Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture
Abstract
1. Introduction
2. Literature Search Methodology and Selection Criteria
3. Background and Core Concepts
3.1. Neuroscience and Architecture
3.1.1. Neuroscience and Architecture: Background
3.1.2. Neuroscience and Architecture: Recent Research
3.1.3. Neuroscience and Architecture: Summary
3.2. Visual Perception of Spaces and Neuroarchitecture
3.2.1. Visual Perception of Spaces: Background
3.2.2. Visual Perception of Spaces with VR
3.2.3. Visual Perception of Virtual Spaces in Neuroarchitecture Research
3.2.4. Visual Perception in Neuroarchitecture Research: Summary
3.3. Visual Perception and Emotional Affect Research Using AI
4. Current Evidence and Thematic Synthesis
5. Discussion and Conclusions
5.1. Limitations
5.2. Closing Remarks—Toward a Neuro-Informed Design Paradigm
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kovan Duhoki, A.G. The Integrated Design of Neuroarchitecture for Human Well-Being: A Comprehensive Review. Int. J. Environ. Sci. 2025, 11, 247–258. [Google Scholar] [CrossRef]
- Lee, S.; Shin, W.; Park, E.J. Implications of Neuroarchitecture for the Experience of the Built Environment: A Scoping Review. Archnet-IJAR Int. J. Archit. Res. 2022, 16, 225–244. [Google Scholar] [CrossRef]
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of Built Environment Design on Emotion Measured via Neurophysiological Correlates and Subjective Indicators: A Systematic Review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Chatterjee, A.; Vartanian, O. Neuroscience of Aesthetics. Ann. N. Y. Acad. Sci. 2016, 1369, 172–194. [Google Scholar] [CrossRef]
- Wang, S.; Sanches de Oliveira, G.; Djebbara, Z.; Gramann, K. The Embodiment of Architectural Experience: A Methodological Perspective on Neuro-Architecture. Front. Hum. Neurosci. 2022, 16, 833528. [Google Scholar] [CrossRef]
- Shemesh, A.; Talmon, R.; Karp, O.; Amir, I.; Bar, M.; Grobman, Y.J. Affective Response to Architecture—Investigating Human Reaction to Spaces with Different Geometry. Archit. Sci. Rev. 2017, 60, 116–125. [Google Scholar] [CrossRef]
- Li, H.; Shin, H.; Sentis, L.; Siu, K.C.; Millán, J.D.R.; Lu, N. Combining VR with Electroencephalography as a Frontier of Brain–Computer Interfaces. Device 2024, 2, 100425. [Google Scholar] [CrossRef]
- Mittermaier, M.; Raza, M.M.; Kvedar, J.C. Raza MM Bias in AI-Based Models for Medical Applications: Challenges and Mitigation Strategies. NPJ Digit. Med. 2023, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The Impact of Classroom Design on Pupils’ Learning: Final Results of a Holistic, Multi-Level Analysis. Build. Environ. 2015, 89, 118–133. [Google Scholar] [CrossRef]
- Vecchiato, G.; Jelic, A.; Tieri, G.; Maglione, A.G.; De Matteis, F.; Babiloni, F. Neurophysiological Correlates of Embodiment and Motivational Factors during the Perception of Virtual Architectural Environments. Cogn. Process. 2015, 16, 425–429. [Google Scholar] [CrossRef]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef]
- Pykett, J. Brain Culture: Shaping Policy Through Neuroscience; Policy Press: Bristol, UK, 2015. [Google Scholar]
- Yates, H.; Chamberlain, B.; Norman, G.; Hsu, W.H. Arousal Detection for Biometric Data in Built Environments Using Machine Learning. In Proceedings of the IJCAI 2017 Workshop on Artificial Intelligence in Affective Computing, Melbourne, Australia, 19–25 August 2017; pp. 58–72. [Google Scholar]
