Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = tomato chlorosis virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1040 KB  
Article
Distinct Modulation of Feeding Behavior in the Whitefly Vector Bemisia tabaci MED by ToCV Single-Infection Versus Synergistic Co-Infection with TYLCV
by Tianbo Ding, Hong Huang, Xiaobei Liu, Min Zhang, Jianmei Yu, Guoxu Xia and Dong Chu
Insects 2025, 16(11), 1091; https://doi.org/10.3390/insects16111091 - 24 Oct 2025
Viewed by 784
Abstract
Plant viruses can significantly influence the behavior and performance of their insect vectors, with profound implications for viral epidemiology. However, studies on the effects of co-infection with multiple plant viruses on vector feeding behavior remain scarce, despite its frequent occurrence in nature and [...] Read more.
Plant viruses can significantly influence the behavior and performance of their insect vectors, with profound implications for viral epidemiology. However, studies on the effects of co-infection with multiple plant viruses on vector feeding behavior remain scarce, despite its frequent occurrence in nature and potential for altered transmission outcomes. Bemisia tabaci MED, a key vector insect, is closely linked to the rapid spread of tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) in China. In this study, the electrical penetration graph (EPG) technique was employed to investigate and compare the indirect (via infected plants) and direct (via viruliferous insects) effects of ToCV alone and ToCV and TYLCV co-infection on the feeding behaviors of B. tabaci MED. The results revealed that whiteflies on ToCV-infected or ToCV&TYLCV co-infected plants exhibited significantly longer non-probing durations compared to those on un-infected plants. The intracellular puncture activity of whiteflies was markedly reduced on virus-infected plants, and ToCV infection particularly shortened the duration of phloem sap ingestion. Moreover, viruliferous whiteflies (carrying ToCV or both viruses) spent less time in the intercellular pathway phase. Specifically, ToCV-viruliferous whiteflies had a shorter first-probe duration than non-viruliferous ones. The time from the first probe to the first E phase was also shorter in viruliferous whiteflies, especially in those carrying both ToCV and TYLCV. Furthermore, a significant difference was observed in the total duration of phloem sap ingestion between ToCV-viruliferous and ToCV&TYLCV-viruliferous whiteflies. These findings indicate that both ToCV infection and ToCV&TYLCV co-infection can modulate whitefly feeding behaviors through indirect and direct manners, with co-infection eliciting unique behavioral changes. These insights are valuable for elucidating the negative impact of ToCV-infected and ToCV&TYLCV co-infected tomato plants on whitefly performance, and for uncovering the mechanisms underlying the epidemics of these viruses. Full article
(This article belongs to the Special Issue Insect Transmission of Plant Viruses)
Show Figures

Figure 1

12 pages, 2253 KB  
Article
Discovery of Targetable Epitopes in Tomato Chlorosis Virus Through Comparative Genomics and Structural Modeling
by Bae Young Choi and Jaewook Kim
Sci 2025, 7(3), 88; https://doi.org/10.3390/sci7030088 - 1 Jul 2025
Viewed by 912
Abstract
Tomato chlorosis virus (ToCV) is a highly infectious plant virus that poses a significant threat to the Solanaceae family worldwide. Despite its widespread impact, effective control remains challenging due to its vector-borne transmission by whiteflies. To facilitate early detection and potential therapeutic intervention, [...] Read more.
Tomato chlorosis virus (ToCV) is a highly infectious plant virus that poses a significant threat to the Solanaceae family worldwide. Despite its widespread impact, effective control remains challenging due to its vector-borne transmission by whiteflies. To facilitate early detection and potential therapeutic intervention, this study aimed to identify diagnostic epitopes through a comprehensive bioinformatics approach combining comparative genomics and artificial intelligence-based structural modeling. We analyzed forty-four complete ToCV genomes to identify highly conserved regions and uncovered an orphan clade, indicating evolutionary divergence. Subcellular localization and transmembrane domain predictions revealed viral proteins with extracellularly exposed peptide regions. Structural modeling using AlphaFold3 further validated the stability and accessibility of these domains. By integrating these findings with epitope prediction algorithms, this study identified four highly promising epitope candidates, which are suitable for the development of antibody-based diagnostic kits and antiviral therapeutics targeting ToCV. These epitopes provide a strong foundation for the development of antibody-based diagnostic kits or antiviral therapeutics targeting ToCV. Full article
Show Figures

