Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (644)

Search Parameters:
Keywords = tipping elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1708 KB  
Article
Response of a Cantilever Beam Equipped with a Particle Damper Subjected to Impact Load
by Mehrdad Karimipetanlar and Usama El Shamy
Buildings 2025, 15(19), 3463; https://doi.org/10.3390/buildings15193463 - 25 Sep 2025
Abstract
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with [...] Read more.
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with bonded particles through DEM. Computational simulations were conducted to explore the influence of different particle damper porosities and positions along the beam’s length. It was observed that reducing the particle damper’s porosity decreases the beam’s displacement. The impact force was significantly influenced by the porosity, where having lower porosities resulted in higher impact forces. In addition, the time intervals between sub-impacts were also affected by the damper’s porosity, showing a reduction as the porosity of the damper decreases. The unique type of particle damper used in this study contained sand grains as fillers and was capable of pressurizing the sand within its housing. This feature was utilized to investigate the effect of different initial pressures on the beam’s response. It was revealed that an increase in initial pressure reduces the beam’s displacement. Based on the results obtained, the optimal location for the particle damper was determined to be at the point where displacement reduction is required. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

15 pages, 1362 KB  
Article
Effects of Malic Acid on Cadmium Uptake and Translocation and Essential Element Accumulation in Rice
by Shuo Zhang, Yiteng Zhang, Guoyi Lv, Tianqi Liu, Zhongqi Liu, Yubo Jiang, Yubo Hao, Yang Yu, Wenjun Dong and Chunrong Qian
Toxics 2025, 13(10), 811; https://doi.org/10.3390/toxics13100811 - 24 Sep 2025
Viewed by 57
Abstract
Cadmium (Cd) contamination poses a serious threat to rice safety and productivity. This study investigated the potential of malic acid (MA), a key metabolic organic acid, to mitigate Cd toxicity and its genotype-dependent effects on cadmium uptake and essential element homeostasis in rice. [...] Read more.
Cadmium (Cd) contamination poses a serious threat to rice safety and productivity. This study investigated the potential of malic acid (MA), a key metabolic organic acid, to mitigate Cd toxicity and its genotype-dependent effects on cadmium uptake and essential element homeostasis in rice. Using hydroponic experiments with multiple genotypes, we found that MA application (0.5–1.5 mmol·L−1) significantly reduced Cd accumulation in both roots and shoots, with the most effective reduction (up to 68.0%) achieved at 1.5 mmol·L−1. Notably, genotype X24 was a low-Cd accumulator, while genotypes 20, 58, and 65 were high accumulators. Beyond Cd reduction, this study reveals the profound and genotype-specific modulation of nutrient homeostasis by MA, including consistent suppression of K and enhancement of Ca across genotypes, and highly divergent responses in Mg, Mn, Fe, and Zn accumulation. Furthermore, MA dramatically alleviated Cd-induced inhibition of root morphology, particularly in the high-Cd genotype 58, increasing root length and tip number by 42.8% and 57.8%, respectively. Our results provide novel insights into the genotype-dependent rebalancing of essential elements under MA amendment, highlighting the crucial role of genetic background in plant responses to organic acid treatments. These findings provide a mechanistic basis for developing MA-based foliar conditioners and genotype-specific strategies for managing Cd contamination in rice. Full article
Show Figures

Graphical abstract

24 pages, 16914 KB  
Article
Unsteady Aerodynamic Errors in BEM Predictions Under Yawed Flow: CFD-Based Insights into Flow Structures for the NREL Phase VI Rotor
by Jiahong Hu, Hui Yang and Jiaxin Yuan
Energies 2025, 18(18), 5027; https://doi.org/10.3390/en18185027 - 22 Sep 2025
Viewed by 215
Abstract
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational [...] Read more.
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational fluid dynamics (CFD) simulations for the NREL Phase VI wind turbine across a range of inflow velocities (7–15 m/s) and yaw angles (0°60°). A normalized absolute error metric, referenced to experimental measurements, is employed to quantify prediction discrepancies at different yaw conditions, wind speeds, and spanwise blade locations. Results indicate that the corrected BEM method maintains good agreement with measurements under non-yawed attached flow, with errors within 2%, but its accuracy declines substantially in separated and yawed flow regimes, where errors can exceed 20% at high yaw angles (e.g., 60°) and low tip-speed ratios. CFD flow-field visualizations, including vorticity and Q-criterion iso-surfaces, reveal that yawed inflow strengthens vortex interactions on the leeward side and generates Coriolis-driven spanwise vortex structures, promoting stall progression from tip to root. These unsteady phenomena induce load fluctuations that are not captured by steady-state BEM formulations. Based on these insights, future studies could incorporate vortex structure and spanwise flow features extracted from CFD into unsteady correction models for BEM, enhancing prediction robustness under complex operating conditions. Full article
Show Figures

