Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,271)

Search Parameters:
Keywords = time-domain features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8387 KB  
Article
Machine Learning as a Lens on NWP ICON Configurations Validation over Southern Italy in Winter 2022–2023—Part I: Empirical Orthogonal Functions
by Davide Cinquegrana and Edoardo Bucchignani
Atmosphere 2026, 17(2), 132; https://doi.org/10.3390/atmos17020132 - 26 Jan 2026
Abstract
Validation of ICON model configurations optimized over a limited domain is essential before accepting new semi-empirical parameters that influence the behavior of subgrid-scale schemes. Because such parameters can modify the dynamics of a numerical weather prediction (NWP) model in highly nonlinear ways, we [...] Read more.
Validation of ICON model configurations optimized over a limited domain is essential before accepting new semi-empirical parameters that influence the behavior of subgrid-scale schemes. Because such parameters can modify the dynamics of a numerical weather prediction (NWP) model in highly nonlinear ways, we analyze one season of forecasts (December 2022, January and February 2023) generated with the NWP ICON-LAM through the lens of machine learning–based diagnostics as a complement to traditional evaluation metrics. The goal is to extract physically interpretable information on the model behavior induced by the optimized parameters. This work represents the first part of a wider study exploring machine learning tools for model validation, focusing on two specific approaches: Empirical Orthogonal Functions (EOFs), which are widely used in meteorology and climate science, and autoencoders, which are increasingly adopted for their nonlinear feature extraction capability. In this first part, EOF analysis is used as the primary tool to decompose weather fields from observed reanalysis and forecast datasets. Hourly 2-m temperature forecasts for winter 2022–2023 from multiple regional ICON configurations are compared against downscaled ERA5 data and in situ observations from ground station. EOF analyses revealed that the optimized configurations demonstrate a high skill in predicting surface temperature. From the signal error decomposition, the fourth EOF mode is effective particularly during night-time hours, and contributes to enhancing the performance of ICON. Analyses based on autoencoders will be presented in a companion paper (Part II). Full article
(This article belongs to the Special Issue Highly Resolved Numerical Models in Regional Weather Forecasting)
Show Figures

Figure 1

23 pages, 60825 KB  
Article
A Compact Aperture-Slot Antipodal Vivaldi Antenna for GPR Systems
by Feng Shen, Ninghe Yang, Chao Xia, Tong Wan and Jiaheng Kang
Sensors 2026, 26(3), 810; https://doi.org/10.3390/s26030810 - 26 Jan 2026
Abstract
Compact antennas with ultra-wideband operation and stable radiation are essential for portable and airborne ground-penetrating radar (GPR), yet miniaturization in the sub 3 GHz region is strongly constrained by the wavelength-driven aperture requirement and often leads to impedance discontinuity and radiation instability. This [...] Read more.
Compact antennas with ultra-wideband operation and stable radiation are essential for portable and airborne ground-penetrating radar (GPR), yet miniaturization in the sub 3 GHz region is strongly constrained by the wavelength-driven aperture requirement and often leads to impedance discontinuity and radiation instability. This paper presents a compact aperture-slot antipodal Vivaldi antenna (AS-AVA) designed under a radiation stability-driven co-design strategy, where the miniaturization features are organized along the energy propagation path from the feed to the flared aperture. The proposed structure combines (i) aperture-slot current-path engineering with controlled meandering to extend the low-frequency edge, (ii) four tilted rectangular slots near the aperture to restrain excessive edge currents and suppress sidelobes, and (iii) back-loaded parasitic patches for coupling-based impedance refinement to eliminate residual mismatch pockets. A fabricated prototype on FR-4 (thickness 1.93 mm) occupies 111.15×156.82 mm2 and achieves a measured S11 below 10 dB from 0.63 to 2.03 GHz (fractional bandwidth 105.26%). The measured realized gain increases from 2.1 to 7.5 dBi across the operating band, with stable far-field radiation patterns; the group delay measured over 0.6–2.1 GHz remains within 4–8 ns, indicating good time-domain fidelity for stepped-frequency continuous-wave (SFCW) operation. Finally, the antenna pair is integrated into an SFCW-GPR testbed and validated in sandbox and outdoor experiments, where buried metallic targets and a subgrade void produce clear B-scan signatures after standard processing. These results confirm that the proposed AS-AVA provides a practical trade-off among miniaturization, broadband matching, and radiation robustness for compact sub 3 GHz GPR platforms. Full article
Show Figures

