Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = time domain thermoreflectance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1758 KB  
Article
Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure
by Elias Chalwatzis, Peng Lan and Frank Schönberger
Polymers 2025, 17(19), 2596; https://doi.org/10.3390/polym17192596 - 25 Sep 2025
Viewed by 1205
Abstract
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). [...] Read more.
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). To investigate this, 17 epoxy formulations were prepared, including the commonly used diglycidyl ether of bisphenol A (DGEBA) and two custom-synthesized diepoxides: TME4, which contains rigid aromatic ester linkages with a C4 aliphatic spacer, and LCE-DP, featuring rigid imine bonds. Thermal conductivity was measured using four techniques: laser flash analysis (LFA), modified transient plane source (MTPS), time-domain thermoreflectance (TDTR), and displacement thermo-optic phase spectroscopy (D-TOPS). Additionally, small-angle and wide-angle X-ray scattering (SAXS/WAXS) were performed to detect crystalline or liquid crystalline domains. All formulations exhibited TC values ranging from 0.13 to 0.32 W/(m·K). The TME4–DDS systems, previously reported to be near 1 W/(m·K), consistently measured between 0.26 and 0.30 W/(m·K). Thus, under our synthesis and curing conditions, the elevated TC reported in prior studies was not reproduced, and no strong evidence of crystallinity was observed; indications of local ordering did not translate into higher conductivity. Variations in TC among methods often matched or exceeded the gains attributed to mesophase formation. More broadly, evidence for crystallinity in epoxy thermosets appears weak, consistent with the notion that crosslinking suppresses long-range ordering. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

18 pages, 7290 KB  
Review
Photothermal Infrared Radiometry and Thermoreflectance—Unique Strategy for Thermal Transport Characterization of Nanolayers
by Ankur Chatterjee, Mohanachandran Nair Sindhu Swapna, Ameneh Mikaeeli, Misha Khalid, Dorota Korte, Andreas D. Wieck and Michal Pawlak
Nanomaterials 2024, 14(21), 1711; https://doi.org/10.3390/nano14211711 - 27 Oct 2024
Cited by 1 | Viewed by 2196
Abstract
Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed [...] Read more.
Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed in this work involve non-contact frequency domain pump-probe thermoreflectance (FDTR) and photothermal radiometry (PTR) methods for the ultraprecise determination of in-plane and cross-plane thermal transport properties. The motivation of one of the works is the advantage of the use of amplitude (TR signal) as one of the input parameters along with the phase for the determination of thermal parameters. In this article, we present a unique strategy for measuring the thermal transport parameters of thin films, including cross-plane thermal diffusivity, in-plane thermal conductivity, and thermal boundary resistance as a comprehensively reviewed article. The results obtained for organic and inorganic thin films are presented. Precise ranges for the thermal conductivity can be across confidence intervals for material measurements between 0.5 and 60 W/m-K for multiple nanolayers. The presented strategy is based on frequency-resolved methods, which, in contrast to time-resolved methods, make it possible to measure volumetric-specific heat. It is worth adding that the presented strategy allows for accurate (the signal in both methods depends on cross-plane thermal conductivity and thermal boundary resistance) and precise measurement. Full article
Show Figures

