Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = tissue-resident T cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5767 KiB  
Article
bTRM Control of Murine Cytomegalovirus CNS Reactivation
by Priyanka Chauhan, Shuxian Hu, Wen S. Sheng, Sujata Prasad and James R. Lokensgard
Int. J. Mol. Sci. 2025, 26(11), 5275; https://doi.org/10.3390/ijms26115275 - 30 May 2025
Viewed by 557
Abstract
T lymphocytes infiltrate the CNS in response to murine cytomegalovirus (MCMV) infection and form a pool of long-lived brain tissue-resident memory T-cells (bTRMs), which display markers of residency (i.e., CD103, CD69, CD49a). However, the functional role of these bTRMs [...] Read more.
T lymphocytes infiltrate the CNS in response to murine cytomegalovirus (MCMV) infection and form a pool of long-lived brain tissue-resident memory T-cells (bTRMs), which display markers of residency (i.e., CD103, CD69, CD49a). However, the functional role of these bTRMs is still unknown. By 30 days postinfection, a latent viral brain infection was established, as indicated by absence of viral transcripts (IE1, E1, and gB) produced during productive infection. Following intracerebroventricular injection of either depleting α-CD8 Ab (clone YTS169.4) or α-CD103-sap (clone IT50) into the brain, 90–95% T-cell depletion was achieved. Using luciferase-expressing mice, we observed recommenced imaging signals indicative of de novo MCMV IE promoter activity in depleted animals. Surprisingly, using an explant assay, we efficiently recovered reactivatable, infectious virus from untreated, latent animals, but not from those depleted of bTRMs (viral recovery in explants was reduced from 100% to 50% by day 21). We identified Lgals3 (galectin 3), Gpnmb (glycoprotein nonmetastatic melanoma protein B) and Hmox1 (heme oxygenase 1) as genes that were most upregulated in bTRM-depleted groups. When bTRMs were depleted, there was transient expression of viral IE genes which resulted in antiviral microglia with a phagocytic, disease-associated (DAM) or neurodegenerative (MGnD) phenotype. These data provide new insights into the role of bTRMs in controlling both CNS reactivation and driving microglial phenotypes. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 3261 KiB  
Review
The Role of Tregs in the Tumor Microenvironment
by Yohei Sato
Biomedicines 2025, 13(5), 1173; https://doi.org/10.3390/biomedicines13051173 - 11 May 2025
Cited by 2 | Viewed by 1135
Abstract
The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports [...] Read more.
The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports the importance of the TME and immune cells residing in the tumor niche. Although the TME can be identified in almost all cancer types, the role of the TME may not be similar among different cancer types. Regulatory T cells (Tregs) play a pivotal role in immune homeostasis and are frequently found in the TME. Owing to their suppressive function, Tregs are often considered unfavorable factors that allow the immune escape of cancer cells. However, the presence of Tregs is not always linked to an unfavorable phenotype, which can be explained by the heterogeneity and plasticity of Tregs. In this review, the current understanding of the role of Tregs in TME is addressed for each cancer cell type. Moreover, recently a therapeutic approach targeting Tregs infiltrating in the TME has been developed including drug antibody conjugate, immunotoxin, and FOXP3 inhibiting peptide. Thus, understanding the role of Tregs in the TME may lead to the development of novel therapies that directly target the TME. Full article
(This article belongs to the Special Issue Feature Reviews in Tumor Immunology)
Show Figures