Figure 1

19 pages, 5029 KB  
Article
Toppling Deformed Rock Mass Hydraulic Fracturing Analysis Based on Extended Finite Elements
by Haibin Pan and Menglong Dong
Appl. Sci. 2025, 15(18), 10177; https://doi.org/10.3390/app151810177 - 18 Sep 2025
Viewed by 174
Abstract
Natural cracks are prone to form in toppling deformed rock masses during the toppling process, and these cracks are likely to undergo hydraulic fracturing failure under the action of high water head. This paper leverages the advantage of the extended finite element method [...] Read more.
Natural cracks are prone to form in toppling deformed rock masses during the toppling process, and these cracks are likely to undergo hydraulic fracturing failure under the action of high water head. This paper leverages the advantage of the extended finite element method (XFEM) in simulating crack propagation, considers the effect of water pressure on the crack surface, conducts numerical simulation and analysis on the hydraulic fracturing of cracks in toppling deformed rock masses, and studies the influences of different crack lengths, rock formation dip angles and crack surface water pressures on crack propagation. The main conclusions are as follows: (1) After hydraulic fracturing occurs in the rock mass, with the continuous rise in the water level, the crack propagation rate is slow first and then fast. When the water pressure is low, microcracks extend slowly; when the water pressure reaches a certain level, the rock formation cracks expand rapidly and eventually fracture. (2) Under the same water pressure, rock formations with longer initial crack lengths are more prone to hydraulic fracturing, and their cracks expand faster; rock formations with a dip angle of 45° are more likely to undergo hydraulic fracturing than those with other dip angles, while rock formations with a dip angle close to 90° are hardly susceptible to hydraulic fracturing. (3) The instability failure mechanism of hydraulic fracturing in toppling deformed rock masses is tension shear action. As the fissure water pressure rises, the tensile stress at the crack tip will increase sharply. Once new microcracks appear in the initial crack, it will be in an unstable expansion state. Full article
Show Figures

Figure 1

17 pages, 5592 KB  
Article
Experimental and Numerical Analysis of the Collapse Behaviour of a Cracked Box Girder Under Bidirectional Cyclic Bending Moments
by Lei Ao, Fuyou Li, Bin Liu, Nan Zhao and Junlin Deng
J. Mar. Sci. Eng. 2025, 13(9), 1802; https://doi.org/10.3390/jmse13091802 - 17 Sep 2025
Viewed by 229
Abstract
This study presents an integrated experimental and numerical investigation into the collapse characteristics of a cracked box girder subjected to bidirectional cyclic bending moments. An experimental test involving a box girder specimen with a prefabricated transverse crack on the deck panel is conducted [...] Read more.
This study presents an integrated experimental and numerical investigation into the collapse characteristics of a cracked box girder subjected to bidirectional cyclic bending moments. An experimental test involving a box girder specimen with a prefabricated transverse crack on the deck panel is conducted under four-point bending to evaluate the influence of cracking on ultimate strength under cyclic loading. The findings are reported through load–displacement curves, strain measurements, and observations of both global and localised structural failure modes, demonstrating strong consistency with finite element simulations conducted using ABAQUS software (version 2022). The results reveal that cyclic loading prior to ultimate capacity induces negligible stiffness reduction in the box girder structure, consistent with the structural behaviour under monotonic loading. The initial failure mechanism is attributed to local buckling of the deck plate, subsequently followed by significant plastic deformation around the crack tips, ultimately leading to global collapse. Parametric studies are carried out to evaluate the influence of key variables on the girder’s residual strength, such as crack length, cyclic load amplitude and pattern. Full article
Show Figures

