Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = toughening modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5833 KiB  
Article
Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects
by Benjun Cheng, Mingyang Huang, Guoqi Liu, Feng Wu and Xiaocheng Liang
Materials 2025, 18(15), 3618; https://doi.org/10.3390/ma18153618 (registering DOI) - 31 Jul 2025
Abstract
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. [...] Read more.
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. This study investigated the sintering behavior, mechanical properties, and service performance of Al2O3-SiC-C castables utilizing varying contents of modified flake graphite, pitch, and carbon black as carbon sources. Samples were characterized using SEM, XRD, and EDS for phase composition and microstructural morphology analysis. Key findings revealed that the thermal expansion mismatch between the SiC coating and flake graphite in SiC-modified graphite generated a microcrack-toughening effect. This effect, combined with the synergistic reinforcement from both components, enhanced the mechanical properties. The SiC modification layer improved the wettability and oxidation resistance of the flake graphite. This modified graphite further contributed to enhanced erosion resistance through mechanisms of matrix pinning and crack deflection within the microstructure. However, the microcracks induced by thermal mismatch concurrently reduced erosion resistance, resulting in an overall limited net improvement in erosion resistance attributable to the modified graphite. Specimens containing 1 wt.% modified flake graphite exhibited the optimal overall performance. During industrial trials, this formulation unexpectedly demonstrated a water reduction mechanism requiring further investigation. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Effects of Phase Structure Regulation on Properties of Hydroxyl-Terminated Polyphenylpropylsiloxane-Modified Epoxy Resin
by Yundong Ji, Jun Pan, Chengxin Xu and Dongfeng Cao
Polymers 2025, 17(15), 2099; https://doi.org/10.3390/polym17152099 - 30 Jul 2025
Viewed by 131
Abstract
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was [...] Read more.
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was performed using hydroxy-terminated polyphenylpropylsiloxane (Z-6018) and a self-synthesized epoxy compatibilizer (P/E30) to regulate the phase structure of the modified resin, achieving a synergistic enhancement in both strength and toughness. The modified resin was characterized by Fourier transform infrared analysis (FTIR), proton nuclear magnetic resonance (1H NMR) spectroscopy, silicon-29 nuclear magnetic resonance (29Si NMR) spectroscopy, and epoxy value titration. It was found that the phase structure of the modified resin significantly affects mechanical properties. Thus, P/E30 was introduced to regulate the phase structure, achieving enhanced toughness and strength. At 20 wt.% P/E30 addition, the tensile strength, impact strength, and fracture toughness increased by 50.89%, 454.79%, and 152.43%, respectively, compared to AG80. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses indicate that P/E30 regulates the silicon-rich spherical phase and interfacial compatibility, establishing a bicontinuous structure within the spherical phase, which is crucial for excellent mechanical properties. Additionally, the introduction of Z-6018 enhances the thermal stability of the resin. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 3502 KiB  
Article
Overcoming Low-Polarity Limitations in Polyphenylene Oxide Electrospinning: Chemical Functionalization and Polymer Hybridization for Interlaminar Toughening of Carbon Fiber Composites
by Yuan Huang, Yi Wei, Canyi Huang, Yiping Qiu, Bohong Gu and Bo Yang
Polymers 2025, 17(11), 1480; https://doi.org/10.3390/polym17111480 - 27 May 2025
Viewed by 513
Abstract
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; [...] Read more.
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; sulfonated PPO: 524 ± 42 nm; PPO-PLA: 4.73 ± 0.94 μm; PPO-PS: 3.43 ± 0.34 μm). In addition, the PPO-PS fibers were uniform, while PPO-PLA exhibited a mixture of fine and coarse fibers due to phase separation. Interlaminar fracture toughness testing showed that PPO-PS offered the greatest toughening, with GICini and GICpre increasing by 223% and 232%, respectively, compared to the values of the untoughened sample, and by 65% and 61.5% compared to those of the PPO sample. GIIC of the PPO-PS sample was 196% greater than that of the untoughened sample and 30% higher than that of the PPO sample. Scanning electron microscope (SEM) analysis of fracture morphology revealed that the high-toughness system dissipated energy through fiber bridging, plastic deformation, and multi-scale crack deflection, while the low-toughness samples failed due to interface debonding or cohesive failure. This work demonstrates that PPO-PS veils enhance interlaminar toughness through interface reinforcement and multiple toughening mechanisms, providing an effective approach for high-performance composites. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials, 5th Edition)
Show Figures

