M) | cfr(C) | gyrA_T82A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guelph19 | 14 | 1 | 1 | 1 | |||||||||||
Guelph78 | 14 | 1 | 1 | 1 | |||||||||||
Guelph12 | 15 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Guelph88 | 15 | 1 | 1 | 1 | 1 | ||||||||||
Guelph92 | 15 | 1 | 1 | 1 | 1 | ||||||||||
Guelph8 | 26 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Guelph9 | 26 | 1 | 1 | 1 | 1 | ||||||||||
Guelph185 | 26 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Guelph51 | 54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | ||||
Guelph54 | 54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | ||||
Guelph82 | 54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | |||
Guelph94 | 54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
AMRFinder | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Resfinder | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
CARD-RGI | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.S.; Zakia, L.S.; Yu, S.; Surette, M.G.; Arroyo, L.G. Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment. Animals 2025, 15, 2703. https://doi.org/10.3390/ani15182703
Borges AS, Zakia LS, Yu S, Surette MG, Arroyo LG. Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment. Animals. 2025; 15(18):2703. https://doi.org/10.3390/ani15182703
Chicago/Turabian StyleBorges, Alexandre S., Luiza S. Zakia, Serena Yu, Michael G. Surette, and Luis G. Arroyo. 2025. "Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment" Animals 15, no. 18: 2703. https://doi.org/10.3390/ani15182703
APA StyleBorges, A. S., Zakia, L. S., Yu, S., Surette, M. G., & Arroyo, L. G. (2025). Isolation of Clostridioides difficile from a Large Animal Veterinary Teaching Hospital Environment. Animals, 15(18), 2703. https://doi.org/10.3390/ani15182703