Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (953)

Search Parameters:
Keywords = tomato (Solanum lycopersicum)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2276 KiB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 (registering DOI) - 4 Aug 2025
Viewed by 262
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

18 pages, 1256 KiB  
Article
Algae Extracts and Zeolite Modulate Plant Growth and Enhance the Yield of Tomato Solanum lycopersicum L. Under Suboptimum and Deficient Soil Water Content
by José Antonio Miranda-Rojas, Aurelio Pedroza-Sandoval, Isaac Gramillo-Ávila, Ricardo Trejo-Calzada, Ignacio Sánchez-Cohen and Luis Gerardo Yáñez-Chávez
Horticulturae 2025, 11(8), 902; https://doi.org/10.3390/horticulturae11080902 (registering DOI) - 3 Aug 2025
Viewed by 354
Abstract
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth [...] Read more.
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth and production of tomato Lycopersicum esculentum L. grown in an open field under suboptimum and deficient soil moisture content. Large plots had a suboptimum soil moisture content (SSMC) of 25% ± 2 [28% below field capacity (FC)] and deficient soil moisture content (DSMC) of 20% ± 2 [11% above permanent wilting point (PWP)]; both soil moisture ranges were based on field capacity FC (32%) and PWP (18%). Small plots had four treatments: algae extract (AE) 50 L ha−1 and zeolite (Z) 20 t ha−1, a combination of both products (AE + Z) 25 L ha−1 and 10 t h−1, and a control (without application of either product). By applying AE, Z, and AE + Z, plant height, plant vigor, and chlorophyll index were significantly higher compared to the control by 20.3%, 10.5%, and 22.3%, respectively. The effect on relative water content was moderate—only 2.6% higher than the control applying AE, while the best treatment for the photosynthesis variable was applying Z, with a value of 20.9 μmol CO2 m−2 s−1, which was 18% higher than the control. Consequently, tomato yield was also higher compared to the control by 333% and 425% when applying AE and Z, respectively, with suboptimum soil moisture content. The application of the biostimulants did not show any mitigating effect on water stress under soil water deficit conditions close to permanent wilting. These findings are relevant to water-scarce agricultural areas, where more efficient irrigation water use is imperative. Plant biostimulation through organic and inorganic extracts plays an important role in mitigating environmental stresses such as those caused by water shortages, leading to improved production in vulnerable agricultural areas with extreme climates. Full article
(This article belongs to the Special Issue Optimized Irrigation and Water Management in Horticultural Production)
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Transforming Tomato Industry By-Products into Antifungal Peptides Through Enzymatic Hydrolysis
by Davide Emide, Lorenzo Periccioli, Matias Pasquali, Barbara Scaglia, Stefano De Benedetti, Alessio Scarafoni and Chiara Magni
Int. J. Mol. Sci. 2025, 26(15), 7438; https://doi.org/10.3390/ijms26157438 - 1 Aug 2025
Viewed by 150
Abstract
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, [...] Read more.
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, (ii) optimizing the hydrolysis with different proteases, and (iii) characterizing the resulting peptides. This approach was instrumental for obtaining and selecting the most promising peptide mixture to test for antifungal activity. To this purpose, proteins from an alkaline extraction were treated with bromelain, papain, and pancreatin, and the resulting hydrolysates were assessed for their protein/peptide profiles via SDS-PAGE, SEC-HPLC, and RP-HPLC. Bromelain hydrolysate was selected for antifungal tests due to its greater quantity of peptides, in a broader spectrum of molecular weights and polarity/hydrophobicity profiles, and higher DPPH radical scavenging activity, although all hydrolysates exhibited antioxidant properties. In vitro assays demonstrated that the bromelain-digested proteins inhibited the growth of Fusarium graminearum and F. oxysporum f.sp. lycopersici in a dose-dependent manner, with a greater effect at a concentration of 0.1 mg/mL. The findings highlight that the enzymatic hydrolysis of tomato seed protein represents a promising strategy for converting food by-products into bioactive agents with agronomic applications, supporting sustainable biotechnology and circular economy strategies. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Selenium Nanoparticles Improve Morpho-Physiological and Fruit Quality Parameters of Tomato
by Juan José Reyes-Pérez, Tomás Rivas-García, Luis Tarquino Llerena-Ramos, Rommel Arturo Ramos-Remache, Luis Humberto Vásquez Cortez, Pablo Preciado-Rangel and Rubí A. Martínez-Camacho
Horticulturae 2025, 11(8), 876; https://doi.org/10.3390/horticulturae11080876 - 28 Jul 2025
Viewed by 350
Abstract
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, [...] Read more.
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, size, shape), and application (foliar or drenching). For this reason, the objective of this study was to investigate the impact of biostimulating tomato plants under no stressor conditions (Solanum lycopersicum cv. ‘Pomodoro’ L.) with SeNPs on morpho-physiological and fruit quality parameters. Three doses of Selenium nanoparticles (5, 15, and 30 mg L−1), and a control were applied via a foliar application after transplanting. The results indicate that a 5 mg L−1 SeNP treatment improved the growth and yield of the tomato, with the exception of the root length and leaf weight. Moreover, all doses modified the evaluated physiology, bioactive compounds, and fruit quality parameters. This research helped in understanding the SeNPs’ effect on tomato plants in greenhouses under a no stressor condition. Full article
Show Figures