Figure 1

24 pages, 3411 KB  
Article
Virus–Host Interactions and Genetic Exchange in Mixed Infections of Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Leaf Curl New Delhi Virus (ToLCNDV), and Tomato Chlorosis Virus (ToCV)
by Isabel M. Fortes, Luis Díaz-Martínez, Enrique Moriones and Ana Grande-Pérez
Agronomy 2025, 15(5), 1006; https://doi.org/10.3390/agronomy15051006 - 22 Apr 2025
Cited by 1 | Viewed by 2278
Abstract
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, [...] Read more.
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, family Geminiviridae, while ToCV is an RNA virus from the genus Crinivirus (family Closteroviridae). These viruses share overlapping geographic ranges, vectors (the whitefly Bemisia tabaci), and host plants, making mixed infections common. This study investigated interactions between TYLCV and ToLCNDV and between ToLCNDV and ToCV in mixed infections of susceptible and TYLCV-resistant tomato genotypes. We evaluated infection, disease development, trans-replication of genome components, and genetic exchange. Our results showed no significant synergistic or antagonistic interactions, complementation, or interference between the viruses. TYLCV resistance in tomato genotypes remained stable. The DNA-B component of ToLCNDV exhibited impaired functionality and was not complemented by TYLCV. No evidence was found that the crinivirus tomato chlorosis virus (ToCV) enhances ToLCNDV infection, suggesting limited interactions despite shared vectors. Genetic exchange was detected in defective DNA (def-DNA) molecules using high-throughput sequencing (HTS), indicating potential genetic interactions between these viruses. These findings suggest that mixed infections do not pose immediate concerns for increased pathogenicity but highlight the ecological implications of genetic exchange, warranting further study of the evolutionary consequences of such interactions in mixed-virus environments. Full article
(This article belongs to the Special Issue Role of RNA and ssDNA Viruses in Plant–Virus/Viroid Interactions)
Show Figures

Figure 1

18 pages, 6360 KB  
Article
Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina
by Julia M. Ibañez, Romina Zambrana, Pamela Carreras, Verónica Obregón, José M. Irazoqui, Pablo A. Vera, Tatiana E. Lattar, María D. Blanco Fernández, Andrea F. Puebla, Ariel F. Amadio, Carolina Torres and Paola M. López Lambertini
Viruses 2025, 17(4), 533; https://doi.org/10.3390/v17040533 - 5 Apr 2025
Cited by 1 | Viewed by 1735
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and [...] Read more.
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV’s global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

9 pages, 3042 KB  
Communication
Phylogeographic History of Tomato Chlorosis Virus
by Kangcheng Wu, Shiwei Zhang, Wende Huang, Zhenguo Du, Fangluan Gao and Xiayu Guan
Viruses 2025, 17(4), 457; https://doi.org/10.3390/v17040457 - 22 Mar 2025
Cited by 1 | Viewed by 1118
Abstract
Tomato chlorosis virus (ToCV), first reported in Florida, USA, in 1998, has since emerged in multiple regions worldwide, posing a significant threat to global tomato production. However, its origin, migration patterns, and evolutionary history remain poorly understood. In this study, we used Bayesian [...] Read more.
Tomato chlorosis virus (ToCV), first reported in Florida, USA, in 1998, has since emerged in multiple regions worldwide, posing a significant threat to global tomato production. However, its origin, migration patterns, and evolutionary history remain poorly understood. In this study, we used Bayesian phylogeographic analysis of coat protein gene sequences from 155 ToCV isolates to reconstruct its phylogeographic history. Our results show that ToCV evolves at a rate of 6.24 × 10−4 subs/site/year (95% credibility interval: 4.35 × 10−4–8.28 × 10−4), with the most recent common ancestor dating back to 1882. The maximum clade credibility (MCC) tree revealed three major clades, with Clade 1—whose most recent common ancestor dates to approximately 1975—comprising over 90% of the isolates. Although the exact origin of ToCV remains uncertain, we identified five distinct migration pathways: one from Europe to the Americas, one from Europe to South Asia, one from the Middle East to East Asia, one from East Asia to mainland China, and one from mainland China to Europe. These findings underscore the complex global spread of ToCV and suggest that multiple geographic areas have contributed to its ongoing evolution and dissemination. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

20 pages, 2759 KB  
Article
Screening for Resistant Germplasms and Quantitative Trait Locus Mapping of Resistance to Tomato Chlorosis Virus
by Wenzheng Gao, Zhirong Wang, Chenchen Dong, Kai Wei, Yifan Chen, Zhuoyao Qiu, Ziteng Liu, Xin Li, Lei Liu, Yongchen Du, Zejun Huang, Junming Li and Xiaoxuan Wang
Int. J. Mol. Sci. 2025, 26(5), 2060; https://doi.org/10.3390/ijms26052060 - 26 Feb 2025
Cited by 1 | Viewed by 1278
Abstract
Tomato chlorosis virus (ToCV) is an emerging plant virus that poses a substantial threat to the cultivation of economically vital vegetable crops, particularly tomato (Solanum lycopersicum). Despite its substantial impact on crop yield, resistant or tolerant tomato germplasms have not been [...] Read more.
Tomato chlorosis virus (ToCV) is an emerging plant virus that poses a substantial threat to the cultivation of economically vital vegetable crops, particularly tomato (Solanum lycopersicum). Despite its substantial impact on crop yield, resistant or tolerant tomato germplasms have not been well documented, and the genetic basis of resistance to ToCV remains poorly understood. In this study, two wild accessions that were immune to ToCV and five accessions that were highly resistant to ToCV were identified from 58 tomato accessions. Additionally, a novel method was developed for evaluating resistance to ToCV in tomatoes, and it was observed that tomatoes exhibited typical pathological features on days 15 and 30 after ToCV inoculation, referred to as Stage 1 and Stage 2, respectively. Using quantitative trait locus (QTL) sequencing in conjunction with classical QTL approaches, ToCV resistance loci were identified in two F2 populations derived from the crosses between SG11 (susceptible) and LA1028 (resistant) and between SP15 (susceptible) and LA0444 (resistant). Genetic analysis indicated that resistance to ToCV in the wild-type ToCV-resistant tomato accessions LA1028 and LA0444 was quantitative and mainly governed by four loci (Qtc1.1 and Qtc11.1 from LA1028 and Qtc7.1 and Qtc9.1 from LA0444). Subsequently, transcriptome analysis of three resistant accessions (LA2157, LA0444, and LA1028) and two susceptible accessions (SG11 and SP15) revealed unique differentially expressed genes and specific biological processes in the two stages of ToCV infection. This study provides new resistant germplasms and potential genetic resources for ToCV resistance, which can be valuable in tomato molecular breeding programs in obtaining resistant varieties. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 4523 KB  
Article
Two Novel Betarhabdovirins Infecting Ornamental Plants and the Peculiar Intracellular Behavior of the Cytorhabdovirus in the Liana Aristolochia gibertii
by Pedro Luis Ramos-González, Maria Amelia Vaz Alexandre, Matheus Potsclam-Barro, Lígia Maria Lembo Duarte, Gianluca L. Michea Gonzalez, Camila Chabi-Jesus, Alyne F. Ramos, Ricardo Harakava, Harri Lorenzi, Juliana Freitas-Astúa and Elliot Watanabe Kitajima
Viruses 2024, 16(3), 322; https://doi.org/10.3390/v16030322 - 21 Feb 2024
Cited by 2 | Viewed by 2230
Abstract
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an [...] Read more.
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

16 pages, 2322 KB  
Article
Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics
by Irene Ontiveros, Noé Fernández-Pozo, Anna Esteve-Codina, Juan José López-Moya and Juan Antonio Díaz-Pendón
Viruses 2023, 15(12), 2370; https://doi.org/10.3390/v15122370 - 30 Nov 2023
Cited by 5 | Viewed by 3568
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants [...] Read more.
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies. Full article
(This article belongs to the Special Issue Plant Virus Resistance)
Show Figures

Figure 1

18 pages, 5621 KB  
Article
Exploring Tomato Fruit Viromes through Transcriptome Data Analysis
by Yeonhwa Jo, Hoseong Choi, Bong Choon Lee, Jin-Sung Hong, Sang-Min Kim and Won Kyong Cho
Viruses 2023, 15(11), 2139; https://doi.org/10.3390/v15112139 - 24 Oct 2023
Cited by 2 | Viewed by 2506
Abstract
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato [...] Read more.
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection. Full article
(This article belongs to the Special Issue Diversity and Coinfections of Plant or Fungal Viruses 2023)
Show Figures

Figure 1

11 pages, 1655 KB  
Communication
Association of Tomato Chlorosis Virus Complicates the Management of Tomato Yellow Leaf Curl Virus in Cultivated Tomato (Solanum lycopersicum) in the Southern United States
by Manish Kumar, Saritha Raman Kavalappara, Theodore McAvoy, Samuel Hutton, Alvin M. Simmons and Sudeep Bag
Horticulturae 2023, 9(8), 948; https://doi.org/10.3390/horticulturae9080948 - 21 Aug 2023
Cited by 13 | Viewed by 4677
Abstract
Tomato (Solanum lycopersicum L.) production in the USA has been severely impacted by the tomato yellow leaf curl virus (TYLCV). Furthermore, a complex association of whitefly-transmitted TYLCV (genus, begomovirus) and tomato chlorosis virus (ToCV, genus, crinivirus) were recently identified in tomato. Several tomato [...] Read more.
Tomato (Solanum lycopersicum L.) production in the USA has been severely impacted by the tomato yellow leaf curl virus (TYLCV). Furthermore, a complex association of whitefly-transmitted TYLCV (genus, begomovirus) and tomato chlorosis virus (ToCV, genus, crinivirus) were recently identified in tomato. Several tomato cultivars were developed and commercialized with intermediate resistance (IR) against TYLCV-IL (Israel), the predominant strain of TYLCV found in Georgia, USA. TYLCV-resistant cultivars were tested in open field conditions against multiple whitefly-transmitted viruses in Georgia under natural disease pressure during the fall of 2022. The area under disease progress curve (AUDPC) over time showed a steady increase in disease severity among all cultivars. Further analysis of infected samples using high throughput sequencing (HTS) and quantitative PCR (qPCR) revealed the presence of TYLCV and ToCV in symptomatic upper and lower leaves, respectively. Moreover, the presence of both viruses in upper and lower leaves was determined. A mixed infection of both viruses, TYLCV and ToCV, resulted in severe disease development which may enhance the commercial tomato plants to break resistance and lead to decreased fruit quality and marketable yields. Full article
(This article belongs to the Special Issue The Diagnosis, Management, and Epidemiology of Plant Diseases)
Show Figures

Figure 1

14 pages, 6160 KB  
Article
Interactions of Tomato Chlorosis Virus p27 Protein with Tomato Catalase Are Involved in Viral Infection
by Xiaohui Sun, Lianyi Zang, Xiaoying Liu, Shanshan Jiang, Xianping Zhang, Dan Zhao, Kaijie Shang, Tao Zhou, Changxiang Zhu and Xiaoping Zhu
Viruses 2023, 15(4), 990; https://doi.org/10.3390/v15040990 - 18 Apr 2023
Cited by 7 | Viewed by 2613
Abstract
Tomato chlorosis virus (ToCV) severely threatens tomato production worldwide. P27 is known to be involved in virion assembly, but its other roles in ToCV infection are unclear. In this study, we found that removal of p27 reduced systemic infection, while ectopic expression of [...] Read more.
Tomato chlorosis virus (ToCV) severely threatens tomato production worldwide. P27 is known to be involved in virion assembly, but its other roles in ToCV infection are unclear. In this study, we found that removal of p27 reduced systemic infection, while ectopic expression of p27 promoted systemic infection of potato virus X in Nicotiana benthamiana. We determined that Solanum lycopersicum catalases (SlCAT) can interact with p27 in vitro and in vivo and that amino acids 73 to 77 of the N-terminus of SlCAT represent the critical region for their interaction. p27 is distributed in the cytoplasm and nucleus, and its coexpression with SlCAT1 or SlCAT2 changes its distribution in the nucleus. Furthermore, we found that silencing of SlCAT1 and SlCAT2 can promote ToCV infection. In conclusion, p27 can promote viral infection by binding directly to inhibit anti-ToCV processes mediated by SlCAT1 or SlCAT2. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Viruses Research in Asia)
Show Figures

Figure 1

10 pages, 1880 KB  
Article
Tomato Chlorosis Virus (ToCV) Infection Induced the Resistance of Bemisia tabaci to Two Insecticides: Pyrethroids and Flupyradifurone
by Jisong Zhang, Liping Huang, Zhuo Zhang, Zhanhong Zhang, Deyong Zhang, Youjun Zhang, Xiaobin Shi and Yong Liu
Horticulturae 2023, 9(1), 68; https://doi.org/10.3390/horticulturae9010068 - 5 Jan 2023
Viewed by 2957
Abstract
Insect vectors and insect-borne plant viruses seriously endanger the safety of agricultural production. An insecticide is one of the main methods to prevent insect-borne virus transmission. However, the curious relationship between the resistance of insect vectors and arboviruses has been less studied. In [...] Read more.
Insect vectors and insect-borne plant viruses seriously endanger the safety of agricultural production. An insecticide is one of the main methods to prevent insect-borne virus transmission. However, the curious relationship between the resistance of insect vectors and arboviruses has been less studied. In this study, the effect of Tomato chlorosis virus (ToCV) on the insecticide resistance of Bemisia tabaci MED was studied. It was found that the detoxification cytochrome P450, glutathione S-transferase, and carboxylesterase-related genes in ToCV-infected B. tabaci were upregulated. The activity of the three detoxification enzymes all increased at the same time, after 48 h of virus acquisition, with the activity of carboxylesterase being the most pronounced. It was found that cytochrome P450 and glutathione S-transferase activity was the least. ToCV led to the reduced sensitivity of B. tabaci MED to pyrethroids and flupyradifurone. Therefore, it was proven that the insect-borne plant virus ToCV shows the possibility of enhancing insect-borne insecticide resistance. Full article
(This article belongs to the Special Issue Integrated Disease and Pest Management of Vegetables)
Show Figures

Figure 1

13 pages, 3272 KB  
Article
High-Throughput Sequencing Reveals Tobacco and Tomato Ringspot Viruses in Pawpaw
by Jiyeong Choi, Anya Clara Osatuke, Griffin Erich, Kristian Stevens, Min Sook Hwang, Maher Al Rwahnih and Marc Fuchs
Plants 2022, 11(24), 3565; https://doi.org/10.3390/plants11243565 - 17 Dec 2022
Cited by 4 | Viewed by 3439
Abstract
Pawpaw (Asimina triloba) trees exhibiting stunting and foliar mosaic, chlorosis, or distortions were observed in New York. In 2021, leaf samples from two symptomatic trees and a sapling, as well as two asymptomatic trees, were tested for the presence of viruses [...] Read more.
Pawpaw (Asimina triloba) trees exhibiting stunting and foliar mosaic, chlorosis, or distortions were observed in New York. In 2021, leaf samples from two symptomatic trees and a sapling, as well as two asymptomatic trees, were tested for the presence of viruses and viroids by high-throughput sequencing (HTS) using total RNA after ribosomal RNA depletion. HTS sequence information revealed tobacco ringspot virus (TRSV) and tomato ringspot virus (ToRSV) in symptomatic but not in asymptomatic leaves. HTS reads and de novo-assembled contigs covering the genomes of both viruses were obtained, with a higher average read depth for RNA2 than RNA1. The occurrence of TRSV and ToRSV was confirmed in the original leaf samples used for HTS and 12 additional trees and saplings from New York and Maryland in 2022 by RT-PCR combined with Sanger sequencing, and DAS-ELISA. Single infections by TRSV in 11 of 14 trees and dual infections by TRSV and ToRSV in 3 of 14 trees were identified. The nucleotide sequence identity of partial gene fragments of TRSV and ToRSV was high among pawpaw isolates (94.9–100% and 91.8–100%, respectively) and between pawpaw isolates and isolates from other horticultural crops (93.6–100% and 71.3–99.3%, respectively). This study is the first to determine the virome of pawpaw. Full article
(This article belongs to the Special Issue Plant Responses to Environmental Stresses)
Show Figures

Figure 1

14 pages, 1461 KB  
Article
Rhodopseudomonas palustris PSB-06 Induces Plant Defense and Suppresses the Transmission of Tomato Chlorosis Virus by Bemisia tabaci MED
by Dingyihui Lu, Hao Yue, Jianbin Chen, Yan Wei, Zhanhong Zhang, Jun Zeng, Zhuo Zhang, Xuguo Zhou, Limin Zheng, Yang Gao, Jing Peng, Xiaobin Shi, Yong Liu and Deyong Zhang
Agronomy 2022, 12(11), 2631; https://doi.org/10.3390/agronomy12112631 - 26 Oct 2022
Viewed by 2897
Abstract
Tomato chlorosis virus (ToCV) is an RNA virus and a member of the Closteroviridae, Crinivirus, that is primarily vectored by Bemisia tabaci MED (B. tabaci MED). An outbreak of ToCV causes destructive damage to tomato plants and other solanaceous vegetables. Currently, ToCV [...] Read more.
Tomato chlorosis virus (ToCV) is an RNA virus and a member of the Closteroviridae, Crinivirus, that is primarily vectored by Bemisia tabaci MED (B. tabaci MED). An outbreak of ToCV causes destructive damage to tomato plants and other solanaceous vegetables. Currently, ToCV has not been effectively controlled. Rhodopseudomonas palustris PSB-06 is a novel biological agent that is effective at controlling the tobacco mosaic virus (TMV). In this study, we investigated the role of PSB-06 in ToCV-infected tomato plants, and we studied the effects of PSB-06 on plant defense and plant photosynthetic pathways. Furthermore, the effect of PSB-06 on the acquisition and transmission of B. tabaci MED was determined. The results showed that compared with water-treated tomato plants, the contents of jasmonic acid increased, and the activities of catalase, peroxidase and superoxide dismutase increased significantly in tomato plants treated with PSB-06. The relative expression of genes involved in chlorophyll development, chlorophyll metabolism and photosynthesis also increased significantly. Simultaneously, treatment with PSB-06 reduced the acquisition and transmission of B. tabaci MED. We verified the hypothesis that PSB-06 is effective at controlling ToCV by promoting plant defense responses and reducing the amount of ToCV in tomato plants. We also confirmed the ability of B. tabaci MED to transmit ToCV. This study should help to control B. tabaci MED and reduce the spread of ToCV. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 1920 KB  
Article
Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants
by Stephen J. Fletcher, Jonathan R. Peters, Cristian Olaya, Denis M. Persley, Ralf G. Dietzgen, Bernard J. Carroll, Hanu Pappu and Neena Mitter
Pathogens 2022, 11(7), 745; https://doi.org/10.3390/pathogens11070745 - 30 Jun 2022
Cited by 9 | Viewed by 2899
Abstract
Tospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum [...] Read more.
Tospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum and N. benthamiana infected by tomato spotted wilt virus (TSWV) or capsicum chlorosis virus (CaCV) demonstrated the presence of abundant vsiRNAs, with host-specific differences evident for each pathosystem. Despite the biogenesis of vsiRNAs in capsicum and N. benthamiana, TSWV and CaCV viral loads were readily detectable. In response to tospovirus infection, the solanaceous host species also generated highly abundant virus-activated small interfering RNAs (vasiRNAs) against many endogenous transcripts, except for an N. benthamiana accession lacking a functional RDR1 gene. Strong enrichment for ribosomal protein-encoding genes and for many genes involved in protein processing in the endoplasmic reticulum suggested co-localisation of viral and endogenous transcripts as a basis for initiating vasiRNA biogenesis. RNA-seq and RT-qPCR-based analyses of target transcript expression revealed an inconsistent role for vasiRNAs in modulating gene expression in N. benthamiana, which may be characteristic of this tospovirus-host pathosystem. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

Back to TopTop