Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,237)

Search Parameters:
Keywords = time profiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4301 KiB  
Article
Estimation of the Kinetic Coefficient of Friction of Asphalt Pavements Using the Top Topography Surface Roughness Power Spectrum
by Bo Sun, Haoyuan Luo, Yibo Rong and Yanqin Yang
Materials 2025, 18(15), 3643; https://doi.org/10.3390/ma18153643 (registering DOI) - 2 Aug 2025
Abstract
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better [...] Read more.
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better reflect the actual contact conditions. This approach avoids including deeper roughness components that do not contribute to real rubber–pavement contact due to surface skewness. The key aspect of the method is determining an appropriate cutting plane to isolate the top surface. Four cutting strategies were evaluated. Results show that the cutting plane defined at 0.5 times the root mean square (RMS) height exhibits the highest robustness across all pavement types, with the estimated COF closely matching the measured values for all four tested surfaces. This study presents an improved method for estimating the kinetic coefficient of friction (COF) of asphalt pavements by employing the power spectral density (PSD) of the top surface roughness, rather than the total surface profile. This refinement is based on Persson’s friction theory and aims to exclude the influence of deep surface irregularities that do not make actual contact with the rubber interface. The core of the method lies in defining an appropriate cutting plane to isolate the topographical features that contribute most to frictional interactions. Four cutting strategies were investigated. Among them, the cutting plane positioned at 0.5 times the root mean square (RMS) height demonstrated the best overall applicability. COF estimates derived from this method showed strong consistency with experimentally measured values across all four tested asphalt pavement surfaces, indicating its robustness and practical potential. Full article
(This article belongs to the Section Construction and Building Materials)
48 pages, 4602 KiB  
Article
Multiplex Targeted Proteomic Analysis of Cytokine Ratios for ICU Mortality in Severe COVID-19
by Rúben Araújo, Cristiana P. Von Rekowski, Tiago A. H. Fonseca, Cecília R. C. Calado, Luís Ramalhete and Luís Bento
Proteomes 2025, 13(3), 35; https://doi.org/10.3390/proteomes13030035 (registering DOI) - 2 Aug 2025
Abstract
Background: Accurate and timely prediction of mortality in intensive care unit (ICU) patients, particularly those with COVID-19, remains clinically challenging due to complex immune responses. Proteomic cytokine profiling holds promise for refining mortality risk assessment. Methods: Serum samples from 89 ICU patients (55 [...] Read more.
Background: Accurate and timely prediction of mortality in intensive care unit (ICU) patients, particularly those with COVID-19, remains clinically challenging due to complex immune responses. Proteomic cytokine profiling holds promise for refining mortality risk assessment. Methods: Serum samples from 89 ICU patients (55 discharged, 34 deceased) were analyzed using a multiplex 21-cytokine panel. Samples were stratified into three groups based on time from collection to outcome: ≤48 h (Group 1: Early), >48 h to ≤7 days (Group 2: Intermediate), and >7 days to ≤14 days (Group 3: Late). Cytokine levels, simple cytokine ratios, and previously unexplored complex ratios between pro- and anti-inflammatory cytokines were evaluated. Machine learning-based feature selection identified the most predictive ratios, with performance evaluated by area under the curve (AUC), sensitivity, and specificity. Results: Complex cytokine ratios demonstrated superior predictive accuracy compared to traditional severity markers (APACHE II, SAPS II, SOFA), individual cytokines, and simple ratios, effectively distinguishing discharged from deceased patients across all groups (AUC: 0.918–1.000; sensitivity: 0.826–1.000; specificity: 0.775–0.900). Conclusions: Multiplex cytokine profiling enhanced by computationally derived complex ratios may offer robust predictive capabilities for ICU mortality risk stratification, serving as a valuable tool for personalized prognosis in critical care. Full article
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 (registering DOI) - 2 Aug 2025
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

25 pages, 1802 KiB  
Article
HPLC-ESI-HRMS/MS-Based Metabolite Profiling and Bioactivity Assessment of Catharanthus roseus
by Soniya Joshi, Chen Huo, Rabin Budhathoki, Anita Gurung, Salyan Bhattarai, Khaga Raj Sharma, Ki Hyun Kim and Niranjan Parajuli
Plants 2025, 14(15), 2395; https://doi.org/10.3390/plants14152395 (registering DOI) - 2 Aug 2025
Abstract
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate [...] Read more.
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate antimicrobial activity, and limited cytotoxicity in both the brine shrimp lethality assay and MTT assay against HeLa and A549 cell lines. High-performance liquid chromatography–electrospray ionization–high-resolution tandem mass spectrometry (HPLC-ESI-HRMS/MS) analysis led to the annotation of 34 metabolites, primarily alkaloids. These included 23 indole alkaloids, two fatty acids, two pentacyclic triterpenoids, one amino acid, four porphyrin derivatives, one glyceride, and one chlorin derivative. Notably, two metabolites—2,3-dihydroxypropyl 9,12,15-octadecatrienoate and (10S)-hydroxypheophorbide A—were identified for the first time in C. roseus. Furthermore, Global Natural Products Social Molecular Networking (GNPS) analysis revealed 18 additional metabolites, including epoxypheophorbide A, 11,12-dehydroursolic acid lactone, and 20-isocatharanthine. These findings highlight the diverse secondary metabolite profile of C. roseus and support its potential as a source of bioactive compounds for therapeutic development. Full article
25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 (registering DOI) - 2 Aug 2025
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