- Hollander JB, F.V. Brain Responses to Architecture and Planning: A Preliminary Neuro-Assessment of the Pedestrian Experience in Boston, Massachusetts. Archit. Sci. Rev. 2016, 59, 474–481. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for Artifact Detection and Removal from Scalp EEG: A Review. Neurophysiol. Clin. 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Mavros, P.; Austwick, M.Z.; Smith, A.H. Austwick MZ Geo-EEG: Towards the Use of EEG in the Study of Urban Behaviour. Appl. Spat. Anal. Policy 2016, 9, 191–212. [Google Scholar] [CrossRef]
- Anjan, C.; Coburn, A.; Weinberger, A. The Neuroaesthetics of Architectural Spaces. Cogn. Process. 2021, 22, 115–120. [Google Scholar] [CrossRef]
- Skov, M.; Vartanian, O.; Navarrete, G.; Modroño, C.; Chatterjee, A.; Leder, H.; Gonzalez-Mora, J.L.; Nadal, M. Differences in Regional Gray Matter Volume Predict the Extent to Which Openness Influences Judgments of Beauty and Pleasantness of Interior Architectural Spaces. Ann. N. Y Acad. Sci. 2022, 1507, 133–145. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Hu, M.; Li, F.; Lin, B. Distinguishing and Quantifying the Visual Aesthetics of a Product: An Integrated Approach of Eye-Tracking and EEG. Int. J. Ind. Ergon. 2019, 71, 47–56. [Google Scholar] [CrossRef]
- Sharma, G.; Gramann, K.; Chandra, S.; Singh, V.; Mittal, A.P. Brain Connectivity during Encoding and Retrieval of Spatial Information: Individual Differences in Navigation Skills. Brain Inform. 2017, 4, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Kim, D.I.; Kim, N. Bringing Nature into Hospital Architecture: Machine Learning-Based EEG Analysis of the Biophilia Effect in Virtual Reality. J. Environ. Psychol. 2023, 89, 102033. [Google Scholar] [CrossRef]
- Daugherty, A.M.; Raz, N. A Virtual Water Maze Revisited: Two-Year Changes in Navigation Performance and Their Neural Correlates in Healthy Adults. NeuroImage 2017, 146, 492–506. [Google Scholar] [CrossRef]
- Bermudez, J.; Krizaj, D.; Lipschitz, D.L.; Bueler, C.E.; Rogowska, J.; Yurgelun-Todd, D.; Nakamura, Y. Externally-Induced Meditative States: An Exploratory fMRI Study of Architects’ Responses to Contemplative Architecture. Front. Archit. Res. 2017, 6, 123–136. [Google Scholar] [CrossRef]
- Shao, H.; Liu, Y.; Ren, H.; Li, Z. Research on Healing-Oriented Street Design Based on Quantitative Emotional Electroencephalography and Eye-Tracking Technology. Front. Hum. Neurosci. 2025, 19, 1546933. [Google Scholar] [CrossRef]
- Do, T.-T.N.; Lin, C.-T.; Gramann, K. Human Brain Dynamics in Active Spatial Navigation. Sci. Rep. 2021, 11, 13036. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, S.; Tripathi, V.; Kan, J.; Rounds, J.D.; Mostafavi, A.; Snell, R.; Cruz-Garza, J.G. Evaluating the Impacts of Color, Graphics, and Architectural Features on Wayfinding in Healthcare Settings Using EEG Data and Virtual Response Testing. J. Environ. Psychol. 2022, 79, 101744. [Google Scholar] [CrossRef]
- Shemesh, A. Space and Human Perception—Examining the Influence of Space Geometry on Users’ Emotional and Cognitive Reactions, Technion; Israel Institute of Technology: Haifa, Israel, 2020. [Google Scholar]
- Shimojo, S.; Paradiso, M.; Fujita, I. What Visual Perception Tells Us about Mind and Brain. Proc. Natl. Acad. Sci. USA 2001, 98, 12340–12341. [Google Scholar] [CrossRef]
- Abbas, S.; Okdeh, N.; Roufayel, R.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z.; Khattar, Z.A. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology 2024, 13, 220. [Google Scholar] [CrossRef]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.; Mortimer, M.A.; Enticott, P.G. Built Environment Color Modulates Autonomic and EEG Indices of Emotional Response. Psychophysiology 2022, 59, e14121. [Google Scholar] [CrossRef]