Figure 1

10 pages, 1220 KB  
Article
Thermal Conductivity of Helium and Argon at High Pressure and High Temperature
by Wen-Pin Hsieh, Yi-Chi Tsao and Chun-Hung Lin
Materials 2022, 15(19), 6681; https://doi.org/10.3390/ma15196681 - 26 Sep 2022
Cited by 7 | Viewed by 3473
Abstract
Helium (He) and argon (Ar) are important rare gases and pressure media used in diamond-anvil cell (DAC) experiments. Their thermal conductivity at high pressure–temperature (P-T) conditions is a crucial parameter for modeling heat conduction and temperature distribution within a DAC. Here [...] Read more.
Helium (He) and argon (Ar) are important rare gases and pressure media used in diamond-anvil cell (DAC) experiments. Their thermal conductivity at high pressure–temperature (P-T) conditions is a crucial parameter for modeling heat conduction and temperature distribution within a DAC. Here we report the thermal conductivity of He and Ar over a wide range of high P-T conditions using ultrafast time-domain thermoreflectance coupled with an externally heated DAC. We find that at room temperature the thermal conductivity of liquid and solid He shows a pressure dependence of P0.86 and P0.72, respectively; upon heating the liquid, He at 10.2 GPa follows a T0.45 dependence. By contrast, the thermal conductivity of solid Ar at room temperature has a pressure dependence of P1.25, while a T−1.37 dependence is observed for solid Ar at 19 GPa. Our results not only provide crucial bases for further investigation into the physical mechanisms of heat transport in He and Ar under extremes, but also substantially improve the accuracy of modeling the temperature profile within a DAC loaded with He or Ar. The P-T dependences of the thermal conductivity of He are important to better model and constrain the structural and thermal evolution of gas giant planets containing He. Full article
(This article belongs to the Special Issue Materials Behavior under Compression)
Show Figures

Figure 1

9 pages, 1459 KB  
Article
The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate
by Xin Jia, Lu Huang, Miao Sun, Xia Zhao, Junjun Wei and Chengming Li
Coatings 2022, 12(5), 672; https://doi.org/10.3390/coatings12050672 - 14 May 2022
Cited by 9 | Viewed by 3301
Abstract
Diamond has the highest thermal conductivity of any natural material. It can be used to integrate with GaN to dissipate heat from AlGaN/GaN high electron mobility transistor (HEMT) channels. Much past work has investigated the thermal properties of GaN-on-diamond devices, especially the thermal [...] Read more.
Diamond has the highest thermal conductivity of any natural material. It can be used to integrate with GaN to dissipate heat from AlGaN/GaN high electron mobility transistor (HEMT) channels. Much past work has investigated the thermal properties of GaN-on-diamond devices, especially the thermal boundary resistance between the diamond and GaN (TBReff,Dia/GaN). However, the effect of SiNx interlayer structure on the thermal resistance of GaN-on-diamond devices is less investigated. In this work, we explore the role of different interfaces in contributing to the thermal boundary resistance of the GaN-on-diamond layers, specifically using 100 nm layer of SiNx, 80 nm layer of SiNx, 100 nm layer of SiNx with a 20 nm × 20 nm periodic structure. Through combination with time-domain thermoreflectance measurement and microstructural analysis, we were able to determine that a patterning SiNx interlayer provided the lower thermal boundary resistance (32.2 ± 1.8 m2KGW−1) because of the diamond growth seeding and the diamond nucleation surface. In addition, the patterning of the SiNx interlayer can effectively improve the interface bonding force and diamond nucleation density and reduce the thermal boundary resistance of the GaN-on-diamond. This enables significant improvement in heat dissipation capability of GaN-on-diamond with respect to GaN wafers. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

9 pages, 2488 KB  
Article
Growth and Thermal Conductivity Study of CuCr2Se4-CuCrSe2 Hetero-Composite Crystals
by Haomin Lu, Chenghao Yin, Ruonan Zhan, Yanyan Zhang, Yangyang Lv, Minghui Lu, Jian Zhou, Shuhua Yao and Yanbin Chen
Crystals 2022, 12(3), 433; https://doi.org/10.3390/cryst12030433 - 21 Mar 2022
Cited by 4 | Viewed by 3468
Abstract
The CuCrSe2 shows attractive physical properties, such as thermoelectric and multiferroic properties, but pure-phase CuCrSe2 crystal is still quite challenging to obtain because CuCr2Se4 can be easily precipitated from a CuCrSe2 matrix. Here, taking the advantage of [...] Read more.
The CuCrSe2 shows attractive physical properties, such as thermoelectric and multiferroic properties, but pure-phase CuCrSe2 crystal is still quite challenging to obtain because CuCr2Se4 can be easily precipitated from a CuCrSe2 matrix. Here, taking the advantage of this precipitation reaction, we grew a series of CuCrSe2-CuCr2Se4 hetero-composites by adjusting growth parameters and explored their thermal conductivity property. Determined by electron-diffraction, the orientation relationship between these two compounds is [001] (100) CuCrSe2‖[111] (220) CuCr2Se4. The out-of-plane thermal conductivity κ of these hetero-composites was measured by a time-domain thermo-reflectance method. Fitting experimental κ by the Boltzmann-Callaway model, we verify that interface scattering plays significant role to κ in CuCrSe2-CuCr2Se4 hetero-composites, while in a CuCrSe2-dominated hetero-composite, both interface scattering and anharmonic three-phonon interaction lead to the lowest κ therein. Our results reveal the thermal conductivity evolution in CuCr2Se4-CuCrSe2 hetero-composites. Full article
(This article belongs to the Special Issue Solid State Chemistry: Memorial Issue for Professor Emilio Morán)
Show Figures