17 pages, 442 KiB  
Article
Semiparametric Transformation Models with a Change Point for Interval-Censored Failure Time Data
by Junyao Ren, Shishun Zhao, Dianliang Deng, Tianshu You and Hui Huang
Mathematics 2025, 13(15), 2489; https://doi.org/10.3390/math13152489 (registering DOI) - 2 Aug 2025
Abstract
Change point models are widely used in medical and epidemiological studies to capture the threshold effects of continuous covariates on health outcomes. These threshold effects represent critical points at which the relationship between biomarkers or risk factors and disease risk shifts, often reflecting [...] Read more.
Change point models are widely used in medical and epidemiological studies to capture the threshold effects of continuous covariates on health outcomes. These threshold effects represent critical points at which the relationship between biomarkers or risk factors and disease risk shifts, often reflecting underlying biological mechanisms or clinically relevant intervention points. While most existing methods focus on right-censored data, interval censoring is common in large-scale clinical trials and follow-up studies, where the exact event times are not observed but are known to fall within time intervals. In this paper, we propose a semiparametric transformation model with an unknown change point for interval-censored data. The model allows flexible transformation functions, including the proportional hazards and proportional odds models, and it accommodates both main effects and their interactions with the threshold variable. Model parameters are estimated via the EM algorithm, with the change point identified through a profile likelihood approach using grid search. We establish the asymptotic properties of the proposed estimators and evaluate their finite-sample performance through extensive simulations, showing good accuracy and coverage properties. The method is further illustrated through an application to the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial data. Full article
(This article belongs to the Special Issue Statistics: Theories and Applications)
17 pages, 1195 KiB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 (registering DOI) - 2 Aug 2025
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

64 pages, 1429 KiB  
Review
Pharmacist-Driven Chondroprotection in Osteoarthritis: A Multifaceted Approach Using Patient Education, Information Visualization, and Lifestyle Integration
by Eloy del Río
Pharmacy 2025, 13(4), 106; https://doi.org/10.3390/pharmacy13040106 (registering DOI) - 1 Aug 2025
Abstract
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate [...] Read more.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication—and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical “What–How–When” framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels. Building on these strategies, the P4–4P Chondroprotection Framework is proposed, integrating predictive risk profiling (physicians), preventive pharmacokinetic and chronotherapy optimization (pharmacists), personalized biomechanical interventions (physiotherapists), and participatory self-management (patients) into a unified, feedback-driven OA care model. To translate this framework into routine practice, I recommend the development of DMOAD-specific clinical guidelines, incorporation of chondroprotective chronotherapy and interprofessional collaboration into health-professional curricula, and establishment of multidisciplinary OA management pathways—supported by appropriate reimbursement structures, to support preventive, team-based management, and prioritization of large-scale randomized trials and real-world evidence studies to validate the long-term structural, functional, and quality of life benefits of synchronized DMOAD and exercise-timed interventions. This comprehensive, precision-driven paradigm aims to shift OA care from reactive palliation to true disease modification, preserving cartilage integrity and improving the quality of life for millions worldwide. Full article
18 pages, 919 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
13 pages, 680 KiB  
Article
Anthropometric Characteristics and Somatotype of Young Slovenian Tennis Players
by Ales Germic, Tjasa Filipcic and Ales Filipcic
Appl. Sci. 2025, 15(15), 8584; https://doi.org/10.3390/app15158584 (registering DOI) - 1 Aug 2025
Abstract
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 [...] Read more.
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 years) over the last two decades. Using standardised anthropometric measurements and the Heath-Carter method, somatotypes were calculated and analysed by age and gender. The results showed clear age- and gender-specific trends and differences in both somatotype profiles and detailed anthropometric characteristics. Significant differences were found in height, body mass, BMI, skinfolds, girths, and limb lengths, with gender differences becoming more pronounced in the older age groups. In boys, mesomorphy increased with age, reflecting an increase in musculature, while in girls, a shift from ectomorphic to endomorphic profiles was observed during adolescence, probably influenced by pubertal and hormonal changes. Significant sex-specific differences were observed in all three somatotype components in most age groups, especially in fat mass and muscle. The longitudinal design provides valuable data and insights into the evolving physical profiles of adolescent tennis players that support more effective talent identification and training. Despite the changes that have taken place in tennis over time, standardised measurement protocols ensured comparability, making the results relevant for practitioners working with adolescents in tennis development. Full article
(This article belongs to the Special Issue Human Performance and Health in Sport and Exercise—2nd Edition)
Show Figures

Figure 1

19 pages, 3765 KiB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 (registering DOI) - 1 Aug 2025
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

25 pages, 8312 KiB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 (registering DOI) - 1 Aug 2025
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

14 pages, 3725 KiB  
Article
Gut Hormones and Postprandial Metabolic Effects of Isomaltulose vs. Saccharose Consumption in People with Metabolic Syndrome
by Jiudan Zhang, Dominik Sonnenburg, Stefan Kabisch, Stephan Theis, Margrit Kemper, Olga Pivovarova-Ramich, Domenico Tricò, Sascha Rohn and Andreas F. H. Pfeiffer
Nutrients 2025, 17(15), 2539; https://doi.org/10.3390/nu17152539 (registering DOI) - 1 Aug 2025
Abstract
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). [...] Read more.
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). This study aimed to assess the most effective preprandial interval of ISO- or saccharose (SUC) snacks (1 h vs. 3 h preload) to enhance prandial incretin responses to a subsequent meal. Methods: In a randomized crossover design, 15 participants with MetS completed four experimental conditions on four non-consecutive days, combining two preload types (ISO or SUC) and two preload timings (Intervention A: 3 h preload; Intervention B: 1 h preload). Specifically, the four conditions were (1) ISO + Intervention A, (2) SUC + Intervention A, (3) ISO + Intervention B, and (4) SUC + Intervention B. The order of conditions was randomized and separated by a 3–7-day washout period to minimize carryover effects. On each study day, participants consumed two mixed meal tests (MMT-1 and MMT-2) with a standardized preload (50 g ISO or SUC) administered either 3 h or 1 h prior to MMT-2. Blood samples were collected over 9 h at 15 predefined time points for analysis of glucose, insulin, C-peptide, and incretin hormones (GLP-1, GIP, and PYY). Results: The unique digestion profile of ISO resulted in a blunted glucose ascent rate (ΔG/Δt: 0.28 vs. 0.53 mmol/L/min for SUC, p < 0.01), paralleled by synonyms PYY elevation over 540 min monitoring, compared with SUC. ISO also led to higher and more sustained GLP-1 and PYY levels, while SUC induced a stronger GIP response. Notably, the timing of ISO consumption significantly influenced PYY secretion, with the 3 h preload showing enhanced PYY responses and a more favorable SME compared to the 1 h preload. Conclusions: ISO, particularly when consumed 3 h before a meal (vs. 1 h), offers significant advantages over SUC by elevating PYY levels, blunting the glucose ascent rate, and sustaining GLP-1 release. This synergy enhances the second meal effect, suggesting ISO’s potential for managing postprandial glycemic excursions in MetS. Full article
(This article belongs to the Section Nutrition and Metabolism)
17 pages, 1511 KiB  
Article
Impact of Selected Starter-Based Sourdough Types on Fermentation Performance and Bio-Preservation of Bread
by Khadija Atfaoui, Sara Lebrazi, Anas Raffak, Youssef Chafai, Karima El Kabous, Mouhcine Fadil and Mohammed Ouhssine
Fermentation 2025, 11(8), 449; https://doi.org/10.3390/fermentation11080449 (registering DOI) - 1 Aug 2025
Abstract
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple [...] Read more.
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple parameters (pH, dough rising, ethanol release, and total titratable acidity) was monitored by a smart fermentation oven. The impact of the different treatments on the lactic acid, acetic acid, and ethanol content of the breads were quantified by high performance liquid chromatography analysis. In addition, the bio-preservation capacity of the breads contaminated with fungi was analyzed. The results show that liquid sourdough (D3: Type 2) and backslopped sourdough (D4: Type 3) increased significantly (p < 0.05) in dough rise, dough acidification (lower pH, higher titratable acidity), production of organic acids (lactic and acetic), and presented the optimal fermentation quotient. These findings were substantiated by chemometric analysis, which successfully clustered the starters based on performance and revealed a strong positive correlation between acetic acid production and dough-rise, highlighting the superior heterofermentative profile of D3 and D4. These types of sourdough also stood out for their antifungal capacity, preventing the visible growth of Aspergillus niger and Penicillium commune for up to 10 days after inoculation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

24 pages, 7174 KiB  
Article
Profiling the Expression Level of a Gene from the Caspase Family in Triple-Negative Breast Cancer
by Anna Makuch-Kocka, Janusz Kocki, Jacek Bogucki, Przemysław Kołodziej, Monika Lejman, Karolina Szalast and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2025, 26(15), 7463; https://doi.org/10.3390/ijms26157463 (registering DOI) - 1 Aug 2025
Abstract
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression [...] Read more.
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression profiles of 11 genes from the caspase family in patients diagnosed with triple-negative breast cancer (TNBC). We qualified 29 patients with TNBC. A fragment of the tumor and a fragment of normal tissue surrounding the tumor were collected from each patient. Then, RNA was isolated, and the reverse transcription process was performed. The expression levels of caspase family genes were determined using the real-time PCR method. The obtained data were correlated with clinical data and compared with data from the Cancer Genome Atlas database using the Breast Cancer Gene Expression Miner v4.8 and Ualcan. Based on the results of the conducted research, it can be assumed that the levels of expression of caspase family genes may be correlated with the clinical course of cancer in patients with TNBC, and further research may indicate that profiling the expression levels of these genes may be used in selecting personalized treatment methods. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
Back to TopTop