Figure 1

16 pages, 3740 KiB  
Article
Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation
by Andrea Burato, Pasquale Campi, Alfonso Pentangelo and Mario Parisi
Agronomy 2025, 15(8), 1805; https://doi.org/10.3390/agronomy15081805 - 25 Jul 2025
Viewed by 277
Abstract
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit [...] Read more.
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit irrigation (RDI) on processing tomatoes in northern Italy. In 2019 (Parma) and 2022 (Piacenza), full irrigation (IRR, restoring 100% crop evapotranspiration) and RDI (100% IRR until the color-breaking stage, followed by 50% IRR) strategies were compared within a completely randomized block design. Overall, RDI resulted in a 25% reduction in water use without compromising yield, which was maintained through unchanged plant fertility and fruit size compared to IRR. Remote sensing data from PlanetScope imagery confirmed the absence of water stress in RDI-treated plants. Furthermore, increased soluble solids and dry matter contents under RDI suggest a physiological adaptation of processing tomatoes to late-season water deficit. Remarkably, environmental and economic sustainability indicators—namely water productivity and yield quality—were enhanced under RDI management. This study validates a simple, sustainable, and readily applicable irrigation approach for tomato cultivation in the Po valley. Future research should refine this method by investigating plant physiological responses to optimize water use in this key agricultural region. Full article
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 202
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

14 pages, 1146 KiB  
Article
Damage Potential and Feeding Preference of Halyomorpha halys (Stål), Nezara viridula (L.), and Leptoglossus zonatus (Dallas) Among Different Ripening Stages of Tomato
by Md Tafsir Nur Nabi Rashed, Adam G. Dale, Gideon Alake, Simon S. Riley, Nicole Benda and Amanda C. Hodges
Insects 2025, 16(7), 740; https://doi.org/10.3390/insects16070740 - 20 Jul 2025
Viewed by 468
Abstract
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any [...] Read more.
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any feeding preference for these true bugs among different ripening stages of tomato (green, breaker, pink, and red stages). Feeding and behavioral assays were performed to determine the feeding preference and damage potential of two common stink bugs—the brown marmorated stink bug (Halyomorpha halys (Stål)) and the southern green stink bug (Nezara viridula L.)—and a leaf-footed bug (Leptoglossus zonatus (Dallas)) among the various ripening stages of tomato. The results indicated that green is the most preferred ripening stage for N. viridula and L. zonatus, while pink tomatoes were found to be a more preferred feeding site for H. halys. Fully ripe red tomatoes were found to be the least preferred feeding site for all three insects. The findings of this study will be useful for developing fruit damage symptom-based monitoring programs and establishing economic threshold levels for these pests in tomatoes, as well as informing harvesting regimes. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Show Figures