Figure 1

8 pages, 8199 KB  
Article
Investigation on the Thermal Characteristics of Enhancement-Mode p-GaN HEMT Device on Si Substrate Using Thermoreflectance Microscopy
by Hongyue Wang, Chao Yuan, Yajie Xin, Yijun Shi, Yaozong Zhong, Yun Huang and Guoguang Lu
Micromachines 2022, 13(3), 466; https://doi.org/10.3390/mi13030466 - 18 Mar 2022
Cited by 11 | Viewed by 3747
Abstract
In this paper, thermoreflectance microscopy was used to measure the high spatial resolution temperature distribution of the p-GaN HEMT under high power density. The maximum temperature along the GaN channel was located at the drain-side gate edge region. It was found that the [...] Read more.
In this paper, thermoreflectance microscopy was used to measure the high spatial resolution temperature distribution of the p-GaN HEMT under high power density. The maximum temperature along the GaN channel was located at the drain-side gate edge region. It was found that the thermal resistance (Rth) of the p-GaN HEMT device increased with the increase of channel temperature. The Rth dependence on the temperature was well approximated by a function of Rth~Ta (a = 0.2). The three phonon Umklapp scattering, point mass defects and dislocations scattering mechanisms are suggested contributors to the heat transfer process for the p-GaN HEMT. The impact of bias conditions and gate length on the thermal characteristics of the device was investigated. The behaviour of temperature increasing in the time domain with 50 µs pulse width and different drain bias voltage was analysed. Finally, a field plate structure was demonstrated for improving the device thermal performance. Full article
Show Figures

Figure 1

9 pages, 1276 KB  
Article
Electron-Phonon Coupling Parameter of Ferromagnetic Metal Fe and Co
by Kyuhwe Kang and Gyung-Min Choi
Materials 2021, 14(11), 2755; https://doi.org/10.3390/ma14112755 - 23 May 2021
Cited by 8 | Viewed by 4300
Abstract
The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In [...] Read more.
The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In this study, we investigate the g parameters of ferromagnetic 3d transition metal (FM) layers, Fe and Co, using time-domain thermoreflectance. We measure a transient increase in temperature of Au in an FM/Au bilayer; the Au layer efficiently detects the strong heat flow during the non-equilibrium between electrons and phonons in FM. The g parameter of the FM is determined by analyzing the temperature dynamics using thermal circuit modeling. The determined g values are 8.8–9.4 × 1017 W m−3 K−1 for Fe and 9.6–12.2 × 1017 W m−3 K−1 for Co. Our results demonstrate that all 3d transition FMs have a similar g value, in the order of 1018 W m−3 K−1. Full article
(This article belongs to the Special Issue Magnetic and Structural Properties of Ferromagnetic Thin Films)
Show Figures