Figure 1

21 pages, 514 KB  
Review
Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture
by Avishag Shemesh, Gerry Leisman and Yasha Jacob Grobman
Brain Sci. 2026, 16(2), 131; https://doi.org/10.3390/brainsci16020131 - 26 Jan 2026
Abstract
In the last decade, the interdisciplinary field of neuroarchitecture has grown significantly, revealing measurable links between architectural features and human neural processing. This review synthesizes current research at the nexus of neuroscience and architecture, with a focus on how emerging virtual reality (VR) [...] Read more.
In the last decade, the interdisciplinary field of neuroarchitecture has grown significantly, revealing measurable links between architectural features and human neural processing. This review synthesizes current research at the nexus of neuroscience and architecture, with a focus on how emerging virtual reality (VR) and artificial intelligence (AI) technologies are being utilized to understand and enhance human spatial experience. We systematically reviewed literature from 2015 to 2025, identifying key empirical studies and categorizing advances into three themes: core components of neuroarchitectural research; the use of physiological sensors (e.g., EEG, heart rate variability) and virtual reality to gather data on occupant responses; and the integration of neuroscience with AI-driven analysis. Findings indicate that built environment elements (e.g., geometry, curvature, lighting) influence brain activity in regions governing emotion, stress, and cognition. VR-based experiments combined with neuroimaging and physiological measures enable ecologically valid, fine-grained analysis of these effects, while AI techniques facilitate real-time emotion recognition and large-scale pattern discovery, bridging design features with occupant emotional responses. However, the current evidence base remains nascent, limited by small, homogeneous samples and fragmented data. We propose a four-domain framework (somatic, psychological, emotional, cognitive-“SPEC”) to guide future research. By consolidating methodological advances in VR experimentation, physiological sensing, and AI-based analytics, this review provides an integrative roadmap for replicable and scalable neuroarchitectural studies. Intensified interdisciplinary efforts leveraging AI and VR are needed to build robust, diverse datasets and develop neuro-informed design tools. Such progress will pave the way for evidence-based design practices that promote human well-being and cognitive health in built environments. Full article
(This article belongs to the Section Environmental Neuroscience)
Show Figures

Figure 1

18 pages, 7252 KB  
Article
Genome-Wide Analysis of LEA Gene Family in Rosa chinensis ‘Old Blush’ and Cold-Induced Expression Patterns in Two Species
by Longzhen Li, Huayang Li, Shiyi Wang, Haining Sun, Yaping Kou, Ruidong Jia, Xin Zhao, Linbo Xu, Junjie Duan, Hong Ge and Shuhua Yang
Horticulturae 2026, 12(2), 136; https://doi.org/10.3390/horticulturae12020136 - 25 Jan 2026
Abstract
Late embryogenesis abundant (LEA) proteins play an essential role in plant growth under various abiotic stresses. In this study, we identified 23 RcLEA genes in Rosa chinensis ‘Old Blush’ and subsequently grouped them into eight clades according to phylogenetic relationships and conserved domain [...] Read more.
Late embryogenesis abundant (LEA) proteins play an essential role in plant growth under various abiotic stresses. In this study, we identified 23 RcLEA genes in Rosa chinensis ‘Old Blush’ and subsequently grouped them into eight clades according to phylogenetic relationships and conserved domain features by bioinformatics methods. And conserved protein motifs and gene structure are also analyzed. The cis-regulatory elements of RcLEA promoter are enriched with cis-regulatory elements relevant to abiotic stress adaptation. Comparative transcriptomics between two species revealed tissue-specific and cold-induced expression differences, highlighting distinct functional roles of LEA genes in growth and abiotic stress tolerance between Rosa chinensis ‘Old Blush’ and Rosa beggeriana. Furthermore, Quantitative Real-Time PCR (qRT-PCR validation confirmed divergent cold-responsive expression profiles of LEA genes in R. chinensis ‘Old Blush’ compared with the highly cold-tolerant R. beggeriana in four LEA homologous genes. These findings indicated that LEA acts as a cold-response gene in roses and provide foundation to breed cold-tolerant varieties of roses. Full article
(This article belongs to the Special Issue Genetic Breeding and Germplasm Resources of Fruit and Vegetable Crops)
Show Figures