Figure 1

18 pages, 7299 KB  
Article
Self-Repairing Polyurethane–Urea Coating for Wind Turbine Blades: Modeling and Analysis
by Yulin Sun, Leon Mishnaevsky, Katharina Koschek and Florian Sayer
Coatings 2025, 15(9), 1059; https://doi.org/10.3390/coatings15091059 - 10 Sep 2025
Viewed by 596
Abstract
This study investigates a UDETA-modified polyurethane–urea (PUU) self-healing coating for wind turbine blades, focusing on its ability to autonomously repair surface erosion damage under realistic environmental conditions. A multiphysics finite element model was developed to couple temperature, moisture, and stress effects on crack [...] Read more.
This study investigates a UDETA-modified polyurethane–urea (PUU) self-healing coating for wind turbine blades, focusing on its ability to autonomously repair surface erosion damage under realistic environmental conditions. A multiphysics finite element model was developed to couple temperature, moisture, and stress effects on crack healing, and a Gaussian process regression (GPR) model was trained on 35 experimental data points to predict the mobile fraction and healing thresholds with high accuracy (R2 = 0.79, MAE = 0.059). The diffusion coefficient of water in the PUU matrix was determined as 11.03 × 10−7 mm2/s, and stress-driven moisture accumulation at crack tips was shown to accelerate crack healing. Erichsen cupping test simulations were conducted to reproduce experimental crack patterns, demonstrating brittle behavior in dehydrated coatings with a Young’s modulus of 50 MPa and critical principal strains of 0.48. An exponential healing function was incorporated into the computational model and validated against experiments, predicting significant crack healing within 24 h of humidity exposure. These findings provide quantitative design criteria for self-healing coatings, enabling the selection of UDETA content, thickness, and curing strategies to extend wind turbine blade service life while reducing maintenance costs. Full article
Show Figures

Figure 1

14 pages, 5832 KB  
Article
Three-Dimensional Finite Element Comparison of Ballista Spring and Elastic Thread Systems in the Traction of Impacted Maxillary Canines: Implications for Anchorage Control
by Ali Furkan Karakoyunlu, Aysegül Gulec and Ozum Dasdemir Ozkan
Appl. Sci. 2025, 15(17), 9639; https://doi.org/10.3390/app15179639 - 2 Sep 2025
Viewed by 441
Abstract
Objectives: This study aimed to compare the biomechanical effects of Ballista Spring and Elastic Thread systems on impacted maxillary canines using three-dimensional finite element analysis (FEA). Materials and Methods: Finite element models were constructed from CBCT images of a human maxilla, incorporating cortical [...] Read more.
Objectives: This study aimed to compare the biomechanical effects of Ballista Spring and Elastic Thread systems on impacted maxillary canines using three-dimensional finite element analysis (FEA). Materials and Methods: Finite element models were constructed from CBCT images of a human maxilla, incorporating cortical bone, spongy bone, teeth, and periodontal ligament. Two orthodontic force application methods were simulated: Ballista Spring (0.016-inch stainless steel) and Elastic Thread (0.25 mm medical-grade latex). Both systems delivered a force of 150 g to the impacted canine. Stress distribution and initial displacement patterns were analyzed using ANSYS Workbench. Results: The Ballista Spring generated a more uniform stress distribution across the periodontal ligament and cortical bone, with a maximum von Mises stress of 0.0042 MPa. The impacted canine exhibited an initial displacement of 0.015 μm, primarily in the vertical and distal directions, indicating a controlled movement path. In contrast, the Elastic Thread showed a more concentrated stress pattern with a maximum von Mises stress of 0.0035 MPa, and the impacted canine experienced 0.013 μm of displacement, accompanied by greater lateral deviation and buccal tipping of the adjacent teeth. The Ballista Spring induced higher stress levels on anchorage teeth—particularly the first molars and premolars—while the Elastic Thread exerted more localized stress around the impacted canine and adjacent structures. All observed stress values remained within physiological thresholds, indicating no immediate risk of tissue damage. Conclusions: Both systems were effective in facilitating the eruption of the impacted canines. However, the Ballista Spring provided more favorable stress distribution and controlled displacement, making it suitable for complex cases requiring anchorage preservation. The Elastic Thread, while less biomechanically efficient, remained a practical and cost-effective alternative in patients with adequate periodontal support. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Bioengineering: New Trends and Perspectives)
Show Figures