Figure 1

26 pages, 14079 KiB  
Article
Neutrophil-Camouflaged Stealth Liposomes for Photothermal-Induced Tumor Immunotherapy Through Intratumoral Bacterial Activation
by Xinxin Chen, Jiang Sun, Tingxian Ye and Fanzhu Li
Pharmaceutics 2025, 17(5), 614; https://doi.org/10.3390/pharmaceutics17050614 - 5 May 2025
Viewed by 705
Abstract
ObjectiveF. nucleatum, a tumor-resident bacterium colonizing breast cancer (BC), results in an immunosuppressive microenvironment and facilitates tumor growth and metastasis. This study aimed to develop a neutrophil-based liposome delivery system designed for dual-targeted elimination of tumor cells and F. nucleatum [...] Read more.
ObjectiveF. nucleatum, a tumor-resident bacterium colonizing breast cancer (BC), results in an immunosuppressive microenvironment and facilitates tumor growth and metastasis. This study aimed to develop a neutrophil-based liposome delivery system designed for dual-targeted elimination of tumor cells and F. nucleatum, while simultaneously upregulating pathogen-associated molecular patterns and damage-associated molecular patterns to potentiate tumor immunotherapy. Methods: The liposomes (PD/GA-LPs) loaded with the perylene diimide complex (PD) and gambogic acid (GA) were fabricated via the extrusion method. Subsequently, comprehensive evaluations including physicochemical characteristics, antibacterial activity, antitumor effect, and immunomodulatory effect evaluation were systematically conducted to validate the feasibility of this delivery system. Results: The resulting PD/GA-LPs exhibited a dynamic size (121.3 nm, zeta potential −44.1 mV) and a high encapsulation efficiency of approximately 78.1% (PD) and 91.8% (GA). In addition, the optimized PD/GA-LPs exhibited excellent photothermal performance and antibacterial efficacy. In vitro cellular experiments revealed that PD/GA-LPs exhibited enhanced internalization by neutrophils, followed by extracellular trap-mediated release, ultimately significantly inhibiting tumor cell proliferation and inducing immunogenic cell death. During in vivo treatment, PD/GA-LPs exhibited targeted tumor accumulation, where F. nucleatum-driven PD reduction activated near-infrared-responsive photothermal ablation. When combined with GA, this delivery system effectively eliminated tumor cells and F. nucleatum, while facilitating the subsequent T-cell infiltration. Conclusions: This strategy amplified the antitumor immune response, thus leading to effective treatment of BC and prevention of metastasis. In summary, this approach, grounded in the distinct microecology of tumor and normal tissues, offers novel insights into the development of precise and potent immunotherapies for BC. Full article
Show Figures

Figure 1

15 pages, 2700 KiB  
Article
Differential Infiltration of T-Cell Populations in Tumor and Liver Tissues Predicts Recurrence-Free Survival in Surgically Resected Hepatocellular Carcinoma
by Eun Ji Jang, Ho Joong Choi, Young Kyoung You, Deok Hwa Seo, Mi Hyun Kwon, Keungmo Yang, Jaejun Lee, Jeong Won Jang, Seung Kew Yoon, Ji Won Han and Pil Soo Sung
Cancers 2025, 17(9), 1548; https://doi.org/10.3390/cancers17091548 - 2 May 2025
Viewed by 639
Abstract
Background/Objectives: Liver and tumor-infiltrating T cells in hepatocellular carcinoma (HCC) are heterogeneous, comprising the CD69+ tissue-resident T-cell and the CD69 circulating T-cell populations. However, the impact of these distinct T-cell populations on patient prognosis is unclear; hence, further studies are [...] Read more.
Background/Objectives: Liver and tumor-infiltrating T cells in hepatocellular carcinoma (HCC) are heterogeneous, comprising the CD69+ tissue-resident T-cell and the CD69 circulating T-cell populations. However, the impact of these distinct T-cell populations on patient prognosis is unclear; hence, further studies are needed. Methods: Tumor and distant liver tissues from 57 HCC patients with various chronic liver disease etiologies were analyzed. Single-cell dissociation and flow cytometry were used to assess CD69+ and CD69 T-cell populations and their correlation with recurrence-free survival (RFS). Results: CD69+/CD69 subpopulations within CD4+ and CD8+ T cells varied by patient and alcohol etiology. CD69 populations among CD4+ T cells were less frequent in both tumor and non-tumor tissues of alcohol-related HCC patients (p < 0.05). Higher frequencies of CD69CD4+ and CD8+ T cells in tumors and CD69+CD103+CD8+ T cells in liver tissues were associated with better RFS. CD69- T cells expressed lower PD-1 levels, indicating less exhaustion, with PD-1 expression inversely correlated with CD69 frequency. PD-1 expression was higher in CD69CD4+ T cells in alcohol-related HCC. Conclusions: We provided a detailed analysis of the heterogeneous characteristics of tumor- and liver-infiltrating T cells in HCC, emphasizing the distinct roles of CD69+ and CD69 cell populations and their impact on RFS. CD69+ T cells were associated with immune exhaustion and tumor aggressiveness, whereas CD69 T cells appeared to significantly contribute to the influence of alcohol intake on the immune landscape of HCC in the tumor microenvironment. However, further research should validate these findings in larger cohorts to enhance our understanding. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