- Khaleghimoghaddam, N.; Arzhangi, S. How Can Architectural Acoustics Reflect Levels of Stress and Relaxation in Indoor Environments? An EEG-Based Experimental Study. OBM Neurobiol. 2025, 9, 294. [Google Scholar] [CrossRef]
- Javadi, A.-H.; Emo, B.; Howard, L.R.; Zisch, F.E.; Yu, Y.; Knight, R.; Pinelo Silva, J.; Spiers, H.J. Hippocampal and Prefrontal Processing of Network Topology to Simulate the Future. Nat. Commun. 2017, 8, 14652. [Google Scholar] [CrossRef]
- Jelić, A.; Tieri, G.; De Matteis, F.; Babiloni, F.; Vecchiato, G. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances. Front. Psychol. 2016, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.; Nikrahei, B.; Nasar, J.; Walther, D. Neural Decoding of Architectural Styles from Scene-Specific Brain Regions. J. Vis. 2015, 15, 520. [Google Scholar] [CrossRef]
- Shemesh, A.; Bar, M.; Grobman, Y.J. Space and Human Perception—Exploring Our Reaction to Different Geometries of Spaces. In Proceedings of the Emerging Experience in Past, Present and Future of Digital Architecture, Daegu, Republic of Korea, 27 May 2015; pp. 541–550. [Google Scholar]
- Kim, S. Cognitive Efficiency in VR Simulated Natural Indoor Environments Examined through EEG and Affective Responses. Sci. Rep. 2025, 15, 33398. [Google Scholar] [CrossRef]
- Fourcade, A.; Klotzsche, F.; Hofmann, S.M.; Mariola, A.; Nikulin, V.V.; Villringer, A.; Gaebler, M. Linking Brain–Heart Interactions to Emotional Arousal in Immersive Virtual Reality. Psychophysiology 2024, 61, e14696. [Google Scholar] [CrossRef]
- Epstein, R.; Harris, A.; Stanley, D.; Kanwisher, N. The Parahippocampal Place Area: Recognition, Navigation, or Encoding? Neuron 1999, 23, 115–125. [Google Scholar] [CrossRef]
- Tootell, R.B.H.; Nasiriavanaki, Z.; Babadi, B.; Greve, D.N.; Nasr, S.; Holt, D.J. Interdigitated Columnar Representation of Personal Space and Visual Space in Human Parietal Cortex. J. Neurosci. 2022, 42, 9011–9029. [Google Scholar] [CrossRef]
- Chaisilprungraung, T.; Park, S. “Scene” from inside: The Representation of Observer’s Space in High-Level Visual Cortex. Neuropsychologia 2021, 161, 108010. [Google Scholar] [CrossRef] [PubMed]
- Marchette, S.A.; Vass, L.K.; Ryan, J.; Epstein, R.A. Outside Looking In: Landmark Generalization in the Human Navigational System. J. Neurosci. 2015, 35, 14896–14908. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef]
- Djebbara, Z.; Fich, L.B.; Petrini, L.; Gramann, K. Sensorimotor Brain Dynamics Reflect Architectural Affordances. Proc. Natl. Acad. Sci. USA 2019, 116, 14769–14778. [Google Scholar] [CrossRef]
- Noda, T.; Aschauer, D.F.; Chambers, A.R.; Seiler, J.P.-H.; Rumpel, S. Representational Maps in the Brain: Concepts, Approaches, and Applications. Front. Cell. Neurosci. 2024, 18, 1366200. [Google Scholar] [CrossRef]
- Hamed-Ahmed, M.H.; Ramil-López, D.; Fraga-Lamas, P.; Fernández-Caramés, T.M. Towards an Emotion-Aware Metaverse: A Human-Centric Shipboard Fire Drill Simulator. Technologies 2025, 13, 253. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Zhou, X. Campus Environments and Mental Restoration: Eye-Tracking Evidence from Dynamic Stimuli. Eng. Constr. Archit. Manag. 2025, Epub ahead of printing. [Google Scholar] [CrossRef]
- Li, C.; Du, C.; Ge, S.; Tong, T. An Eye-Tracking Study on Visual Perception of Vegetation Permeability in Virtual Reality Forest Exposure. Front. Public Health 2023, 11, 1089423. [Google Scholar] [CrossRef]