Figure 1

16 pages, 2352 KB  
Technical Note
Airborne SAR Imaging Algorithm for Ocean Waves Oriented to Sea Spike Suppression
by Yawei Zhao, Yongsheng Xu, Yanlei Du and Jinsong Chong
Remote Sens. 2026, 18(3), 397; https://doi.org/10.3390/rs18030397 - 24 Jan 2026
Viewed by 43
Abstract
Synthetic aperture radar (SAR) is widely used in the field of ocean remote sensing. However, SAR images are usually affected by sea spikes, which appear as strong echo and azimuth defocus characteristics. The texture features of ocean waves in SAR images are submerged [...] Read more.
Synthetic aperture radar (SAR) is widely used in the field of ocean remote sensing. However, SAR images are usually affected by sea spikes, which appear as strong echo and azimuth defocus characteristics. The texture features of ocean waves in SAR images are submerged by sea spikes, making them weak or even invisible. This seriously affects the further applications of SAR technology in ocean remote sensing. To address this issue, an airborne SAR imaging algorithm for ocean waves oriented to sea spike suppression is proposed in this paper. The non-stationary characteristics of sea spikes are taken into account in the proposed algorithm. The SAR echo data is transformed into the time–frequency domain by short-time Fourier transform (STFT). And the echo signals of sea spikes are suppressed in the time–frequency domain. Then, the ocean waves are imaged in focus by applying focus settings. In order to verify the effectiveness of the proposed algorithm, airborne SAR data was processed using the proposed algorithm, including SAR data with completely invisible waves and other data with weakly visible waves under sea spike influence. Through analyzing the ocean wave spectrum and imaging quality, it is confirmed that the proposed algorithm can significantly suppress sea spikes and improve the texture features of ocean waves in SAR images. Full article
(This article belongs to the Special Issue Microwave Remote Sensing on Ocean Observation)
24 pages, 7094 KB  
Article
Research on Pilot Workload Identification Based on EEG Time Domain and Frequency Domain
by Weiping Yang, Yixuan Li, Lingbo Liu, Haiqing Si, Haibo Wang, Ting Pan, Yan Zhao and Gen Li
Aerospace 2026, 13(2), 114; https://doi.org/10.3390/aerospace13020114 - 23 Jan 2026
Viewed by 136
Abstract
Pilot workload is a critical factor influencing flight safety. This study collects both subjective and objective data on pilot workload using the NASA-TLX questionnaire and electroencephalogram acquisition systems during simulated flight tasks. The raw EEG signals are denoised through preprocessing techniques, and relevant [...] Read more.
Pilot workload is a critical factor influencing flight safety. This study collects both subjective and objective data on pilot workload using the NASA-TLX questionnaire and electroencephalogram acquisition systems during simulated flight tasks. The raw EEG signals are denoised through preprocessing techniques, and relevant EEG features are extracted using time-domain and frequency-domain analysis methods. One-way ANOVA is employed to examine the statistical differences in EEG indicators under varying workload levels. A fusion model based on CNN-Bi-LSTM is developed to train and classify the extracted EEG features, enabling accurate identification of pilot workload states. The results demonstrate that the proposed hybrid model achieves a recognition accuracy of 98.2% on the test set, confirming its robustness. Additionally, under increased workload conditions, frequency-domain features outperform time-domain features in discriminative power. The model proposed in this study effectively recognizes pilot workload levels and offers valuable insights for civil aviation safety management and pilot training programs. Full article
(This article belongs to the Special Issue Human Factors and Performance in Aviation Safety)
16 pages, 1660 KB  
Article
Filling the Gaps Between the Shown and the Known—On a Hybrid AI Model Based on ACT-R to Approach Mallard Behavior
by Daniel Einarson
AI 2026, 7(2), 38; https://doi.org/10.3390/ai7020038 - 23 Jan 2026
Viewed by 85
Abstract
Today, machine learning (ML) is generally considered a potent and efficient tool for addressing studies in various diverse domains, including image processing and event prediction on a timescale. ML represents complex relations between features, and these mappings between such features may be applied [...] Read more.
Today, machine learning (ML) is generally considered a potent and efficient tool for addressing studies in various diverse domains, including image processing and event prediction on a timescale. ML represents complex relations between features, and these mappings between such features may be applied in simulations of time-dependent events, such as the behavior of animals. Still, ML inherently strongly depends on extensive and consistent datasets, a fact that reveals both the benefits and drawbacks of ML. In the use of ML, insufficient or skewed data can limit the ability of algorithms to accurately predict or generalize possible states. To overcome this limitation, this work proposes an integrated hybrid approach that combines machine learning with methods from cognitive science, here especially inspired by the ACT-R model to approach cases of missing or unbalanced data. By incorporating cognitive processes such as memory, perception, and attention, the model accounts for the internal mechanisms of decision-making and environmental interaction where traditional ML methods fall short. This approach is particularly useful in representing states that are not directly observable or are underrepresented in the data, such as rare behavioral responses for animals, or adaptive strategies. Experimental results show that the combination of machine learning for data-driven analysis and cognitive ‘rule-based’ frameworks for filling in gaps provides a more comprehensive model of animal behavior. The findings suggest that this hybrid approach to simulation models can offer a more robust and consistent way to study complex, real-world phenomena, especially when data is inherently incomplete or unbalanced. Full article
15 pages, 3507 KB  
Article
Online Monitoring of Aerodynamic Characteristics of Fruit Tree Leaves Based on Strain-Gage Sensors
by Yanlei Liu, Zhichong Wang, Xu Dong, Chenchen Gu, Fan Feng, Yue Zhong, Jian Song and Changyuan Zhai
Agronomy 2026, 16(3), 279; https://doi.org/10.3390/agronomy16030279 - 23 Jan 2026
Viewed by 91
Abstract
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the [...] Read more.
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the canopy in real time. To address this, this study proposed an online monitoring method for the aerodynamic characteristics of fruit tree leaves using strain gauge sensors. The flexible strain gauge was affixed to the midribs of leaves from peach, pear and apple trees. Leaf deformations were captured with high-speed video recording (100 fps) alongside electrical signals in controlled wind fields. Bartlett low-pass filtering and Fourier transform were used to extract frequency-domain features spanning between 0 and 50 Hz. The AdaBoost decision tree model was used to evaluate classification performance across frequency bands. The results demonstrated high accuracy in identifying wind exposure (98%) for pear leaf and classifying the three leaf types (κ = 0.98) within the 4–6 Hz band. A comparison with the frame analysis of high-speed video recordings revealed a time error of 2 s in model predictions. This study confirms that strain gauge sensors combined with machine learning could efficiently monitor fruit tree leaf responses to external airflow in real time. It provides novel insights for optimizing wind-assisted spray parameters, reconstructing internal canopy wind field distributions and achieving precise pesticide application. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