16 pages, 2061 KiB  
Review
Alterations in Immune Cell Profiles in the Liver in Diabetes Mellitus: A Systematic Review
by Wanying Du, Elisha Siwan, Stephen M. Twigg and Danqing Min
Int. J. Mol. Sci. 2025, 26(9), 4027; https://doi.org/10.3390/ijms26094027 - 24 Apr 2025
Viewed by 963
Abstract
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering [...] Read more.
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering animal and human studies, was conducted using the PRISMA workflow. Thirteen studies met criteria. Immune cells in the liver, including monocytes/macrophages, neutrophils, and iNKT and T cells, were implicated in liver inflammation and fibrosis in diabetes. Pro-inflammatory cytokines, including interferon-ɣ, tumor necrosis factor-α, interleukin (IL)-15, IL-18, and IL-1β were upregulated in the liver, potentially contributing to liver inflammation and fibrosis progression. In contrast, the anti-inflammatory cytokine IL-4 was downregulated, possibly attributing to chronic inflammation in diabetes. Pathological immune responses via the TLR4/MyD88/NF-κB pathway and the IL-17/IL-23 axis were also linked to liver fibrosis in diabetes. In conclusion, this review highlights the putative pivotal role of immune cells in diabetes-related liver fibrosis progression through their regulation of cytokines and signaling pathways. Further research on diabetes and dysmetabolic liver pathology is needed to clarify immune cell localization in the liver and their interactions with resident cells promoting fibrosis. Targeting immune mechanisms may provide therapeutic strategies for managing liver fibrosis in diabetes. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

30 pages, 2591 KiB  
Review
Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis
by Kaori Endo-Umeda and Makoto Makishima
Biomolecules 2025, 15(4), 579; https://doi.org/10.3390/biom15040579 - 14 Apr 2025
Viewed by 1471
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models [...] Read more.
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol’s transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis. Full article
(This article belongs to the Special Issue Advances in Liver X Receptors)
Show Figures

Figure 1

13 pages, 608 KiB  
Review
The Role of HPV in the Development of Cutaneous Squamous Cell Carcinoma—Friend or Foe?
by Vasileios Dervenis
Cancers 2025, 17(7), 1195; https://doi.org/10.3390/cancers17071195 - 31 Mar 2025
Viewed by 1104
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing, with UV radiation being the main cause. Other risk factors are age, sex, skin type and immunosuppression. Human papillomaviruses (HPVs) are associated with benign and malignant skin tumours. In contrast to anogenital and [...] Read more.
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing, with UV radiation being the main cause. Other risk factors are age, sex, skin type and immunosuppression. Human papillomaviruses (HPVs) are associated with benign and malignant skin tumours. In contrast to anogenital and oropharyngeal carcinomas, which are caused by alpha papillomaviruses, the HPV types associated with cSCC belong to the beta-HPV genus. These viruses infect the skin epithelium and are widespread in skin samples from healthy people. It is assumed that HPV amplifies the DNA damage caused by UV radiation and disrupts the repair mechanisms of the cells, without remaining permanently detectable in the tumour tissue, the so-called hit-and-run theory. The HPV status of tumours appears to have a positive influence on prognosis and response to therapy due to increased immune infiltration, in particular by tissue-resident memory T cells and activation of immune effector cells. This favours responses to immunotherapies such as PD-1/PD-L1 inhibitors, whereas immunosuppression may promote a pro-carcinogenic effect. In conclusion, the role of beta HPV in the development of cSCC appears to be closely associated with the immune status of the host. Depending on the immune status, beta HPV can play either a protective or a tumour-promoting role, and in view of the increasing incidence of skin cancer worldwide, enhancing the immune response against virus-infected keratinocytes, e.g., through HPV vaccination, could represent a promising approach for the prevention and therapy of squamous cell carcinomas. Full article
(This article belongs to the Special Issue Views and Perspectives of Cutaneous Squamous Cell Carcinoma)
Show Figures