- Heydarian, A.; Carneiro, J.P.; Gerber, D.; Becerik-Gerber, B.; Hayes, T.; Wood, W. Immersive Virtual Environments versus Physical Built Environments: A Benchmarking Study for Building Design and User-Built Environment Explorations. Autom. Constr. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- Aharon-Gutman, M.; Burg, D. How 3D Visualization Can Help Us Understand Spatial Inequality: On Social Distance and Crime. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 793–809. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Lee, J.; Kim, J. Stereoscopic Objects Affect Reaching Performance in Virtual Reality Environments: Influence of Age on Motor Control. Front. Virtual Real. 2024, 5, 1475482. [Google Scholar] [CrossRef]
- Cano Porras, D.; Sharon, H.; Inzelberg, R.; Ziv-Ner, Y.; Zeilig, G.; Plotnik, M. Advanced Virtual Reality-Based Rehabilitation of Balance and Gait in Clinical Practice. Ther. Adv. Chronic Dis. 2019, 10, 2040622319868379. [Google Scholar] [CrossRef]
- Tarrant, J.; Viczko, J.; Cope, H. Virtual Reality for Anxiety Reduction Demonstrated by Quantitative EEG: A Pilot Study. Front. Psychol. 2018, 9, 1280. [Google Scholar] [CrossRef]
- Benzing, V.; Schmidt, M. Exergaming for Children and Adolescents: Strengths, Weaknesses, Opportunities and Threats. J. Clin. Med. 2018, 7, 422. [Google Scholar] [CrossRef]
- Mostafavi, A.; Xu, T.B.; Kalantari, S. Effects of Illuminance and Correlated Color Temperature on Emotional Responses and Lighting Adjustment Behaviors. J. Build. Eng. 2024, 86, 108833. [Google Scholar] [CrossRef]
- Kim, J.; Kim, N. Quantifying Emotions in Architectural Environments Using Biometrics. Appl. Sci. 2022, 12, 9998. [Google Scholar] [CrossRef]
- Mostafavi, A. Architecture, Biometrics, and Virtual Environments Triangulation: A Research Review. Archit. Sci. Rev. 2022, 65, 504–521. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Xie, J. Window View and Relaxation: Viewing Green Space from a High-Rise Estate Improves Urban Dwellers’ Wellbeing. Urban For. Urban Green. 2020, 55, 126846. [Google Scholar] [CrossRef]
- Gjerde, M.; Vale, B. An Examination of People’s Preferences for Buildings and Streetscapes in New Zealand. Aust. Plan. 2022, 58, 36–48. [Google Scholar] [CrossRef]
- Covi, E.; Donati, E.; Brivio, S.; Heidari, H. Editorial: Emerging Technologies and Systems for Biologically Plausible Implementations of Neural Functions. Front. Neurosci. 2022, 16, 863680. [Google Scholar] [CrossRef]
- Ortmann, T.; Wang, Q.; Putzar, L. EmojiHeroVR: A Study on Facial Expression Recognition Under Partial Occlusion from Head-Mounted Displays. In Proceedings of the 2024 12th International Conference on Affective Computing and Intelligent Interaction (ACII), Scotland, UK, 15 September 2024; pp. 80–88. [Google Scholar]
- Purnomo, F.A.; Arifin, F.; Surjono, H.D. Utilizing Virtual Reality for Real-Time Emotion Recognition with Artificial Intelligence: A Systematic Literature Review. Bull. Electr. Eng. Inform. 2025, 14, 447–456. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, D.K. Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management. Heal. Inf. Res. 2018, 24, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Gao, Y.; Zhu, Y.; Zhang, L.; Xie, Q.; Lu, X.; Wang, F.; Zhang, Z. A Deep Learning Approach to Stress Recognition through Multimodal Physiological Signal Image Transformation. Sci. Rep. 2025, 15, 22258. [Google Scholar] [CrossRef] [PubMed]
- Reale, G.; Fusco, A.; Calciano, R.; Vallario, N.; Vagnarelli, G.; Caliandro, P.; Castelli, L.; Moci, M.; Tieri, G.; Iasevoli, L.; et al. The Immediate Effects of Immersive Virtual Reality on Autonomic Nervous System Function in Patients with Disorders of Consciousness after Severe Acquired Brain Injury: A Pilot Study. J. Clin. Med. 2023, 12, 7639. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Hur, M.-H.; Kim, W.-J. Effects of Virtual Reality (VR)-Based Meditation on Sleep Quality, Stress, and Autonomic Nervous System Balance in Nursing Students. Healthcare 2024, 12, 1581. [Google Scholar] [CrossRef]