25 pages, 4139 KB  
Article
Gain-Enhanced Correlation Fusion for PMSM Inter-Turn Faults Severity Detection Using Machine Learning Algorithms
by Vasileios I. Vlachou, Theoklitos S. Karakatsanis, Karolina Kudelina, Dimitrios E. Efstathiou and Stavros D. Vologiannidis
Machines 2026, 14(1), 134; https://doi.org/10.3390/machines14010134 - 22 Jan 2026
Viewed by 84
Abstract
Diagnosing faults in Permanent Magnet Synchronous Motors (PMSMs) is critical for ensuring their reliable operation, particularly in detecting internal short-circuit faults in the stator windings. These faults, such as inter-turn and inter-coil short circuits, can significantly affect motor performance and lead to costly [...] Read more.
Diagnosing faults in Permanent Magnet Synchronous Motors (PMSMs) is critical for ensuring their reliable operation, particularly in detecting internal short-circuit faults in the stator windings. These faults, such as inter-turn and inter-coil short circuits, can significantly affect motor performance and lead to costly downtime if not detected early. However, detecting these faults accurately, especially in the presence of operational noise and varying load conditions, remains a challenging task. To address this, a novel methodology is proposed for diagnosing and classifying fault severity in PMSMs using vibration and current data. The key innovation of the method is the combination of signal processing for both vibration and current data, to enhance fault detection by applying advanced feature extraction techniques such as root mean square (RMS), peak-to peak values, and spectral entropy in both time and frequency domains. Furthermore, a cooperative gain transformation is applied to amplify weak correlations between vibration and current signals, improving detection sensitivity, especially during early fault progression. In this study, the publicly available dataset on Mendeley, which consists of vibration and current measurements from three PMSMs with different power ratings of 1.0 kW, 1.5 kW, and 3.0 kW, was used. The dataset includes eight different levels of stator fault severity, ranging from 0% up to 37.66%, and covers normal operation, inter-coil short circuit, and inter-turn short circuit. The results demonstrate the effectiveness of the proposed methodology, achieving an accuracy of 96.6% in fault classification. The performance values for vibration and current measurements, along with the corresponding fault severities, validate the method’s ability to accurately detect faults across various operating conditions. Full article
(This article belongs to the Special Issue Fault Diagnostics and Fault Tolerance of Synchronous Electric Drives)
Show Figures