Figure 1

23 pages, 12625 KiB  
Article
Genome-Wide Identification and Expression Analysis of Auxin-Responsive GH3 Gene Family in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Meng Wang, Lu Liu, Xiao-Mei Zheng and Yan Cheng
Plants 2025, 14(14), 2231; https://doi.org/10.3390/plants14142231 - 18 Jul 2025
Viewed by 433
Abstract
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) [...] Read more.
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) GH3 (CaGH3) gene family members in response to multiple stimulants are largely unknown. In this study, we systematically identified the CaGH3 gene family at the genome level and identified eight members on four chromosomes in pepper. CaGH3s were divided into two groups (I and III) and shared conserved motifs, domains, and gene structures. Moreover, CaGH3s had close evolutionary relationships with tomato (Solanum lycopersicum L.), and the promoters of most CaGH3 genes contained hormone and abiotic stress response elements. A protein interaction prediction analysis demonstrated that the CaGH3-3/3-6/3-7/3-8 proteins were possibly core members of the CaGH3 family interaction. In addition, qRT-PCR results showed that CaGH3 genes were differentially expressed in pepper tissues and could be induced by phytohormones (IAA, ABA, and MeJA) and abiotic stresses (salt, low temperature, and drought) with different patterns. In addition, CaGH3-5 and CaGH3-7 were cloned, and the sequences showed a high degree of conservation. Moreover, the results of subcellular localization indicated that they were located in the membrane and chloroplast. Notably, after overexpressing CaGH3-7 in tomato, RNA-seq was performed on wild-type and transgenic lines, and the differentially expressed genes were mainly enriched in response to external stimuli. This study not only lays the foundation for a comprehensive understanding of the function of the CaGH3 gene family during plant growth and stress responses but also provides potential genetic resources for pepper resistance breeding. Full article
Show Figures

Figure 1

15 pages, 2469 KiB  
Review
Recent Developments of Nanomaterials in Crop Growth and Production: The Case of the Tomato (Solanum lycopersicum)
by Eric G. Echeverría-Pérez, Vianii Cruz-López, Rosario Herrera-Rivera, Mario J. Romellón-Cerino, Jesusita Rosas-Diaz and Heriberto Cruz-Martínez
Agronomy 2025, 15(7), 1716; https://doi.org/10.3390/agronomy15071716 - 16 Jul 2025
Viewed by 533
Abstract
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. [...] Read more.
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. Therefore, it is necessary to develop alternatives to conventional agrochemical products. Applying nanomaterials as fertilizers in tomato production is emerging as a promising approach, with documented improvements in germination, vegetative development, and fruit yield. Therefore, we present a comprehensive review of recent developments (2015–2024) in the application of nanomaterials in tomato crops, with a particular emphasis on the significance of nanomaterial characteristics in their role as fertilizers. Several types of nanomaterials, such as ZnO, Ag, TiO2, Si, hydroxyapatite, P, Zn, Se, CuO, Cu, Fe, Fe2O3, CaO, CaCO3, and S, have been evaluated as fertilizers for tomato crops, with ZnO nanoparticles being the most extensively studied. However, it is pertinent to conduct further research on the less-explored nanomaterials to gain a deeper understanding of their effects on seed germination, plant growth, and fruit quality and quantity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Agricultural Food Engineering)
Show Figures