- Wieczorek, A.; Schrank, F.; Renner, K.-H.; Wagner, M. Psychological and Physiological Health Outcomes of Virtual Reality-Based Mindfulness Interventions: A Systematic Review and Evidence Mapping of Empirical Studies. Digit. Health 2024, 10, 20552076241272604. [Google Scholar] [CrossRef]
- Amaya-Rodriguez, C.A.; Carvajal-Zamorano, K.; Bustos, D.; Alegría-Arcos, M.; Castillo, K. A Journey from Molecule to Physiology and in Silico Tools for Drug Discovery Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Channel. Front. Pharmacol. 2024, 14, 1251061. [Google Scholar] [CrossRef]
- Nagy, J.; Li, D.; Ishihara, S.; Hattori, R.; Matsunuma, S. Analyzing the Relationship between the Autonomic Nervous System and Emotions Using High Temporal Resolution Capacitive Electrocardiography, Facial Expressions, and Respiration Data. J. Biomed. Eng. Biosci. (JBEB) 2024, 11, 14–24. [Google Scholar]
- Shen, J.; Kitahara, I.; Koyama, S.; Li, Q. Size Does Matter: An Experimental Study of Anxiety in Virtual Reality. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology; Association for Computing Machinery, New York, NY, USA, 29 November 2022; p. 73. [Google Scholar]
- Shirtcliff, E.A.; Finseth, T.T.; Winer, E.H.; Glahn, D.C.; Conrady, R.A.; Drury, S.S. Virtual Stressors with Real Impact: What Virtual Reality-Based Biobehavioral Research Can Teach Us about Typical and Atypical Stress Responsivity. Transl. Psychiatry 2024, 14, 441. [Google Scholar] [CrossRef]
- Nuccetelli, F.; Gabellone, V.; Lopalco, P.L. Virtual Reality as a Tool for Wellbeing in Public Healthcare: Analysis of a Clinical Case. J. Prev. Med. Hyg. 2025, 66, E61–E66. [Google Scholar] [CrossRef]
- Elbaiuomy, E.; Hegazy, I.; Sheta, S. The Impact of Architectural Spaces’ Geometric Forms and Construction Materials on the Users’ Brainwaves and Consciousness Status. Int. J. Low-Carbon Technol. 2018, 13, 43–51. [Google Scholar] [CrossRef]
- Shemesh, A.; Leisman, G.; Bar, M.; Grobman, Y.J. The Emotional Influence of Different Geometries in Virtual Spaces: A Neurocognitive Examination. J. Environ. Psychol. 2022, 81, 101802. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Gonzalez-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural Design and the Brain: Effects of Ceiling Height and Perceived Enclosure on Beauty Judgments and Approach-Avoidance Decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Shin, Y.-B.; Woo, S.-H.; Kim, D.-H.; Kim, J.; Kim, J.-J.; Park, J.Y. The Effect on Emotions and Brain Activity by the Direct/Indirect Lighting in the Residential Environment. Neurosci. Lett. 2015, 584, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.; Nasar, J.L.; Nikrahei, B.; Walther, D.B. Neural Codes of Seeing Architectural Styles. Sci. Rep. 2017, 7, 40201. [Google Scholar] [CrossRef]
- Tural, A.; Tural, E. Exploring Sense of Spaciousness in Interior Settings: Screen-Based Assessments with Eye Tracking, and Virtual Reality Evaluations. Front. Psychol. 2024, 15, 1473520. [Google Scholar] [CrossRef] [PubMed]
- Strachan-Regan, K.; Baumann, O. The Impact of Room Shape on Affective States, Heartrate, and Creative Output. Heliyon 2024, 10, e28340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-M.; Zhang, R.-X.; Jeng, T.-S.; Zeng, Z.-Y. Cityscape Protection Using VR and Eye Tracking Technology. J. Vis. Commun. Image Represent. 2019, 64, 102639. [Google Scholar] [CrossRef]