Figure 1

25 pages, 4564 KB  
Article
Research on Bearing Fault Diagnosis Method of the FPSO Soft Yoke Mooring System Based on Minimum Entropy Deconvolution
by Yanlin Wang, Jiaxi Zhang, Shanshan Sun, Zheliang Fan, Dayong Zhang, Ziguang Jia, Peng Zhang and Yi Huang
J. Mar. Sci. Eng. 2026, 14(2), 235; https://doi.org/10.3390/jmse14020235 - 22 Jan 2026
Viewed by 60
Abstract
The Soft Yoke Mooring (SYM) system is a critical single-point mooring method for Floating Production Storage and Offloading systems (FPSOs) in shallow waters. Its articulated thrust roller bearing operates long-term in harsh marine environments, making it prone to failure and difficult to diagnose. [...] Read more.
The Soft Yoke Mooring (SYM) system is a critical single-point mooring method for Floating Production Storage and Offloading systems (FPSOs) in shallow waters. Its articulated thrust roller bearing operates long-term in harsh marine environments, making it prone to failure and difficult to diagnose. To address the issues of non-stationary signals and fault features submerged in strong noise caused by the bearing’s non-rotational oscillatory motion, this paper proposes an adaptive improved diagnosis scheme based on Minimum Entropy Deconvolution (MED). By optimizing Finite Impulse Response (FIR) filter parameters to adapt to the oscillatory operating conditions and combining joint analysis of time-domain indicators and envelope spectra, precise identification of bearing faults is achieved. Research shows that this method effectively enhances fault impact components. After MED processing, the kurtosis value of the fault signal can be significantly increased from approximately 2.6 to over 8.6. Its effectiveness in noisy environments was verified through simulation. Experiments conducted on a 1:10 scale soft yoke model demonstrated that the MED denoising and filtering signal analysis method can effectively identify damage in the thrust roller bearing of the SYM system under marine conditions characterized by high noise and complex frequencies. This study provides an efficient and reliable method for fault diagnosis of non-rotational oscillatory bearings in complex marine environments, holding significant engineering application value. Full article
Show Figures

Figure 1

24 pages, 6118 KB  
Article
Effective Approach for Classifying EMG Signals Through Reconstruction Using Autoencoders
by Natalia Rendón Caballero, Michelle Rojo González, Marcos Aviles, José Manuel Alvarez Alvarado, José Billerman Robles-Ocampo, Perla Yazmin Sevilla-Camacho and Juvenal Rodríguez-Reséndiz
AI 2026, 7(1), 36; https://doi.org/10.3390/ai7010036 - 22 Jan 2026
Viewed by 48
Abstract
The study of muscle signal classification has been widely explored for the control of myoelectric prostheses. Traditional approaches rely on manually designed features extracted from time- or frequency-domain representations, which may limit the generalization and adaptability of EMG-based systems. In this work, an [...] Read more.
The study of muscle signal classification has been widely explored for the control of myoelectric prostheses. Traditional approaches rely on manually designed features extracted from time- or frequency-domain representations, which may limit the generalization and adaptability of EMG-based systems. In this work, an autoencoder-based framework is proposed for automatic feature extraction, enabling the learning of compact latent representations directly from raw EMG signals and reducing dependence on handcrafted features. A custom instrumentation system with three surface EMG sensors was developed and placed on selected forearm muscles to acquire signals associated with five hand movements from 20 healthy participants aged 18 to 40 years. The signals were segmented into 200 ms windows with 75% overlap. The proposed method employs a recurrent autoencoder with a symmetric encoder–decoder architecture, trained independently for each sensor to achieve accurate signal reconstruction, with a minimum reconstruction loss of 3.3×104V2. The encoder’s latent representations were then used to train a dense neural network for gesture classification. An overall efficiency of 93.84% was achieved, demonstrating that the proposed reconstruction-based approach provides high classification performance and represents a promising solution for future EMG-based assistive and control applications. Full article
(This article belongs to the Special Issue Transforming Biomedical Innovation with Artificial Intelligence)
Show Figures