Figure 1

12 pages, 2473 KiB  
Article
Enhanced Tomato Yellow Leaf Curl Thailand Virus Suppression Through Multi-Disease and Insect-Resistant Tomato Lines Combining Virus and Vector Resistance
by Shruthi Shimoga Prabhakar, Yun-Che Hsu, Joyce Yen, Hsiu-Yi Chou, Mei-Ying Lin, Mallapuram Shanthi Priya, Stephen Othim, Srinivasan Ramasamy and Assaf Eybishitz
Insects 2025, 16(7), 721; https://doi.org/10.3390/insects16070721 - 15 Jul 2025
Viewed by 707
Abstract
Tomato (Solanum lycopersicum) is an essential vegetable crop cultivated worldwide, but its production is highly vulnerable to tomato yellow leaf curl disease (TYLCD), which is transmitted by whiteflies (Bemisia tabaci). Management strategies typically focus on controlling either the virus [...] Read more.
Tomato (Solanum lycopersicum) is an essential vegetable crop cultivated worldwide, but its production is highly vulnerable to tomato yellow leaf curl disease (TYLCD), which is transmitted by whiteflies (Bemisia tabaci). Management strategies typically focus on controlling either the virus or its vector. This study evaluates the effectiveness of multi-disease and insect-resistant tomato lines, developed by the World Vegetable Center (WorldVeg), which integrate Ty-1/Ty-3 genes for virus resistance and WF2-10 and WF3-09 genes for whitefly resistance. Virus accumulation, whitefly settling behavior, and adult mortality were assessed among multi-resistant lines, a Ty-resistant line, a whitefly-resistant line, and a susceptible check using preference bioassays, controlled inoculation experiments, and acylsugar quantification. Multi-resistant lines exhibited significantly higher acylsugar concentrations, reduced whitefly preference for settling, and increased whitefly adult mortality. Additionally, these lines displayed less severe disease symptoms and lower virus accumulation over time than Ty-resistant, whitefly-resistant, and susceptible controls. These findings highlight the superior efficacy of combined virus and vector resistance in mitigating tomato yellow leaf curl Thailand virus (TYLCTHV) transmission. This research underscores the importance of integrated genetic resistance as a key element of sustainable integrated pest management strategies, offering an environmentally friendly solution for safeguarding global tomato production. Full article
(This article belongs to the Special Issue Insect Transmission of Plant Viruses)
Show Figures

Figure 1

24 pages, 3617 KiB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Viewed by 353
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

20 pages, 1390 KiB  
Article
Performance of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) Strains on Eggs from Different Populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Alessandro Bandeira Dalbianco, Diego Fernando Daniel, Dirceu Pratissoli, Daniel de Lima Alvarez, Nadja Nara Pereira da Silva, Daniel Mariano Santos, Santino Seabra Júnior and Regiane Cristina de Oliveira
Agronomy 2025, 15(7), 1692; https://doi.org/10.3390/agronomy15071692 - 13 Jul 2025
Viewed by 439
Abstract
Tomato is the most widely cultivated fruit–vegetable worldwide, and the tomato leafminer (Tuta absoluta) is the primary pest of this crop. In this context, biological control using parasitoids belonging to the genus Trichogramma is crucial. This study aimed to evaluate the [...] Read more.
Tomato is the most widely cultivated fruit–vegetable worldwide, and the tomato leafminer (Tuta absoluta) is the primary pest of this crop. In this context, biological control using parasitoids belonging to the genus Trichogramma is crucial. This study aimed to evaluate the biological characteristics of T. pretiosum strains collected from different locations and exposed to eggs from various T. absoluta populations/generations, using parameters such as parasitism capacity, viability (percentage of emergence), sex ratio, and female longevity. The presence of endosymbionts in the T. absoluta populations was also assessed. The experiment followed a randomized design, with treatments consisting of eggs from T. absoluta populations collected in different years (2019, 2020, 2021, 2022, and 2023) and different strains of T. pretiosum. We used 20 replicates, with one female per replicate in each treatment, organized in a 5 × 4 factorial scheme (five populations of T. absoluta × four strains of T. pretiosum). The S2 strain of T. pretiosum was found to be the most efficient in terms of biological characteristics for parasitism of T. absoluta eggs, especially in T. absoluta populations collected in recent years (2022 and 2023). These results suggest that S2 is the preferred strain for future studies aimed at using this parasitoid as a control agent to combat T. absoluta. The endosymbionts Arsenophonus and Serratia were identified in T. absoluta populations collected in 2019–2020 and 2020–2021, respectively. These findings highlight the presence of these microorganisms in pest populations in different years. Full article
(This article belongs to the Special Issue Biological Pest Control in Agroecosystems—2nd Edition)
Show Figures