| Research Direction | SPEC (Somatic, Psychological, Emotional and Cognitive) | Brain Region | Experimental Tool/Procedure | Environment setting | Display (Type & Stereo) | Field of View | Frame Rate/ Latency | Reference |
|---|---|---|---|---|---|---|---|---|
| Different space styles | E- Emotional: affective/pleasantness responses to different architectural space styles. S- Somatic: EEG activity in PCC and occipital cortex as physiological correlates of those emotions. | Posterior cingulate cortex (PCC) and the occipital lobe | VR navigation + 128-ch EEG | VR | HMD (Samsung Gear VR for pre-test; HTC Vive for main study; stereoscopic) | ~110° (Hardware specs) | 90 Hz (Hardware specs) | [11] |
| Restorative qualities of campus environments | C- Cognitive: visual perception and allocation of attention, measured via eye-tracking, Psychological- temporal and spatial information, dynamic VR stimuli, Emotional- natural elements correlation with fascination. | - | VR; Eye-tracking; Questionnaire | VR | HTC Vive Pro2 | ~120° (Hardware specs) | 90 Hz (Hardware specs) | [46] |
| Aesthetic appraisal of space geometry & material (warm-vs-cool ambience) | E- Emotional: aesthetic and affective appraisal (pleasantness) of different geometries/materials and warm vs. cool ambiences. S- Somatic: frontal-alpha asymmetry as a physiological index of affective state. | Frontal Cortex | EEG frontal-alpha asymmetry | Images | - | - | - | [72] |
| Influence of space geometry on users’ emotional and cognitive Reactions | E- Emotional: intensity of a physiological response generated by different room geometries. S- Somatic: Β ratio (EEG), GSR and eye-tracking measures as autonomic/neural indices. P- Psychological: questionnaire ratings, C- Cognitive- duration of presence in space. | Frontal cortex, parieto-temporal, and occipital | Β ratio (wireless EEG) Eye tracking GSR rating rendered spaces | VR | HTC Vive; wireless EEG headset (Emotive Insight) | ~110° | 90 Hz (Hardware specs) | [6,73] |
| Ceiling-height × enclosure effects on beauty ratings | E- Emotional: beauty and pleasantness ratings of ceiling height and enclosure. P- Psychological: approach–avoidance tendencies linked to those evaluations. C- Cognitive and Somatic: evaluative and decisional processes in IPS during aesthetic judgments. | Anterior midcingulate cortex (aMCC) | fMRI while rating rendered rooms | Images | - | - | - | [74] |
| Architectural affordances (doorway width) | P- Psychological: action tendencies and approach–avoidance behaviors in relation to doorway width. C- Cognitive: prediction of action possibilities and spatial decision-making (affordance-based cognition). S- Somatic: visual and premotor EEG dynamics reflecting sensorimotor preparation. | Visual cortex and the motor cortex | 64-ch mobile EEG | VR with walking | HMD (Windows Mixed Reality headset; stereo) | ~100° | 90 Hz | [43] |
| Lighting conditions | E- Emotional: mood and affective state changes under different simulated lighting conditions. S- Somatic: EEG changes as physiological markers of lighting-induced affect. | - | 40-channel Quik-cap | Real world | - | - | [75] | |
| Architectural styles | C- Cognitive: categorical recognition and representation of architectural styles in high-level visual areas (FFA, PPA, LOC). S- Somatic: fMRI activity patterns as physiological signatures of style processing. | Fusiform face area (FFA), PPA, LOC | fMRI | Static images of buildings | - | - | - | [76] |