Figure 1

45 pages, 1326 KB  
Article
Cross-Domain Deep Reinforcement Learning for Real-Time Resource Allocation in Transportation Hubs: From Airport Gates to Seaport Berths
by Zihao Zhang, Qingwei Zhong, Weijun Pan, Yi Ai and Qian Wang
Aerospace 2026, 13(1), 108; https://doi.org/10.3390/aerospace13010108 - 22 Jan 2026
Viewed by 31
Abstract
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally [...] Read more.
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally similar transportation scheduling problems. The framework integrates dual-level heterogeneous graph attention networks for separating constraint topology from domain-specific features, hypergraph-based constraint modeling for capturing high-order dependencies, and hierarchical policy decomposition that reduces computational complexity from O(mnT) to O(m+n+T). Evaluated on realistic simulators modeling airport gate assignment (Singapore Changi: 50 gates, 300–400 daily flights) and seaport berth allocation (Singapore Port: 40 berths, 80–120 daily vessels), DADRL achieves 87.3% resource utilization in airport operations and 86.3% in port operations, outperforming commercial solvers under strict real-time constraints (Gurobi-MIP with 300 s time limit: 85.1%) while operating 270 times faster (1.1 s versus 298 s per instance). Given unlimited time, Gurobi achieves provably optimal solutions, but DADRL reaches 98.7% of this optimum in 1.1 s, making it suitable for time-critical operational scenarios where exact solvers are computationally infeasible. Critically, policies trained exclusively on airport scenarios retain 92.4% performance when applied to ports without retraining, requiring only 800 adaptation steps compared to 13,200 for domain-specific training. The framework maintains 86.2% performance under operational disruptions and scales to problems three times larger than training instances with only 7% degradation. These results demonstrate that learned optimization principles can generalize across transportation scheduling problems sharing common constraint structures, enabling rapid deployment of AI-based scheduling systems across multi-modal transportation networks with minimal customization and reduced implementation costs. Full article
(This article belongs to the Special Issue Emerging Trends in Air Traffic Flow and Airport Operations Control)
Show Figures

Figure 1

21 pages, 1683 KB  
Article
Method of Estimating Wave Height from Radar Images Based on Genetic Algorithm Back-Propagation (GABP) Neural Network
by Yang Meng, Jinda Wang, Zhanjun Tian, Fei Niu and Yanbo Wei
Information 2026, 17(1), 109; https://doi.org/10.3390/info17010109 - 22 Jan 2026
Viewed by 16
Abstract
In the domain of marine remote sensing, the real-time monitoring of ocean waves is a research hotspot, which employs acquired X-band radar images to retrieve wave information. To enhance the accuracy of the classical spectrum method using the extracted signal-to-noise ratio (SNR) from [...] Read more.
In the domain of marine remote sensing, the real-time monitoring of ocean waves is a research hotspot, which employs acquired X-band radar images to retrieve wave information. To enhance the accuracy of the classical spectrum method using the extracted signal-to-noise ratio (SNR) from an image sequence, data from the preferred analysis area around the upwind is required. Additionally, the accuracy requires further improvement in cases of low wind speed and swell. For shore-based radar, access to the preferred analysis area cannot be guaranteed in practice, which limits the measurement accuracy of the spectrum method. In this paper, a method using extracted SNRs and an optimized genetic algorithm back-propagation (GABP) neural network model is proposed to enhance the inversion accuracy of significant wave height. The extracted SNRs from multiple selected analysis regions, included angles, and wind speed are employed to construct a feature vector as the input parameter of the GABP neural network. Considering the not-completely linear relationship of wave height to the SNR derived from radar images, the GABP network model is used to fit the relationship. Compared with the classical SNR-based method, the correlation coefficient using the GABP neural network is improved by 0.14, and the root mean square error is reduced by 0.20 m. Full article
(This article belongs to the Section Information Processes)
Show Figures