Figure 1

13 pages, 523 KiB  
Article
The Impact of Rainwater Quality Harvested from Asbestos Cement Roofs on Leaf Temperature in Solanum lycopersicum as a Plant Water Stress Indicator
by Gergely Zoltán Macher
Water 2025, 17(14), 2070; https://doi.org/10.3390/w17142070 - 10 Jul 2025
Viewed by 376
Abstract
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to [...] Read more.
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to assess how simulated rainwater, reflecting the different levels of contamination (1, 2, 5, 10, and 20 mg/L), influences leaf temperature in tomato plants (Solanum lycopersicum), a known non-invasive indicator of plant water stress. The treatments were applied over a four-week period under controlled greenhouse conditions. Leaf temperature was monitored using infrared thermography. Results showed that higher treatment concentrations led to a significant increase in leaf temperature, indicating elevated water stress. These findings suggest that even low levels of contaminants originating from roofing materials can induce detectable physiological stress in plants. Monitoring leaf temperature offers a rapid and non-destructive method for assessing environmental water quality impacts on crops. The outcomes of this research have direct applicability in the safer design of RWH systems and in evaluating the suitability of collected rainwater for irrigation use. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

13 pages, 939 KiB  
Article
Composite Coating Enriched with Lemon Peel Extract for Enhancing the Postharvest Quality of Cherry Tomatoes
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
Coatings 2025, 15(7), 810; https://doi.org/10.3390/coatings15070810 - 10 Jul 2025
Viewed by 309
Abstract
The present study investigated the efficacy of edible coatings formulated with gellan gum and lemon peel extract (LPE) in preserving the postharvest quality of cherry tomatoes (Solanum lycopersicum var. cerasiforme). Selected fruits exhibiting uniform ripeness and free from defects were sanitized [...] Read more.
The present study investigated the efficacy of edible coatings formulated with gellan gum and lemon peel extract (LPE) in preserving the postharvest quality of cherry tomatoes (Solanum lycopersicum var. cerasiforme). Selected fruits exhibiting uniform ripeness and free from defects were sanitized and coated with solutions containing different HAG/LAG (high- and low-acyl gellan gum) ratios, incorporating 4.0% (w/v) LPE. Physicochemical and physiological parameters, including soluble solids content, weight loss, pH, titratable acidity, oxygen consumption, carbon dioxide and ethylene production, skin redness (a*/b* ratio), and decay incidence, were systematically assessed under storage conditions of 25 °C and 70% relative humidity. HAG-coated fruits showed the lowest weight loss (1.08%), higher soluble solids (7.11 °Brix), and greater firmness (3.11 N/mm2) compared to uncoated controls. Moreover, they exhibited reduced oxygen consumption (0.06 mg·kg−1·h−1), ethylene production (3.10 mg·kg−1·h−1), and decay rate (2%). Redness was better preserved, and decay rates were substantially (p < 0.05) reduced throughout the storage period. These findings highlight the potential of HAG-based edible coatings enriched with LPE as an innovative postharvest technology to extend shelf life, maintain quality attributes, and reduce postharvest losses in cherry tomatoes. Full article
(This article belongs to the Section Coatings for Food Technology and System)
Show Figures

Figure 1

24 pages, 6634 KiB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 424
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

Back to TopTop