| Perceived spaciousness | P- Psychological: subjective sense of spaciousness and comfort in different layouts. C- Cognitive: visual perception and allocation of attention, measured via eye-tracking patterns in VR images. | - | VR; Eye-tracking | 360-degree panoramic views | Meta Quest Pro wireless VR headset; Xreal Air 2 augmented reality (AR) glasses | ~100° | 90 Hz | [77] |
| Rectangular vs. curved room | E- Emotional: affective state changes in rectangular vs. curved rooms. S- Somatic: heart-rate variability (HRV) as autonomic indicator of stress/relaxation. C- Cognitive: creative performance differences (idea generation, task output) across room geometries. | - | HRV; Self-report questionnaire | VR | Vive VR headset | - | - | [78] |
| Cityscape | C- Cognitive: visual processing and attention distribution across façades and streetscapes in VR. P- Psychological: evaluation, preference and perceived quality/protection of different cityscape configurations. | - | Eye-tracking | VR | HTC Vive; 7Invensun aGlass eye tracker | ~110° (Hardware specs) | 90 Hz (Hardware specs) | [79] |
| Biophilic design | E- Emotional: emotional and restorative effects of biophilic vs. non-biophilic VR rooms (e.g., hospital settings). S- Somatic: EEG and autonomic responses to biophilic elements. C- Cognitive: changes in attentional engagement and processing of biophilic environments. | Frontal region | EEG; Self-report questionnaire | VR | HTC Vive Pro; wireless EEG headset (Emotive) | ~110° (Hardware specs) | 90 Hz | [21] |
| Forest density | P- Psychological: perceived safety, comfort and preference at different forest densities. E- Emotional: restorative/affective responses to varying levels of visual openness. C- Cognitive: perception of permeability, legibility and visual access as reflected in gaze behavior. | - | Eye-tracker | VR | HTC Vive Pro; Ergo VR | ≥120° tracking range | 90 Hz (Hardware specs) | [47] |
| Natural indoor environments | E- Emotional: Self-reported relaxation and emotional valence. S- Somatic: Neural activity measured via EEG frequency-band ratios. C- Cognitive: Executive function and attention assessed through Stroop, Go/No-Go, and Error Detection tasks. | Frontal and occipital regions | 14-channel EEG headset | VR | Meta Quest 2 | ~100° | 90 Hz | [36] |
| Street space design (interface types and green ratings) | S- Somatic: EEG spectral bands and their ratios reflecting brain activation states. E- Emotional: healing measures derived from EEG indicators correlated with subjective comfort reports. C- Cognitive: load and engagement inferred from EEG ratios indicating attention and information processing. | Occipital, frontal, temporal, parietal, central, and motor regions | 64-channel EEG and remote eye-tracking | Images | aSee Pro remote eye-tracking system | - | Eye-tracking- 140 Hz | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shemesh, A.; Leisman, G.; Grobman, Y.J. Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture. Brain Sci. 2026, 16, 131. https://doi.org/10.3390/brainsci16020131
Shemesh A, Leisman G, Grobman YJ. Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture. Brain Sciences. 2026; 16(2):131. https://doi.org/10.3390/brainsci16020131
Chicago/Turabian StyleShemesh, Avishag, Gerry Leisman, and Yasha Jacob Grobman. 2026. "Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture" Brain Sciences 16, no. 2: 131. https://doi.org/10.3390/brainsci16020131
APA StyleShemesh, A., Leisman, G., & Grobman, Y. J. (2026). Bridging Space Perception, Emotions, and Artificial Intelligence in Neuroarchitecture. Brain Sciences, 16(2), 131. https://doi.org/10.3390/brainsci16020131