Figure 1

33 pages, 3407 KiB  
Review
Advances in Toughening Modification Methods for Epoxy Resins: A Comprehensive Review
by Jiawei Zhang, Zhen Zhang, Ran Huang and Lianjiang Tan
Polymers 2025, 17(9), 1288; https://doi.org/10.3390/polym17091288 - 7 May 2025
Cited by 5 | Viewed by 2351
Abstract
This work provides a comprehensive review of the recent advancements in the toughening modification methods for epoxy resins. The study explores a variety of approaches, including the incorporation of liquid rubbers, core–shell rubber particles, thermoplastic resins, hyperbranched polymers, and the nanoparticle toughening method, [...] Read more.
This work provides a comprehensive review of the recent advancements in the toughening modification methods for epoxy resins. The study explores a variety of approaches, including the incorporation of liquid rubbers, core–shell rubber particles, thermoplastic resins, hyperbranched polymers, and the nanoparticle toughening method, each of which contributes to improving the mechanical properties and fracture toughness of epoxy resins. Special attention is given to the mechanisms underlying these toughening methods, such as reaction-induced phase separation, crack pinning, and energy dissipation through particle deformation. The paper also examines the synergistic effects achieved by combining different toughening agents, such as phenoxy thermoplastic rubber and core–shell rubber particles, which significantly enhance the critical fracture energy and impact strength of epoxy composites. Additionally, the challenges associated with each method, such as the potential reduction in mechanical properties and the influence of phase separation on material performance, are discussed. Through a detailed analysis of experimental studies, this paper highlights the effectiveness of various toughening strategies and suggests future research directions aimed at further optimizing epoxy resin toughening techniques for diverse industrial applications. Emerging computational modeling and machine learning applications in epoxy resin development are also systematically reviewed to highlight their potential in advancing predictive design frameworks. Full article
Show Figures

Figure 1

22 pages, 8509 KiB  
Article
Design and Preparation of a Novel Double-Modified Cement-Based Protective Coating Material and Its Improved Protection Performance Against Chloride Corrosion
by Quan Hua, Changyun Wu, Yangshun Zhu, Juhang Wang, Zhou Zhou, Xing Wang, Guowei Wang, Shuguang Zhang and Dan Song
Coatings 2025, 15(3), 277; https://doi.org/10.3390/coatings15030277 - 26 Feb 2025
Viewed by 856
Abstract
The service of reinforced concrete structures (RCSs) in harsh coastal environments is often threatened by chloride corrosion. The penetration of chloride ions through concrete pores into the steel/concrete interface will cause the depassivation and corrosion of steel rebars, which will lead to the [...] Read more.
The service of reinforced concrete structures (RCSs) in harsh coastal environments is often threatened by chloride corrosion. The penetration of chloride ions through concrete pores into the steel/concrete interface will cause the depassivation and corrosion of steel rebars, which will lead to the deterioration and failure of RCSs durability. It is important to repair and protect the corrosion damage of existing concrete structures and ensure their high durability, and the high performance of repairing and protecting materials is crucial. In this paper, a novel cement-based protective coating material with low porosity, high impermeability and chloride-corrosion resistance was designed and prepared by introducing polypropylene fiber and high-performance cement into commercial cement-based protective materials through the double modification strategy of fiber-toughening and substrate-enhancing, in order to provide a reliable corrosion protection solution for the high durability and long life of RCSs under chloride erosion environment. Based on this, the microstructure and pore structure of the double-modified coating material was systematically analyzed by SEM, XRD, X-CT and other characterization methods. The impermeability and chloride corrosion resistance of this material were scientifically evaluated, and the protection mechanism was systematically discussed. The results show that the impermeability of the double-modified coating material is about 2.8 times higher than that of the untreated mortar. At the same time, the corrosion current density was significantly reduced to 8.60 × 10−7 A·cm−2, which was about 86% lower than that of the untreated sample (6.11 × 10−6 A·cm−2). The new cement-based coating material optimized by double-modification effectively inhibits the formation and propagation of microcracks in the protective coating through the bridging effect of fibers. At the same time, the regulation of cement hydration products and the densification of pore structure are realized by adjusting the composition of cement matrix. Based on the above two aspects of microstructure improvement, the chloride-corrosion protection performance of the novel cement-based protective coating material has been greatly improved. Full article
Show Figures

Figure 1

17 pages, 9758 KiB  
Article
The Influence of Matrix Resin Toughening on the Compressive Properties of Carbon Fiber Composites
by Xinfeng Ouyang, Xiao Wang, Qiufei Chen, Guojie Ge, Dong Liu, Kang Lin, Yunpeng Liu, Yangyang Zong, Shuo Duan and Kangmin Niu
Polymers 2024, 16(23), 3328; https://doi.org/10.3390/polym16233328 - 27 Nov 2024
Viewed by 1212
Abstract
The study investigated the effects of a toughening agent and micron-sized toughening particles (TP) on the resin and carbon fiber-reinforced polymer (CFRP) composites, with a particular focus on compressive strength. The results showed that the addition of the toughening agent improved the overall [...] Read more.
The study investigated the effects of a toughening agent and micron-sized toughening particles (TP) on the resin and carbon fiber-reinforced polymer (CFRP) composites, with a particular focus on compressive strength. The results showed that the addition of the toughening agent improved the overall mechanical properties of both the resin and CFRP but had a minor effect on the residual compressive strength (CAI) of CFRP after impact. Compared to the pure toughening agent, the addition of TP increased the CAI, GIC, and GIIC of CFRP by 74%, 35%, and 68%, respectively. The SEM, ultrasonic C-scan, and metallographic microscopy were used to analyze the failure morphology and TP distribution. Compared to pure toughening agent modification, the introduction of TP led to the formation of continuous toughening particle layers, which reduced the compression damage area by 61%, significantly balancing and absorbing the load. This modification also resulted in typical kink band damage. This study found that resin toughening significantly improved the compressive strength of CFRP, while micron-sized toughening particles, in the form of toughening layers, notably improved the CAI. These findings provide valuable insights for enhancing the compression and impact resistance of CFRP. Full article
(This article belongs to the Special Issue Mechanic Properties of Polymer Materials)
Show Figures

Figure 1

19 pages, 15715 KiB  
Article
Surface Functionalization of CaCO3 Whiskers for Improved Asphalt Binder Compatibility: From Microscale Characterization to Molecular Dynamics
by Xiangyang Xing, Jiyang Wang, Qingyue Zhou, Jiupeng Zhang, Guoqing Sun, Shiru Guo and Yong Wen
Coatings 2024, 14(12), 1480; https://doi.org/10.3390/coatings14121480 - 22 Nov 2024
Viewed by 754
Abstract
CaCO3 whiskers, as a micron-level inorganic fiber material, can enhance and toughen composite materials. In order to study the technical feasibility of CaCO3 whisker-modified asphalt, two types of silane coupling agent (SCA), KH-550 and KH-570, were applied to treat the surface [...] Read more.
CaCO3 whiskers, as a micron-level inorganic fiber material, can enhance and toughen composite materials. In order to study the technical feasibility of CaCO3 whisker-modified asphalt, two types of silane coupling agent (SCA), KH-550 and KH-570, were applied to treat the surface of CaCO3 whiskers, and the treatment effects of the original and treated whiskers were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS) and contact angle test. Meanwhile, models of CaCO3 whiskers, SCA, and asphalt molecules were established by Material Studio (MS, 2020 version) software, and the adhesion mechanism between the CaCO3 whiskers-and-asphalt interface was predicted. The results of microscopic characterization experiments indicate that the surface of the whiskers treated with SCA became rougher. Compared with the original whiskers, the contact angle between the treated whisker surface and water increased from 50° to 92.2° and 103.4°, and the surface of whiskers changed from hydrophilic to hydrophobic. The results of molecular dynamics simulation analysis show that the adhesion performance between the CaCO3 whisker surface and asphalt increased from 100.1 mJ/m2 to 112.5 mJ/m2 and 126.6 mJ/m2 after modification with SCA, and the increase in adhesion energy of KH550 is greater than that of KH570. The above research results indicate that the micro-characterization results were consistent with the molecular dynamics simulation results; that is, after treatment with SCA, the adhesion energy between the whiskers and asphalt was increased to varying degrees. The research method in this article combines micro-characterization with molecular dynamics simulation, which has a certain degree of innovation. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 21704 KiB  
Article
Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials
by Yangyang Hu, Zhenzhen Feng, Yonghui Xie, Hongyang Wang, Qinglong Ji, Jiaoni Wang and Chonghai Xu
Crystals 2024, 14(11), 949; https://doi.org/10.3390/cryst14110949 - 31 Oct 2024
Cited by 2 | Viewed by 1088
Abstract
This study investigated the effects of incorporating reduced-graphene-oxide-coated alumina (Al2O3–RGO) nanoparticles and unmodified graphene oxide (GO) onto the microstructure as well as the mechanical properties of Al2O3/TiB2 matrix ceramic materials. The microstructure observation revealed [...] Read more.
This study investigated the effects of incorporating reduced-graphene-oxide-coated alumina (Al2O3–RGO) nanoparticles and unmodified graphene oxide (GO) onto the microstructure as well as the mechanical properties of Al2O3/TiB2 matrix ceramic materials. The microstructure observation revealed that, compared with GO addition, the addition of Al2O3–RGO nanoparticles significantly improved RGO dispersion in the ceramic materials and reduced defects such as pores caused by graphene agglomeration. In addition, the uniformly dispersed RGO nanosheets were interwoven with each other to form a three-dimensional grid structure due to grain growth and the disappearance of pores during sintering, which increased the contact area and interface-bonding strength between the RGO and ceramic matrix. According to the results of microstructure observation and analysis, the good interfacial strength not only facilitated load transfer from the ceramic matrix to the RGO but also induced the fracture mechanism of the RGO, which consumes more fracture energy than the traditional toughening mechanism. The results of mechanical properties analysis showed that the hardness, flexural strength, and fracture toughness of the obtained ATB–RG3.0 ceramic material was measured at 19.52 GPa, 1063.52 MPa, and 9.16 MPa·m1/2, respectively. These values are 16.82%, 27.92%, and 26.87% higher than those of the ceramic material with 3.0 vol.% GO. Full article
(This article belongs to the Special Issue Advanced Technologies in Graphene-Based Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 5245 KiB  
Article
Understanding Toughening Mechanisms and Damage Behavior in Hybrid-Fiber-Modified Mixtures Using Digital Imaging
by Yaohui Yang, Yinzhang He, Rui Fu, Xiaokang Zhao, Hongfa Shang and Chuanyi Ma
Buildings 2024, 14(8), 2562; https://doi.org/10.3390/buildings14082562 - 20 Aug 2024
Cited by 3 | Viewed by 993
Abstract
Pavement cracking is a primary cause of early damage in asphalt pavements, and fiber-reinforcement technology is an effective method for enhancing the anti-cracking performance of pavement mixtures. However, due to the multi-scale dispersed structure of pavement mixtures, it is challenging to address cracking [...] Read more.
Pavement cracking is a primary cause of early damage in asphalt pavements, and fiber-reinforcement technology is an effective method for enhancing the anti-cracking performance of pavement mixtures. However, due to the multi-scale dispersed structure of pavement mixtures, it is challenging to address cracking and damage with a single fiber type or fibers of the same scale. To investigate the toughening mechanisms and damage behavior of hybrid-fiber-modified mixtures, we analyzed the fracture process and damage behavior of these mixtures using a combination of basalt fiber and calcium sulfate whisker hybrid fiber modification, along with semicircular bending tests. Additionally, digital imaging was employed to examine the fracture interface characteristics, revealing the toughening mechanisms at play. The results demonstrated that basalt fibers effectively broaden the toughness range of the modified mixture at the same temperature, reduce mixture stiffness, increase residual load at the same displacement, and improve crack resistance in the mixture matrix. While calcium sulfate whiskers enhanced the peak load of the mixture, their high stiffness modulus was found to be detrimental to the mixture’s crack toughness. The fracture interface analysis indicated that the three-dimensionally distributed fibers form a spatial network within the mixture, restricting the relative movement of cement and aggregate, delaying crack propagation, and significantly improving the overall crack resistance of the mixture. Full article
(This article belongs to the Special Issue Mechanical Properties of Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

21 pages, 6798 KiB  
Article
Graphene Oxide-Enhanced and Dynamically Crosslinked Bio-Elastomer for Poly(lactic acid) Modification
by Bingnan Zhou, Cunai Zheng, Ruanquan Zhang, Shuyuan Xue, Botuo Zheng, Hang Shen, Yu Sheng and Huagui Zhang
Molecules 2024, 29(11), 2539; https://doi.org/10.3390/molecules29112539 - 28 May 2024
Cited by 3 | Viewed by 1602
Abstract
Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic [...] Read more.
Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic of increasing research interest in the past decade. Toughening enhancement is achieved often at the cost of a large sacrifice in strength, with the toughness–strength trade-off having remained as one of the main bottlenecks of PLA modification. In the present study, a bio-elastomeric material of epoxidized soybean oil (ESO) crosslinked with sebacic acid (SA) and enhanced by graphene oxide (GO) nanoparticles (NPs) was employed to toughen PLA with the purpose of simultaneously preserving strength and achieving additional functions. The even dispersion of GO NPs in ESO was aided by ultrasonication and guaranteed during the following ESO-SA crosslinking with GO participating in the carboxyl–epoxy reaction with both ESO and SA, resulting in a nanoparticle-enhanced and dynamically crosslinked elastomer (GESO) via a β-hydroxy ester. GESO was then melt-blended with PLA, with the interfacial reaction between ESO and PLA offering good compatibility. The blend morphology, and thermal and mechanical properties, etc., were evaluated and GESO was found to significantly toughen PLA while preserving its strength, with the GO loading optimized at ~0.67 wt%, which gave an elongation at break of ~274.5% and impact strength of ~10.2 kJ/m2, being 31 times and 2.5 times higher than pure PLA, respectively. Moreover, thanks to the presence of dynamic crosslinks and GO NPs, the PLA-GESO blends exhibited excellent shape memory effect and antistatic properties. Full article
Show Figures

Figure 1

12 pages, 3515 KiB  
Article
Synthesis of an Epoxy Toughening Curing Agent through Modification of Terephthalic Acid Sludge Waste
by Jinhui Fu, Huixian Kong, Rentong Yu, Jinchun Tu, Qiang Wu, Mingyu Wang, Lina Niu and Kexi Zhang
Coatings 2024, 14(4), 503; https://doi.org/10.3390/coatings14040503 - 18 Apr 2024
Viewed by 2044
Abstract
Purified terephthalic acid (PTA) is widely used as a chemical raw material, with its production process resulting in significant compounds that generate a substantial amount of sludge waste annually. These compounds are known to possess active hydrogen. Utilizing this property, a novel approach [...] Read more.
Purified terephthalic acid (PTA) is widely used as a chemical raw material, with its production process resulting in significant compounds that generate a substantial amount of sludge waste annually. These compounds are known to possess active hydrogen. Utilizing this property, a novel approach for the treatment of PTA sludge waste was developed for its modification and re-use. This study focuses on the preparation of epoxy curing agents using PTA sludge-tank material. The modification of PTA sludge-tank material is achieved by using the one-pot method to investigate the toughening effect of home-made curing agents on epoxy resins and compare them with commercially available curing agents, and to analyze the mechanism of the structure of the curing agent on the material. The results showed that while the tensile strength of the experimental group was generally lower than that of the control group, the impact strength was significantly higher. Additionally, the hardness and tensile strength of the materials gradually decreased with an increase of the amount of hardener, while the elongation at break and impact strength increased. Notably, at a hardener amount of 35%, the elongation at break increased by 3.89%, and the tensile strength and impact strength reached 10.13 MPa and 42.86 kJ m−2, respectively, demonstrating excellent toughness and strength characteristics. These findings testified the feasibility of modifying PTA sludge waste to prepare an epoxy toughening curing agent is not only feasible, but also significantly enhances the material’s toughness. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 6741 KiB  
Article
Influence of the Second-Phase Resin Structure on the Interfacial Shear Strength of Carbon Fiber/Epoxy Resin
by Hansong Liu, Jinsong Sun, Lianwang Zhang, Zhaobo Liu, Chengyu Huang, Mingchen Sun, Ziqi Duan, Wenge Wang, Xiangyu Zhong and Jianwen Bao
Materials 2024, 17(6), 1323; https://doi.org/10.3390/ma17061323 - 13 Mar 2024
Cited by 4 | Viewed by 1566
Abstract
The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the [...] Read more.
The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS. Full article
Show Figures

Figure 1

14 pages, 4260 KiB  
Article
Blending Modification Technology of Insulation Materials for Deep Sea Optoelectronic Composite Cables
by Shuhong Xie, Zhenzhen Chen, Zhiyu Yan, Xingyu Qiu, Ming Hu, Chunfei Gu, Xindong Zhao and Kai Wang
Energies 2024, 17(4), 820; https://doi.org/10.3390/en17040820 - 8 Feb 2024
Cited by 2 | Viewed by 1301
Abstract
The insulation layer of deep-sea optoelectronic composite cables in direct contact with high-pressure and highly corrosive seawater is required for excellent water resistance, environmental stress cracking resistance (ESCR), and the ability to withstand high DC voltage. Although high-density polyethylene (HDPE) displays remarkable water [...] Read more.
The insulation layer of deep-sea optoelectronic composite cables in direct contact with high-pressure and highly corrosive seawater is required for excellent water resistance, environmental stress cracking resistance (ESCR), and the ability to withstand high DC voltage. Although high-density polyethylene (HDPE) displays remarkable water resistance, it lacks sufficient resistance to environmental stress cracking (ESCR). This article is based on a blend modification approach to mixing HDPE with different vinyl copolymer materials (cPE-A and cPE-B). The processing performance and mechanical properties of the materials are evaluated through rheological and mechanical testing. The materials’ durability in working environments is assessed through ESCR tests and water resistance experiments. Ultimately, the direct current electrical performance of the materials is evaluated through tests measuring space charge distribution, direct current resistivity, and direct current breakdown strength. The results indicate that, in the polyethylene blend system, the rheological properties and ESCR characteristics of HDPE/cPE-A composite materials did not show significant improvement. Further incorporation of high melt index linear low-density polyethylene (LLDPE) material not only meets the requirements of extrusion processing but also exhibits a notable enhancement in ESCR performance. Meanwhile, copolymerized polyethylene cPE-B, with a more complex structure, proves effective in toughening HDPE materials. The material’s hardness significantly decreases, and when incorporating cPE-B at a level exceeding 20 phr, the composite materials achieve excellent ESCR performance. In a simulated seawater environment at 50 MPa, the water permeability of all co-modified composite materials remained below 0.16% after 120 h. The spatial charge distribution and direct current resistivity characteristics of the HDPE, cPE-A, and LLDPE composite systems surpassed those of the HDPE/cPE-B materials. However, the HDPE/cPE-B composite system exhibited superior dielectric strength. The application of composite materials in deep-sea electro–optical composite cables is highly promising. Full article
Show Figures

Figure 1

11 pages, 4213 KiB  
Article
Molecular Dynamics Simulation of Silane Inserted CSH Nanostructure
by Fei Yang, Yangyang Cui, Anming She, Ran Hai and Zheyu Zhu
Materials 2024, 17(1), 149; https://doi.org/10.3390/ma17010149 - 27 Dec 2023
Cited by 1 | Viewed by 1734
Abstract
Herein, the toughening mechanism and effects of 3-(aminopropyl)triethoxysilane (3-APTES) intercalation in calcium–silicate–hydrate (CSH) structures were investigated through molecular dynamics simulations. CSH established a model using 11 Å-tobermorite to simulate the tensile properties, toughness, adsorption energy, average orientation displacement and radial distribution function of [...] Read more.
Herein, the toughening mechanism and effects of 3-(aminopropyl)triethoxysilane (3-APTES) intercalation in calcium–silicate–hydrate (CSH) structures were investigated through molecular dynamics simulations. CSH established a model using 11 Å-tobermorite to simulate the tensile properties, toughness, adsorption energy, average orientation displacement and radial distribution function of 3-APTES intercalation at different Ca/Si ratios under conditions of a CVFF force field, an NVT system, and 298 K temperature. Simulation results demonstrate that 3-APTES alters the fracture process of CSH and effectively enhances its tensile properties and toughness. The presence of 3-APTES molecules increases the energy required to destroy CSH, thereby increasing the adsorption energy of CSH crystals. Furthermore, 3-APTES molecules effectively increase the atom density within the CSH structure. As the Ca/Si ratio increases, Ca–O bond formation is enhanced, with noticeable aggregation occurring because of modification by 3-APTES within the CSH structure. This study found that 3-APTES organic compounds can effectively improve the tensile, toughness, adsorption and other properties of the CSH structure, and further improve the microstructure of CSH. Full article
Show Figures

Figure 1

25 pages, 14466 KiB  
Article
Non-Covalent Functionalization of Graphene Oxide with POSS to Improve the Mechanical Properties of Epoxy Composites
by Ting Xu, Yumin Jiao, Zhenglian Su, Qin Yin, Lizhou An and Yefa Tan
Polymers 2023, 15(24), 4726; https://doi.org/10.3390/polym15244726 - 16 Dec 2023
Cited by 5 | Viewed by 2160
Abstract
Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π–π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent [...] Read more.
Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π–π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent functionalization of GO (POSS-GO). The POSS-GO-reinforced EP (POSS-GO/EP) composite material is prepared using the casting molding process. The surface morphology of GO before and after modification and its peel dispersion in EP are examined. Furthermore, the mechanical properties, cross-sectional morphology, and reinforcement mechanism of POSS-GO/EP are thoroughly examined. The results show that the cage-like skeleton structure of POSS is embedded between the GO layers, increasing the spacing between the GO layers and leading to a steric hindrance effect, which effectively prevents their stacking and aggregation and improves the dispersion performance of GO. In particular, the 0.4 phr POSS-GO/EP sample shows the best mechanical properties. This is because, on the one hand, POSS-GO is uniformly dispersed in the EP matrix, which can more efficiently induce crack deflection and bifurcation and can also cause certain plastic deformations in the EP matrix. On the other hand, the POSS-GO/EP fracture cross-section with a stepped morphology of interlaced “canine teeth” shape is rougher and more uneven, leading to more complex crack propagation paths and greater energy consumption. Moreover, the mechanical meshing effect between the rough POSS-GO surface and the EP matrix is stronger, which is conducive to the transfer of interfacial stress and the strengthening and toughening effects of POSS-GO. Full article
(This article belongs to the Special Issue Molecular Simulation of Polymers)
Show Figures

Figure 1

Back to TopTop