Figure 1

22 pages, 1369 KiB  
Review
Neutrophils in Type 1 Diabetes: Untangling the Intricate Web of Pathways and Hypothesis
by Laura Nigi, Erika Pedace, Francesco Dotta and Guido Sebastiani
Biomolecules 2025, 15(4), 505; https://doi.org/10.3390/biom15040505 - 31 Mar 2025
Viewed by 1093
Abstract
Neutrophils are increasingly recognized as key contributors to the pathogenesis of Type 1 Diabetes (T1D), yet their precise mechanistic role in disease onset and progression remains incompletely understood. While these innate immune cells reside in pancreatic tissue and support tissue homeostasis under physiological [...] Read more.
Neutrophils are increasingly recognized as key contributors to the pathogenesis of Type 1 Diabetes (T1D), yet their precise mechanistic role in disease onset and progression remains incompletely understood. While these innate immune cells reside in pancreatic tissue and support tissue homeostasis under physiological conditions, they can also drive tissue damage by triggering innate immune responses and modulating inflammation. Within the inflammatory milieu, neutrophils establish complex, bidirectional interactions with various immune cells, including macrophages, dendritic cells, natural killer cells, and lymphocytes. Once activated, they may enhance the innate immune response through direct or indirect crosstalk with immune cells, antigen presentation, and β-cell destruction or dysfunction. These mechanisms underscore the multifaceted and dynamic role of neutrophils in T1D, shaped by their intricate immunological interactions. Further research into the diverse functional capabilities of neutrophils is crucial for uncovering novel aspects of their involvement in T1D, potentially revealing new therapeutic targets to modulate disease progression. Full article
(This article belongs to the Special Issue Immune Responses in Type 1 Diabetes)
Show Figures

Figure 1

13 pages, 1927 KiB  
Article
The Reduced Immunogenicity of Zoster Vaccines in CMV-Seropositive Older Adults Correlates with T Cell Imprinting
by Adriana Weinberg, Thao Vu, Michael J. Johnson, D. Scott Schmid and Myron J. Levin
Vaccines 2025, 13(4), 340; https://doi.org/10.3390/vaccines13040340 - 22 Mar 2025
Cited by 1 | Viewed by 873
Abstract
Background: Cytomegalovirus (CMV) infection and age impact immune responses to vaccines. The effect of sex remains controversial. We investigated the relationship between cytomegalovirus-seropositivity, age, and sex and the immunogenicity of the recombinant (RZV) and live (ZVL) zoster vaccines in adults ≥50 years [...] Read more.
Background: Cytomegalovirus (CMV) infection and age impact immune responses to vaccines. The effect of sex remains controversial. We investigated the relationship between cytomegalovirus-seropositivity, age, and sex and the immunogenicity of the recombinant (RZV) and live (ZVL) zoster vaccines in adults ≥50 years of age. Methods: Varicella zoster virus (VZV) glycoprotein E (gE)-specific antibody, antibody avidity, and cell-mediated immunity (CMI) were measured pre-vaccination and at regular intervals over 5 years post-vaccination in 80 RZV and 79 ZVL recipients, including 91 cytomegalovirus-seropositive and 90 female participants. Results: Differences associated with CMV-seropositivity: lower VZV-gE-CMI in RZV recipients after the first dose of vaccine, but no differences after the 2nd dose; lower VZV-gE-specific antibody avidity in ZVL recipients; and more abundant Th1 and senescent T cells (Tsen) and less abundant regulatory (Treg) and tissue-resident memory T cells (Trm). Differences associated with older age: lower antibody responses in RZV recipients and lower Th1 cells. Differences associated with sex: none for immunogenicity of either vaccine. Differences associated with T cell subset abundance: higher Tsens and lower Tregs or Trms were associated with lower post-dose 1 VZV-gE-specific CMI in RZV recipients, and higher Th1s were associated with higher antibody concentrations. Conclusions: The correlation of CMV- and age-associated T cell subsets with the immunogenicity of ZVLs and RZVs suggests that T cell imprinting contributes to the effect of age and CMV on vaccine responses. Full article
Show Figures