Figure 1

24 pages, 1729 KB  
Article
Performance Optimization of Shrouded Rotors: Fixed vs. Variable Pitch in Hover and Forward Flight
by Abdallah Dayhoum, Alejandro Ramirez-Serrano and Robert J. Martinuzzi
Appl. Sci. 2025, 15(17), 9594; https://doi.org/10.3390/app15179594 - 31 Aug 2025
Viewed by 450
Abstract
This paper presents a comprehensive study on the aerodynamic design, analytical modeling, and computational validation of shrouded rotor systems, encompassing both fixed-pitch and variable-pitch configurations in hover and forward flight. An analytical framework based on Blade Element Momentum Theory is developed and validated [...] Read more.
This paper presents a comprehensive study on the aerodynamic design, analytical modeling, and computational validation of shrouded rotor systems, encompassing both fixed-pitch and variable-pitch configurations in hover and forward flight. An analytical framework based on Blade Element Momentum Theory is developed and validated against Computational Fluid Dynamics simulations employing the Multiple Reference Frame method in ANSYS Fluent. A 16-inch shroud is designed through a four-step procedure considering tip clearance, the diffuser expansion ratio, and the inlet lip radius, and multiple rotor configurations are optimized using genetic algorithms. The results show strong agreement between analytical predictions and Computational Fluid Dynamics, with thrust predictions across operating conditions. In hover, variable-pitch rotors achieve comparable thrust–power performance to fixed-pitch rotors, despite requiring only a single optimized geometry; performance variations are achieved through pitch adjustment. In forward flight, variable-pitch rotors maintain high efficiency over a broader range of advance ratios, whereas fixed-pitch rotors exhibit peak efficiency only at a specific design point. These findings highlight the superior adaptability of variable-pitch rotors for missions requiring efficient operation across both hover and forward flight and demonstrate the reliability of the proposed analytical model as a rapid design tool. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

16 pages, 578 KB  
Systematic Review
Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review
by Alessandra Putrino, Gaia Bompiani, Francesco Aristei, Valerio Fornari, Ludovico Massafra, Roberto Uomo and Angela Galeotti
Appl. Sci. 2025, 15(17), 9514; https://doi.org/10.3390/app15179514 - 29 Aug 2025
Viewed by 417
Abstract
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely [...] Read more.
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely understood. This scoping review aims to synthesize and critically examine the recent body of evidence derived from finite element analysis (FEA) studies investigating the performance of clear aligners in managing transverse discrepancies and controlling tooth movement. It considered studies published up to April 2025. All included FEA studies assumed dental and bone tissues as linearly elastic, homogeneous, and isotropic, unless otherwise specified. Five in silico studies were included, all employing three-dimensional FEA models to assess the influence of various clinical and design parameters, such as aligner thickness, movement sequence, attachment configuration, and torque compensation. The findings consistently show that movement protocols involving alternating activation patterns and specific attachment designs can significantly improve the efficiency of maxillary expansion, while reducing undesired tipping or anchorage loss. Additionally, greater aligner thicknesses were generally associated with increased force delivery and more pronounced tooth displacement. Although FEA provides a powerful tool for visualizing stress distribution and predicting mechanical responses under controlled conditions, the lack of standardized force application and limited clinical validation remain important limitations. These findings underscore the potential of optimized aligner protocols to enhance treatment outcomes, but they also highlight the need for complementary in vivo studies to confirm their clinical relevance and guide evidence-based practice. Full article
(This article belongs to the Special Issue Advances in Orthodontic Treatment, 2nd Edition)
Show Figures

Figure 1

19 pages, 5379 KB  
Article
Geometric Coupling Effects of Multiple Cracks on Fracture Behavior: Insights from Discrete Element Simulations
by Shuangping Li, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Intell. Infrastruct. Constr. 2025, 1(2), 6; https://doi.org/10.3390/iic1020006 - 25 Aug 2025
Viewed by 391
Abstract
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to [...] Read more.
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety. Full article
Show Figures

Figure 1

17 pages, 5917 KB  
Article
Finite Element Simulation and Parametric Analysis of Load–Displacement Characteristics of Diaphragm Springs in Commercial Vehicle Clutches
by Ming Cheng, Zhen Shi, Jianhui Zhang and Pingxiang Ming
Symmetry 2025, 17(9), 1378; https://doi.org/10.3390/sym17091378 - 23 Aug 2025
Viewed by 526
Abstract
Diaphragm springs, as critical components in commercial vehicle clutch assemblies, directly determine the clutch’s working performance. The design of diaphragm springs, which possess a distinct symmetrical structure that underpins their mechanical behavior, centers on obtaining the large-end nonlinear load–displacement curve—a typical large deformation-induced [...] Read more.
Diaphragm springs, as critical components in commercial vehicle clutch assemblies, directly determine the clutch’s working performance. The design of diaphragm springs, which possess a distinct symmetrical structure that underpins their mechanical behavior, centers on obtaining the large-end nonlinear load–displacement curve—a typical large deformation-induced nonlinear problem. Traditional design relies on the A-L formula, but studies show finite element analysis (FEA) yields results closer to actual measurements. This study established an FEA model of the diaphragm spring’s disc spring (excluding separation fingers) and validated its correctness by comparing it with the A-L formula. Then, using FEA on models with separation fingers, it analyzed factors influencing the large-end load–displacement characteristics. Leveraging the inherent symmetry of the diaphragm spring structure, particularly the symmetrical distribution of separation fingers, the analysis process efficiently captures uniform mechanical responses during deformation, while this symmetric arrangement also ensures balanced load distribution during clutch operation, a critical factor for stabilizing the load–displacement curve. Results indicate the separation finger root is a key factor, with larger root holes, square holes (compared to circular ones), and more separation fingers reducing stiffness to effectively adjust the curve; in contrast, the tip and length of separation fingers have little impact, making the latter unsuitable for design adjustments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