Figure 1

14 pages, 3944 KB  
Article
Thermal Transport Evolution Due to Nanostructural Transformations in Ga-Doped Indium-Tin-Oxide Thin Films
by Alexandr Cocemasov, Vladimir Brinzari, Do-Gyeom Jeong, Ghenadii Korotcenkov, Sergiu Vatavu, Jong S. Lee and Denis L. Nika
Nanomaterials 2021, 11(5), 1126; https://doi.org/10.3390/nano11051126 - 27 Apr 2021
Cited by 6 | Viewed by 3295
Abstract
We report on a comprehensive theoretical and experimental investigation of thermal conductivity in indium-tin-oxide (ITO) thin films with various Ga concentrations (0–30 at. %) deposited by spray pyrolysis technique. X-ray diffraction (XRD) and scanning electron microscopy have shown a structural transformation in the [...] Read more.
We report on a comprehensive theoretical and experimental investigation of thermal conductivity in indium-tin-oxide (ITO) thin films with various Ga concentrations (0–30 at. %) deposited by spray pyrolysis technique. X-ray diffraction (XRD) and scanning electron microscopy have shown a structural transformation in the range 15–20 at. % Ga from the nanocrystalline to the amorphous phase. Room temperature femtosecond time domain thermoreflectance measurements showed nonlinear decrease of thermal conductivity in the range 2.0–0.5 Wm−1 K−1 depending on Ga doping level. It was found from a comparison between density functional theory calculations and XRD data that Ga atoms substitute In atoms in the ITO nanocrystals retaining Ia-3 space group symmetry. The calculated phonon dispersion relations revealed that Ga doping leads to the appearance of hybridized metal atom vibrations with avoided-crossing behavior. These hybridized vibrations possess shortened mean free paths and are the main reason behind the thermal conductivity drop in nanocrystalline phase. An evolution from propagative to diffusive phonon thermal transport in ITO:Ga with 15–20 at. % of Ga was established. The suppressed thermal conductivity of ITO:Ga thin films deposited by spray pyrolysis may be crucial for their thermoelectric applications. Full article
(This article belongs to the Special Issue Nanostructured Ceramics in Modern Materials Science)
Show Figures

Figure 1

17 pages, 3209 KB  
Article
Thermal Characterization and Modelling of AlGaN-GaN Multilayer Structures for HEMT Applications
by Lisa Mitterhuber, René Hammer, Thomas Dengg and Jürgen Spitaler
Energies 2020, 13(9), 2363; https://doi.org/10.3390/en13092363 - 9 May 2020
Cited by 42 | Viewed by 7338
Abstract
To optimize the thermal design of AlGaN-GaN high-electron-mobility transistors (HEMTs), which incorporate high power densities, an accurate prediction of the underlying thermal transport mechanisms is crucial. Here, a HEMT-structure (Al0.17Ga0.83N, GaN, Al0.32Ga0.68N and AlN on [...] Read more.
To optimize the thermal design of AlGaN-GaN high-electron-mobility transistors (HEMTs), which incorporate high power densities, an accurate prediction of the underlying thermal transport mechanisms is crucial. Here, a HEMT-structure (Al0.17Ga0.83N, GaN, Al0.32Ga0.68N and AlN on a Si substrate) was investigated using a time-domain thermoreflectance (TDTR) setup. The different scattering contributions were investigated in the framework of phonon transport models (Callaway, Holland and Born-von-Karman). The thermal conductivities of all layers were found to decrease with a temperature between 300 K and 773 K, due to Umklapp scattering. The measurement showed that the AlN and GaN thermal conductivities were a magnitude higher than the thermal conductivity of Al0.32Ga0.68N and Al0.17Ga0.83N due to defect scattering. The layer thicknesses of the HEMT structure are in the length scale of the phonon mean free path, causing a reduction of their intrinsic thermal conductivity. The size-effect of the cross-plane thermal conductivity was investigated, which showed that the phonon transport model is a critical factor. At 300 K, we obtained a thermal conductivity of (130 ± 38) Wm−1K−1 for the (167 ± 7) nm thick AlN, (220 ± 38) Wm−1K−1 for the (1065 ± 7) nm thick GaN, (11.2 ± 0.7) Wm−1K−1 for the (423 ± 5) nm thick Al0.32Ga0.68N, and (9.7 ± 0.6) Wm−1K−1 for the (65 ± 5) nm thick Al0.17Ga0.83N. Respectively, these conductivity values were found to be 24%, 90%, 28% and 16% of the bulk values, using the Born-von-Karman model together with the Hua–Minnich suppression function approach. The thermal interface conductance as extracted from the TDTR measurements was compared to results given by the diffuse mismatch model and the phonon radiation limit, suggesting contributions from inelastic phonon-scattering processes at the interface. The knowledge of the individual thermal transport mechanisms is essential for understanding the thermal characteristics of the HEMT, and it is useful for improving the thermal management of HEMTs and their reliability. Full article
(This article belongs to the Special Issue Thermal and Electro-thermal System Simulation 2020)
Show Figures

