Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,304)

Search Parameters:
Keywords = tomato yield

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1757 KiB  
Article
Salt Stress Mitigation and Field-Relevant Biostimulant Activity of Prosystemin Protein Fragments: Novel Tools for Cutting-Edge Solutions in Agriculture
by Martina Chiara Criscuolo, Raffaele Magliulo, Valeria Castaldi, Valerio Cirillo, Claudio Cristiani, Andrea Negroni, Anna Maria Aprile, Donata Molisso, Martina Buonanno, Davide Esposito, Emma Langella, Simona Maria Monti and Rosa Rao
Plants 2025, 14(15), 2411; https://doi.org/10.3390/plants14152411 - 4 Aug 2025
Abstract
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt [...] Read more.
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90. In addition, the peptides exhibited biostimulant activity, significantly improving root area (up to 10%) and shoot growth (up to 9%). We validated such activities through two-year field trials carried out on industrial tomato crops. Peptide treatments confirmed their biostimulant effects, leading to a nearly 50% increase in marketable production compared to a commonly used commercial product and consistently enhancing fruit °Brix values. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 1256 KiB  
Article
Algae Extracts and Zeolite Modulate Plant Growth and Enhance the Yield of Tomato Solanum lycopersicum L. Under Suboptimum and Deficient Soil Water Content
by José Antonio Miranda-Rojas, Aurelio Pedroza-Sandoval, Isaac Gramillo-Ávila, Ricardo Trejo-Calzada, Ignacio Sánchez-Cohen and Luis Gerardo Yáñez-Chávez
Horticulturae 2025, 11(8), 902; https://doi.org/10.3390/horticulturae11080902 (registering DOI) - 3 Aug 2025
Abstract
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth [...] Read more.
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth and production of tomato Lycopersicum esculentum L. grown in an open field under suboptimum and deficient soil moisture content. Large plots had a suboptimum soil moisture content (SSMC) of 25% ± 2 [28% below field capacity (FC)] and deficient soil moisture content (DSMC) of 20% ± 2 [11% above permanent wilting point (PWP)]; both soil moisture ranges were based on field capacity FC (32%) and PWP (18%). Small plots had four treatments: algae extract (AE) 50 L ha−1 and zeolite (Z) 20 t ha−1, a combination of both products (AE + Z) 25 L ha−1 and 10 t h−1, and a control (without application of either product). By applying AE, Z, and AE + Z, plant height, plant vigor, and chlorophyll index were significantly higher compared to the control by 20.3%, 10.5%, and 22.3%, respectively. The effect on relative water content was moderate—only 2.6% higher than the control applying AE, while the best treatment for the photosynthesis variable was applying Z, with a value of 20.9 μmol CO2 m−2 s−1, which was 18% higher than the control. Consequently, tomato yield was also higher compared to the control by 333% and 425% when applying AE and Z, respectively, with suboptimum soil moisture content. The application of the biostimulants did not show any mitigating effect on water stress under soil water deficit conditions close to permanent wilting. These findings are relevant to water-scarce agricultural areas, where more efficient irrigation water use is imperative. Plant biostimulation through organic and inorganic extracts plays an important role in mitigating environmental stresses such as those caused by water shortages, leading to improved production in vulnerable agricultural areas with extreme climates. Full article
(This article belongs to the Special Issue Optimized Irrigation and Water Management in Horticultural Production)
Show Figures

Figure 1

36 pages, 807 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 (registering DOI) - 1 Aug 2025
Viewed by 121
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
Show Figures

Figure 1

26 pages, 2467 KiB  
Article
Antioxidant and Nutrient Profile of Tomato Processing Waste from the Mixture of Indigenous Croatian Varieties: Influence of Drying and Milling
by Tea Petković, Emerik Galić, Kristina Radić, Nikolina Golub, Jasna Jablan, Maja Bival Štefan, Tihomir Moslavac, Karla Grudenić, Ivana Rumora Samarin, Tomislav Vinković and Dubravka Vitali Čepo
Appl. Sci. 2025, 15(15), 8447; https://doi.org/10.3390/app15158447 - 30 Jul 2025
Viewed by 139
Abstract
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) [...] Read more.
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) and oil are obtained from TPW seeds. All samples showed contaminant levels within regulatory limits, confirming their safety for further applications. Various drying methods (air-drying at 70 °C and at 50 °C, lyophilization and vacuum drying) and grinding intensities were evaluated to determine their impact on TPW bioactive compounds retention and organoleptic characteristics. TPW exhibited valuable nutritional properties, particularly high protein and dietary fiber content while TPW oil was characterized with high monounsaturated fatty acid content. Results demonstrated that drying method and particle size significantly influenced the yield of bioactive compound and organoleptic properties, with either lyophilization or vacuum drying and finer milling generally enhancing the recovery of polyphenols, β-carotene, and lycopene and improving color intensity. This research provides the first characterization of the TPW obtained from Croatian indigenous tomato varieties, establishing a scientific foundation for its sustainable valorization and, in broader terms, supporting circular economy objectives and contributing to more resource-efficient food systems. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

25 pages, 1258 KiB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Viewed by 192
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

19 pages, 5967 KiB  
Article
Chitosan Application Improves the Growth and Physiological Parameters of Tomato Crops
by Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Wilmer Tezara, Víctor Reynel, Luis Guillermo Hernández-Montiel and Antonio Juárez-Maldonado
Horticulturae 2025, 11(8), 878; https://doi.org/10.3390/horticulturae11080878 - 28 Jul 2025
Viewed by 306
Abstract
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan [...] Read more.
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan (500, 1000, and 2000 mg L−1) on plant growth, yield, fruit quality, and physiological performance in two tomato varieties (Floradade and Candela F1) was studied. Physiological traits such as photosynthesis, chlorophyll content, and leaf area index of the plants were positively affected by chitosan, an effective compound that biostimulates growth, with increases in biomass of organs with respect to the control treatment. Chitosan also improved tomato quality, such as increases in polyphenols, antioxidant capacity, flavonoids, carotenoids, vitamin C, and total soluble solids in both tomato varieties. Finally, yield increased by 76.4% and 65.4% in Floradade and Candela F1, respectively. The responses of tomato plants to chitosan application were different depending on the variety evaluated, indicating a differential response to the biostimulant. The use of chitosan in agriculture is a tool that has no negative effects on plants and the environment and can increase the productive capacity of tomato plants. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Selenium Nanoparticles Improve Morpho-Physiological and Fruit Quality Parameters of Tomato
by Juan José Reyes-Pérez, Tomás Rivas-García, Luis Tarquino Llerena-Ramos, Rommel Arturo Ramos-Remache, Luis Humberto Vásquez Cortez, Pablo Preciado-Rangel and Rubí A. Martínez-Camacho
Horticulturae 2025, 11(8), 876; https://doi.org/10.3390/horticulturae11080876 - 28 Jul 2025
Viewed by 299
Abstract
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, [...] Read more.
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, size, shape), and application (foliar or drenching). For this reason, the objective of this study was to investigate the impact of biostimulating tomato plants under no stressor conditions (Solanum lycopersicum cv. ‘Pomodoro’ L.) with SeNPs on morpho-physiological and fruit quality parameters. Three doses of Selenium nanoparticles (5, 15, and 30 mg L−1), and a control were applied via a foliar application after transplanting. The results indicate that a 5 mg L−1 SeNP treatment improved the growth and yield of the tomato, with the exception of the root length and leaf weight. Moreover, all doses modified the evaluated physiology, bioactive compounds, and fruit quality parameters. This research helped in understanding the SeNPs’ effect on tomato plants in greenhouses under a no stressor condition. Full article
Show Figures

Figure 1

16 pages, 11910 KiB  
Article
Characterization and Expression Analysis of β-Glucosidase Gene Under Abiotic Stresses in Pepper (Capsicum annuum L.)
by Jing Wang, Jiaxin Huang, Xu Jia, Zhenxin Hao, Yuancai Yang, Ruxia Tian and Yanping Liang
Genes 2025, 16(8), 889; https://doi.org/10.3390/genes16080889 - 27 Jul 2025
Viewed by 330
Abstract
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the [...] Read more.
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the response to abiotic stress. Methods: We performed a genome-wide identification of pepper BGLU (CaBGLU) genes. Phylogenetic analysis included BGLU proteins from Arabidopsis, tomato, and pepper. Gene structures, conserved motifs, and promoter cis-elements were analyzed bioinformatically. Synteny within the pepper genome was assessed. Protein-protein interaction potential was predicted. Gene expression patterns were analyzed across tissues and under abiotic stresses using transcriptomic data and qRT-PCR. Subcellular localization of a key candidate protein CaBGLU21 was confirmed experimentally. Results: We identified 32 CaBGLU genes unevenly distributed across eight chromosomes. Phylogenetic classification of 99 BGLU proteins into 12 subfamilies revealed an uneven distribution of CaBGLUs across six subfamilies. Proteins within subfamilies shared conserved motifs and gene structures. CaBGLU promoters harbored abundant light-, hormone- (MeJA, ABA, SA, GA), and stress-responsive elements (including low temperature). A duplicated gene pair (CaBGLU19/CaBGLU24) was identified. 27 CaBGLU proteins showed potential for interactions. Expression analysis indicated CaBGLU5 and CaBGLU30 were mesophyll-specific, while CaBGLU21 was constitutively high in non-leaf tissues. CaBGLU21 was consistently upregulated by cold, heat, and ABA. Subcellular localization confirmed CaBGLU21 resides in the tonoplast. Conclusions: This comprehensive analysis characterizes the pepper BGLU gene family. CaBGLU21, exhibiting constitutive expression in non-leaf tissues, strong upregulation under multiple stresses, and tonoplast localization, emerges as a prime candidate gene for further investigation into abiotic stress tolerance mechanisms in pepper. The findings provide a foundation for future functional studies and stress-resistant pepper breeding. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

16 pages, 3740 KiB  
Article
Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation
by Andrea Burato, Pasquale Campi, Alfonso Pentangelo and Mario Parisi
Agronomy 2025, 15(8), 1805; https://doi.org/10.3390/agronomy15081805 - 25 Jul 2025
Viewed by 266
Abstract
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit [...] Read more.
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit irrigation (RDI) on processing tomatoes in northern Italy. In 2019 (Parma) and 2022 (Piacenza), full irrigation (IRR, restoring 100% crop evapotranspiration) and RDI (100% IRR until the color-breaking stage, followed by 50% IRR) strategies were compared within a completely randomized block design. Overall, RDI resulted in a 25% reduction in water use without compromising yield, which was maintained through unchanged plant fertility and fruit size compared to IRR. Remote sensing data from PlanetScope imagery confirmed the absence of water stress in RDI-treated plants. Furthermore, increased soluble solids and dry matter contents under RDI suggest a physiological adaptation of processing tomatoes to late-season water deficit. Remarkably, environmental and economic sustainability indicators—namely water productivity and yield quality—were enhanced under RDI management. This study validates a simple, sustainable, and readily applicable irrigation approach for tomato cultivation in the Po valley. Future research should refine this method by investigating plant physiological responses to optimize water use in this key agricultural region. Full article
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 363
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

26 pages, 3318 KiB  
Article
Responses of Tomato Growth and Soil Environment Properties to Integrated Deficit Water-Biogas Slurry Application Under Indirect Subsurface Drip Irrigation
by Peng Xiang, Jian Zheng, Panpan Fan, Yan Wang and Fenyan Ma
Agriculture 2025, 15(15), 1601; https://doi.org/10.3390/agriculture15151601 - 25 Jul 2025
Viewed by 305
Abstract
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation [...] Read more.
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation treatments increased the soil organic matter content in the root zone and water use efficiency (WUE) and reduced soil pH. As the degree of deficit increased, the plant height and stem diameter of tomatoes decreased significantly (p < 0.05), particularly during the seedling and flowering-fruiting stages. A mild deficit during the seedling stage was beneficial for subsequent plant growth, yielding maximum leaf area (6871.42 cm2 plant−1). Moderate deficit treatment at the seedling stage maximized yield, which was 19.79% higher than the control treatment in 2020 and 19.22% higher in 2021. The WUE of severe deficit treatment at the maturity stage increased by 26.6% (2020) and 31.04% (2021) compared to the control treatment. Comprehensive evaluation using TOPSIS combined with the weighted method revealed that severe deficit treatment at the maturity stage provided the best comprehensive benefits for tomatoes. In summary, deficit irrigation at different growth stages positively influenced tomato growth, quality, and soil environment in response to water-biogas slurry irrigation. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

13 pages, 1373 KiB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 311
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

25 pages, 6462 KiB  
Article
Phenotypic Trait Acquisition Method for Tomato Plants Based on RGB-D SLAM
by Penggang Wang, Yuejun He, Jiguang Zhang, Jiandong Liu, Ran Chen and Xiang Zhuang
Agriculture 2025, 15(15), 1574; https://doi.org/10.3390/agriculture15151574 - 22 Jul 2025
Viewed by 196
Abstract
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive [...] Read more.
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive and inefficient. In contrast, combining 3D reconstruction technologies with autonomous vehicles enables more intuitive and efficient trait acquisition. This study proposes a 3D semantic reconstruction system based on an improved ORB-SLAM3 framework, which is mounted on an unmanned vehicle to acquire phenotypic traits in tomato cultivation scenarios. The vehicle is also equipped with the A * algorithm for autonomous navigation. To enhance the semantic representation of the point cloud map, we integrate the BiSeNetV2 network into the ORB-SLAM3 system as a semantic segmentation module. Furthermore, a two-stage filtering strategy is employed to remove outliers and improve the map accuracy, and OctoMap is adopted to store the point cloud data, significantly reducing the memory consumption. A spherical fitting method is applied to estimate the number of tomato fruits. The experimental results demonstrate that BiSeNetV2 achieves a mean intersection over union (mIoU) of 95.37% and a frame rate of 61.98 FPS on the tomato dataset, enabling real-time segmentation. The use of OctoMap reduces the memory consumption by an average of 96.70%. The relative errors when predicting the plant height, canopy width, and volume are 3.86%, 14.34%, and 27.14%, respectively, while the errors concerning the fruit count and fruit volume are 14.36% and 14.25%. Localization experiments on a field dataset show that the proposed system achieves a mean absolute trajectory error (mATE) of 0.16 m and a root mean square error (RMSE) of 0.21 m, indicating high localization accuracy. Therefore, the proposed system can accurately acquire the phenotypic traits of tomato plants, providing data support for precision agriculture and agricultural decision-making. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 18086 KiB  
Article
Deep Learning Architecture for Tomato Plant Leaf Detection in Images Captured in Complex Outdoor Environments
by Andros Meraz-Hernández, Jorge Fuentes-Pacheco, Andrea Magadán-Salazar, Raúl Pinto-Elías and Nimrod González-Franco
Mathematics 2025, 13(15), 2338; https://doi.org/10.3390/math13152338 - 22 Jul 2025
Viewed by 271
Abstract
The detection of plant constituents is a crucial issue in precision agriculture, as monitoring these enables the automatic analysis of factors such as growth rate, health status, and crop yield. Tomatoes (Solanum sp.) are an economically and nutritionally important crop in Mexico [...] Read more.
The detection of plant constituents is a crucial issue in precision agriculture, as monitoring these enables the automatic analysis of factors such as growth rate, health status, and crop yield. Tomatoes (Solanum sp.) are an economically and nutritionally important crop in Mexico and worldwide, which is why automatic monitoring of these plants is of great interest. Detecting leaves on images of outdoor tomato plants is challenging due to the significant variability in the visual appearance of leaves. Factors like overlapping leaves, variations in lighting, and environmental conditions further complicate the task of detection. This paper proposes modifications to the Yolov11n architecture to improve the detection of tomato leaves in images of complex outdoor environments by incorporating attention modules, transformers, and WIoUv3 loss for bounding box regression. The results show that our proposal led to a 26.75% decrease in the number of parameters and a 7.94% decrease in the number of FLOPs compared with the original version of Yolov11n. Our proposed model outperformed Yolov11n and Yolov12n architectures in recall, F1-measure, and mAP@50 metrics. Full article
Show Figures

Figure 1

15 pages, 2469 KiB  
Review
Recent Developments of Nanomaterials in Crop Growth and Production: The Case of the Tomato (Solanum lycopersicum)
by Eric G. Echeverría-Pérez, Vianii Cruz-López, Rosario Herrera-Rivera, Mario J. Romellón-Cerino, Jesusita Rosas-Diaz and Heriberto Cruz-Martínez
Agronomy 2025, 15(7), 1716; https://doi.org/10.3390/agronomy15071716 - 16 Jul 2025
Viewed by 510
Abstract
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. [...] Read more.
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. Therefore, it is necessary to develop alternatives to conventional agrochemical products. Applying nanomaterials as fertilizers in tomato production is emerging as a promising approach, with documented improvements in germination, vegetative development, and fruit yield. Therefore, we present a comprehensive review of recent developments (2015–2024) in the application of nanomaterials in tomato crops, with a particular emphasis on the significance of nanomaterial characteristics in their role as fertilizers. Several types of nanomaterials, such as ZnO, Ag, TiO2, Si, hydroxyapatite, P, Zn, Se, CuO, Cu, Fe, Fe2O3, CaO, CaCO3, and S, have been evaluated as fertilizers for tomato crops, with ZnO nanoparticles being the most extensively studied. However, it is pertinent to conduct further research on the less-explored nanomaterials to gain a deeper understanding of their effects on seed germination, plant growth, and fruit quality and quantity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Agricultural Food Engineering)
Show Figures

Figure 1

Back to TopTop