44 pages, 1023 KB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Cited by 2 | Viewed by 1871
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 584
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

25 pages, 2743 KB  
Article
High Fidelity 2-Way Dynamic Fluid-Structure-Interaction (FSI) Simulation of Wind Turbines Based on Arbitrary Hybrid Turbulence Model (AHTM)
by Erkhan Sarsenov, Sagidolla Batay, Aigerim Baidullayeva, Yong Zhao, Dongming Wei and Eddie Yin Kwee Ng
Energies 2025, 18(16), 4401; https://doi.org/10.3390/en18164401 - 18 Aug 2025
Viewed by 463
Abstract
This work presents a high-fidelity two-way coupled Fluid-Structure Interaction (FSI) simulation framework for wind turbine blades, developed using the Arbitrary Hybrid Turbulence Modelling (AHTM) implemented through Very Large Eddy Simulation (VLES) in the DAFoam solver. By integrating VLES with the Toolkit for the [...] Read more.
This work presents a high-fidelity two-way coupled Fluid-Structure Interaction (FSI) simulation framework for wind turbine blades, developed using the Arbitrary Hybrid Turbulence Modelling (AHTM) implemented through Very Large Eddy Simulation (VLES) in the DAFoam solver. By integrating VLES with the Toolkit for the Analysis of Composite Structures (TACS) structural solver via the OpenMDAO/MPhys framework, this work aims to accurately model the complex aeroelastic characteristics of wind turbines, specifically focusing on the NREL Phase VI wind turbine. The numerical model accounts for the effects of transient, turbulent, and unsteady aerodynamic loading, incorporating the impact of structural deflections. A comparison of the calculated results with experimental data demonstrates strong agreement in key performance metrics, including blade tip displacements, power output, and pressure distribution. This alignment confirms that the proposed model is effective at predicting wind turbine performance. One of the significant advantages of this study is the integration of advanced turbulence modeling with shell element structural analysis, enhancing the design and performance predictions of modern wind turbines. Although computationally intensive, this approach marks a significant advancement in accurately simulating the aeroelastic response of turbines, paving the way for optimized and more efficient wind energy systems. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics and Wind Power Systems: 2nd Edition)
Show Figures

Figure 1

21 pages, 3166 KB  
Article
Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine
by Xiangqian Zhu, Siming Yang, Zhiqiang Yang, Chang Cai, Lei Zhang, Qing’an Li and Jin-Hwan Choi
Energies 2025, 18(16), 4362; https://doi.org/10.3390/en18164362 - 15 Aug 2025
Viewed by 462
Abstract
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and [...] Read more.
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and aerodynamic center along the blade span and enables efficient computation of 3D nonlinear deformation using 1D beam elements. Material and structural function equations are established based on actual 2D airfoil sections, and the chord vector is obtained from leading and trailing edge coordinates to calculate the angle of attack and aerodynamic loads. Torsional stiffness data defined at the shear center is corrected to the mass center using the axis shift theorem, ensuring a unified principal axis model. The proposed model is employed to simulate the dynamic behavior of wind turbine blades under both shutdown and operating conditions, and the results are compared to those obtained from the commercial software Bladed. Under shutdown conditions, the blade tip deformation error in the y-direction remains within 5% when subjected only to gravity, and within 8% when wind loads are applied perpendicular to the rotor plane. Under operating conditions, although simplified aerodynamic calculations, structural nonlinearity, and material property deviations introduce greater discrepancies, the x-direction deformation error remains within 15% across different wind speeds. These results confirm that the model maintains reasonable accuracy in capturing blade deformation characteristics and can provide useful support for early-stage dynamic analysis. Full article
Show Figures

Figure 1

Back to TopTop