Graphical abstract

14 pages, 4584 KB  
Article
Structure Function Analysis of Temperature-Dependent Thermal Properties of Nm-Thin Nb2O5
by Lisa Mitterhuber, Elke Kraker and Stefan Defregger
Energies 2019, 12(4), 610; https://doi.org/10.3390/en12040610 - 15 Feb 2019
Cited by 13 | Viewed by 4949
Abstract
A 166-nm-thick amorphous Niobium pentoxide layer (Nb2O5) on a silicon substrate was investigated by using time domain thermoreflectance at ambient temperatures from 25 °C to 500 °C. In the time domain thermoreflectance measurements, thermal transients with a time resolution [...] Read more.
A 166-nm-thick amorphous Niobium pentoxide layer (Nb2O5) on a silicon substrate was investigated by using time domain thermoreflectance at ambient temperatures from 25 °C to 500 °C. In the time domain thermoreflectance measurements, thermal transients with a time resolution in (sub-)nanoseconds can be obtained by a pump-probe laser technique. The analysis of the thermal transient was carried out via the established analytical approach, but also by a numerical approach. The analytical approach showed a thermal diffusivity and thermal conductivity from 0.43 mm2/s to 0.74 mm2/s and from 1.0 W/mK to 2.3 W/mK, respectively to temperature. The used numerical approach was the structure function approach to map the measured heat path in terms of a RthCth-network. The structure function showed a decrease of Rth with increasing temperature according to the increasing thermal conductivity of Nb2O5. The combination of both approaches contributes to an in-depth thermal analysis of Nb2O5 film. Full article
(This article belongs to the Special Issue Thermal and Electro-thermal System Simulation)
Show Figures

Figure 1

11 pages, 4328 KB  
Article
Laser Scanning Confocal Thermoreflectance Microscope for the Backside Thermal Imaging of Microelectronic Devices
by Dong Uk Kim, Chan Bae Jeong, Jung Dae Kim, Kye-Sung Lee, Hwan Hur, Ki-Hwan Nam, Geon Hee Kim and Ki Soo Chang
Sensors 2017, 17(12), 2774; https://doi.org/10.3390/s17122774 - 30 Nov 2017
Cited by 10 | Viewed by 9564
Abstract
In this paper, we report on a confocal thermoreflectance imaging system that can examine the thermal characteristics of microelectronic devices by penetrating the backside of a device through the substrate. In this system, the local reflectivity variations due to heat generation in the [...] Read more.
In this paper, we report on a confocal thermoreflectance imaging system that can examine the thermal characteristics of microelectronic devices by penetrating the backside of a device through the substrate. In this system, the local reflectivity variations due to heat generation in the device are measured point by point by a laser scanning confocal microscope capable of eliminating out-of-focus reflections and the thermoreflectance is extracted via Fourier-domain signal processing. In comparison to the conventional widefield thermoreflectance microscope, the proposed laser scanning confocal thermoreflectance microscope improves the thermoreflectance sensitivity by ~23 times and the spatial resolution by ~25% in backside thermoreflectance measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop