Insect Transmission of Plant Viruses

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1046

Special Issue Editors


E-Mail Website
Guest Editor
The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Interests: insects; virus

E-Mail Website
Guest Editor
State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Interests: arbovirus; planthopper; plant virus; vector; pathogen-vector interaction

Special Issue Information

Dear Colleagues,

The transmission of plant viruses by insect vectors is a critical process in plant pathology and viral disease epidemiology. This Special Issue aims to publish newly gained knowledge on the biological and ecological mechanisms by which insects acquire, retain, and inoculate viruses into host plants. Key areas include insect vectors (e.g., aphids, whiteflies, leafhoppers) and their interactions with viruses, categorized into transmission modes such as non-persistent, semi-persistent, and persistent-circulative pathways, which depend on viral retention sites (e.g., stylets, midgut, salivary glands). Additionally, it also explores how plant–virus–insect tripartite interactions influence insect vector behavior and virus spread. The published data will contribute to the sustainable prevention and control of insect-borne plant virus diseases.

Dr. Wenwen Liu
Dr. Yan Huo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insect vectors
  • vector specificity
  • viruses
  • persistent transmission
  • non-persistent transmission
  • plant–virus–insect tripartite interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2473 KiB  
Article
Enhanced Tomato Yellow Leaf Curl Thailand Virus Suppression Through Multi-Disease and Insect-Resistant Tomato Lines Combining Virus and Vector Resistance
by Shruthi Shimoga Prabhakar, Yun-Che Hsu, Joyce Yen, Hsiu-Yi Chou, Mei-Ying Lin, Mallapuram Shanthi Priya, Stephen Othim, Srinivasan Ramasamy and Assaf Eybishitz
Insects 2025, 16(7), 721; https://doi.org/10.3390/insects16070721 - 15 Jul 2025
Viewed by 781
Abstract
Tomato (Solanum lycopersicum) is an essential vegetable crop cultivated worldwide, but its production is highly vulnerable to tomato yellow leaf curl disease (TYLCD), which is transmitted by whiteflies (Bemisia tabaci). Management strategies typically focus on controlling either the virus [...] Read more.
Tomato (Solanum lycopersicum) is an essential vegetable crop cultivated worldwide, but its production is highly vulnerable to tomato yellow leaf curl disease (TYLCD), which is transmitted by whiteflies (Bemisia tabaci). Management strategies typically focus on controlling either the virus or its vector. This study evaluates the effectiveness of multi-disease and insect-resistant tomato lines, developed by the World Vegetable Center (WorldVeg), which integrate Ty-1/Ty-3 genes for virus resistance and WF2-10 and WF3-09 genes for whitefly resistance. Virus accumulation, whitefly settling behavior, and adult mortality were assessed among multi-resistant lines, a Ty-resistant line, a whitefly-resistant line, and a susceptible check using preference bioassays, controlled inoculation experiments, and acylsugar quantification. Multi-resistant lines exhibited significantly higher acylsugar concentrations, reduced whitefly preference for settling, and increased whitefly adult mortality. Additionally, these lines displayed less severe disease symptoms and lower virus accumulation over time than Ty-resistant, whitefly-resistant, and susceptible controls. These findings highlight the superior efficacy of combined virus and vector resistance in mitigating tomato yellow leaf curl Thailand virus (TYLCTHV) transmission. This research underscores the importance of integrated genetic resistance as a key element of sustainable integrated pest management strategies, offering an environmentally friendly solution for safeguarding global tomato production. Full article
(This article belongs to the Special Issue Insect Transmission of Plant Viruses)
Show Figures

Figure 1

Back to TopTop