Figure 1

31 pages, 3811 KiB  
Review
Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases
by Chenjie Zhan, Chunxiu Peng, Huaxiu Wei, Ke Wei, Yangzhi Ou and Zhiyong Zhang
Int. J. Mol. Sci. 2025, 26(6), 2778; https://doi.org/10.3390/ijms26062778 - 19 Mar 2025
Viewed by 1314
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, [...] Read more.
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells’ therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1080 KiB  
Review
Emerging Therapeutic Innovations for Vitiligo Treatment
by Weiran Li, Penghao Dong, Guiyuan Zhang, Junjie Hu and Sen Yang
Curr. Issues Mol. Biol. 2025, 47(3), 191; https://doi.org/10.3390/cimb47030191 - 14 Mar 2025
Viewed by 8481
Abstract
Vitiligo is a chronic autoimmune disorder with a multifactorial etiology, typically manifesting as localized or generalized hypopigmentation or depigmentation of the skin and mucous membranes. The pathogenesis of vitiligo is complex and significantly impacts patients’ quality of life. Although traditional treatments such as [...] Read more.
Vitiligo is a chronic autoimmune disorder with a multifactorial etiology, typically manifesting as localized or generalized hypopigmentation or depigmentation of the skin and mucous membranes. The pathogenesis of vitiligo is complex and significantly impacts patients’ quality of life. Although traditional treatments such as hormone therapy, topical medications, and laser therapy can help control the disease to some extent, their outcomes remain unsatisfactory. Therefore, ongoing research is crucial to explore and develop novel treatment strategies while assessing their efficacy and safety. This review aims to classify and summarize various new candidate drugs for vitiligo currently undergoing clinical trials, providing a reference for clinical practice. Recent advancements in the understanding of the pathogenesis of vitiligo have facilitated the development of potential treatment strategies, such as Janus kinase inhibitors, cytokine blockers, and agents targeting tissue-resident memory or regulatory T cells. These emerging therapies offer hope to patients with vitiligo, though further investigation is needed to confirm their safety, efficacy, and optimal treatment regimens. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Dermatoses, 2nd Edition)
Show Figures

Figure 1

15 pages, 2951 KiB  
Article
Platelets Modulate Leukocyte Population Composition Within Perivascular Adipose Tissue
by Adam Corken, Tiffany Weinkopff, Elizabeth C. Wahl, James D. Sikes and Keshari M. Thakali
Int. J. Mol. Sci. 2025, 26(4), 1625; https://doi.org/10.3390/ijms26041625 - 14 Feb 2025
Cited by 1 | Viewed by 680
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone and is composed of adipocytes and several leukocyte subpopulations. Diet can modify PVAT function, as obesogenic diets cause morphological changes to adipocytes and skew the leukocyte phenotype, leading to PVAT dysregulation and impaired vasoregulation. Of note, [...] Read more.
Perivascular adipose tissue (PVAT) regulates vascular tone and is composed of adipocytes and several leukocyte subpopulations. Diet can modify PVAT function, as obesogenic diets cause morphological changes to adipocytes and skew the leukocyte phenotype, leading to PVAT dysregulation and impaired vasoregulation. Of note, platelets, the clot-forming cells, also modulate many facets of leukocyte activity, such as tissue infiltration and polarity. We aimed to determine whether platelets regulate the leukocyte populations residing within PVAT. Male C57Bl/6J mice were fed a Western diet (30% kcal sucrose, 40% kcal fat, 8.0% sodium) to develop obesogenic conditions for PVAT leukocyte remodeling. Diet was either administered acutely (2 weeks) or extended (8 weeks) to gauge the length of challenge necessary for remodeling. Additionally, platelet depletion allowed for the assessment of platelet relevance in PVAT leukocyte remodeling. Abdominal PVAT (aPVAT) and thoracic PVAT (tPVAT) were then isolated and leukocyte composition evaluated by flow cytometry. Compared to control, Western diet alone did not significantly impact PVAT leukocyte composition for either diet length. Platelet depletion, independent of diet, significantly disrupted PVAT leukocyte content with monocytes/macrophages most impacted. Furthermore, tPVAT appeared more sensitive to platelet depletion than aPVAT, providing novel evidence of platelet regulation of leukocyte composition within PVAT depots. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

27 pages, 2509 KiB  
Review
Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection
by Freja A. Warner van Dijk, Kirstie M. Bertram, Thomas R. O’Neil, Yuchen Li, Daniel J. Buffa, Andrew N. Harman, Anthony L. Cunningham and Najla Nasr
Viruses 2025, 17(1), 105; https://doi.org/10.3390/v17010105 - 14 Jan 2025
Viewed by 1464
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation [...] Read more.
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV. Full article
(This article belongs to the Special Issue The Role of Dendritic Cells and Macrophages in HIV Infection)
Show Figures