Graphical abstract

21 pages, 2566 KB  
Article
Multimodal Wearable Monitoring of Exercise in Isolated, Confined, and Extreme Environments: A Standardized Method
by Jan Hejda, Marek Sokol, Lydie Leová, Petr Volf, Jan Tonner, Wei-Chun Hsu, Yi-Jia Lin, Tommy Sugiarto, Miroslav Rozložník and Patrik Kutílek
Methods Protoc. 2026, 9(1), 15; https://doi.org/10.3390/mps9010015 - 21 Jan 2026
Viewed by 64
Abstract
This study presents a standardized method for multimodal monitoring of exercise execution in isolated, confined, and extreme (ICE) environments, addressing the need for reproducible assessment of neuromuscular and cardiovascular responses under space- and equipment-limited conditions. The method integrates wearable surface electromyography (sEMG), inertial [...] Read more.
This study presents a standardized method for multimodal monitoring of exercise execution in isolated, confined, and extreme (ICE) environments, addressing the need for reproducible assessment of neuromuscular and cardiovascular responses under space- and equipment-limited conditions. The method integrates wearable surface electromyography (sEMG), inertial measurement units (IMU), and electrocardiography (ECG) to capture muscle activation, movement, and cardiac dynamics during space-efficient exercise. Ten exercises suitable for confined habitats were implemented during analog missions conducted in the DeepLabH03 facility, with feasibility evaluated in a seven-day campaign involving three adult participants. Signals were synchronized using video-verified repetition boundaries, sEMG was normalized to maximum voluntary contraction, and sEMG amplitude- and frequency-domain features were extracted alongside heart rate variability indices. The protocol enabled stable real-time data acquisition, reliable repetition-level segmentation, and consistent detection of muscle-specific activation patterns across exercises. While amplitude-based sEMG indices showed no uniform main effect of exercise, robust exercise-by-muscle interactions were observed, and sEMG mean frequency demonstrated sensitivity to differences in movement strategy. Cardiac measures showed limited condition-specific modulation, consistent with short exercise bouts and small sample size. As a proof-of-concept feasibility study, the proposed protocol provides a practical and reproducible framework for multimodal physiological monitoring of exercise in ICE analogs and other constrained environments, supporting future studies on exercise quality, training load, and adaptive feedback systems. The protocol is designed to support near-real-time monitoring and forms a technical basis for future exercise-quality feedback in confined habitats. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

25 pages, 7167 KB  
Article
Edge-Enhanced YOLOV8 for Spacecraft Instance Segmentation in Cloud-Edge IoT Environments
by Ming Chen, Wenjie Chen, Yanfei Niu, Ping Qi and Fucheng Wang
Future Internet 2026, 18(1), 59; https://doi.org/10.3390/fi18010059 - 20 Jan 2026
Viewed by 92
Abstract
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud [...] Read more.
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud introduces significant challenges, including high latency, network congestion, and substantial bandwidth costs, which are critical for real-time on-orbit spacecraft services. Cloud-edge Internet of Things (cloud-edge IoT) computing emerges as a promising architecture to mitigate these issues by pushing computation closer to the data source. This paper proposes an improved YOLOV8-based model specifically designed for edge computing scenarios within a cloud-edge IoT framework. By integrating the Cross Stage Partial Spatial Pyramid Pooling Fast (CSPPF) module and the WDIOU loss function, the model achieves enhanced feature extraction and localization accuracy without significantly increasing computational cost, making it suitable for deployment on resource-constrained edge devices. Meanwhile, by processing image data locally at the edge and transmitting only the compact segmentation results to the cloud, the system effectively reduces bandwidth usage and supports efficient cloud-edge collaboration in IoT-based spacecraft monitoring systems. Experimental results show that, compared to the original YOLOV8 and other mainstream models, the proposed model demonstrates superior accuracy and instance segmentation performance at the edge, validating its practicality in cloud-edge IoT environments. Full article
(This article belongs to the Special Issue Convergence of IoT, Edge and Cloud Systems)
Show Figures

Figure 1

Back to TopTop