Figure 1

15 pages, 3655 KiB  
Article
Truncated NS1 Influenza A Virus Induces a Robust Antigen-Specific Tissue-Resident T-Cell Response and Promotes Inducible Bronchus-Associated Lymphoid Tissue Formation in Mice
by Anna-Polina Shurygina, Marina Shuklina, Olga Ozhereleva, Ekaterina Romanovskaya-Romanko, Sofia Kovaleva, Andrej Egorov, Dmitry Lioznov and Marina Stukova
Vaccines 2025, 13(1), 58; https://doi.org/10.3390/vaccines13010058 - 10 Jan 2025
Viewed by 1208
Abstract
Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.), are unable to antagonise the innate immune response. This [...] Read more.
Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.), are unable to antagonise the innate immune response. This creates a self-adjuvant effect enhancing heterologous protection by inducing a robust CD8+ T-cell response together with immunoregulatory mechanisms. However, the effects of NS1 modifications on T-follicular helper (Tfh) and B-cell responses remain less understood. Methods: C57bl/6 mice were immunised intranasally with 10 μL of either an influenza virus containing a truncated NS1 protein (PR8/NS124), a cold-adapted influenza virus with a full-length NS1 (caPR8/NSfull), or a wild-type virus (PR8/NSfull). Immune responses were assessed on days 8 and 28 post-immunisation by flow cytometry, ELISA, and HAI assay. Results: In this study, we demonstrate that intranasal immunisation with PR8/NS124 significantly increases tissue-resident CD4+ and CD8+ T cells in the lungs and activates Tfh cells in regional lymph nodes as early as day 8 post-immunisation. These effects are not observed in mice immunised with caPR8/NSfull or PR8/NSfull. Notably, PR8/NS124 immunisation also leads to the development of inducible bronchus-associated lymphoid tissue (iBALT) in the lungs by day 28, characterised by the presence of antigen-specific Tfh cells and GL7+Fas+ germinal centre B cells. Conclusions: Our findings further underscore the potential of NS1-truncated influenza viruses to drive robust mucosal immune responses and enhance vaccine efficacy. Full article
(This article belongs to the Special Issue The Recent Development of Influenza Vaccine: 2nd Edition)
Show Figures

Figure 1

15 pages, 3560 KiB  
Article
Gut Microbiota Regulates the Homeostasis of Dendritic Epidermal T Cells
by Jinwoo Chung, Joo-Chan Lee, Hanna Oh, Yesung Kim, Suin Lim, Chanu Lee, Yoon-Gyu Shim, Eun-Chong Bang and Jea-Hyun Baek
Life 2024, 14(12), 1695; https://doi.org/10.3390/life14121695 - 21 Dec 2024
Viewed by 1259
Abstract
Dendritic epidermal T cells (DETCs) are a γδ T cell subset residing in the skin epidermis. Although they have been known for decades, the fate of DETCs has largely remained enigmatic. Recent studies have highlighted the relationship between the gut microbiome and γδ [...] Read more.
Dendritic epidermal T cells (DETCs) are a γδ T cell subset residing in the skin epidermis. Although they have been known for decades, the fate of DETCs has largely remained enigmatic. Recent studies have highlighted the relationship between the gut microbiome and γδ T cells in various epithelial and non-epithelial tissues, such as the small intestine, lung, liver, gingiva, and testis. While the skin microbiota has been shown to impact skin γδ T cells, a direct relationship between the gut microbiota and DETCs remains unexplored. In this study, we investigated whether DETCs are regulated by the gut microbiota in the steady-state skin epidermis. We examined the occurrence of DETCs in Balb/c mice, which have a skin epidermis barely populated with DETCs, compared to C57BL/6 mice, under different housing conditions. Our findings reveal that local skin inflammation markedly increases DETC numbers in the ear epidermis of Balb/c mice and that DETCs are activated by environmental factors. Furthermore, an investigation of the gut microbiota under different housing conditions revealed distinct microbial compositions and functional profiles. Taken together, these results suggest a strong connection between DETCs and gut microbiota. Full article
(This article belongs to the Special Issue Microbiota in Health and Disease)
Show Figures

Figure 1

Back to TopTop