Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = timber-concrete composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7677 KiB  
Article
Seismic Assessment and Strengthening of a Load-Bearing Masonry Structure Considering SSI Effects
by Kyriaki G. Amarantidou, Panagiota S. Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2025, 15(15), 8135; https://doi.org/10.3390/app15158135 - 22 Jul 2025
Viewed by 332
Abstract
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a [...] Read more.
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a composite load-bearing system of timber-framed stone masonry. Over time, the structure has undergone irreversible modifications, primarily involving reinforced concrete (RC) interventions. The building’s seismic performance was evaluated using two finite element models developed in the SAP2000 software (v. 25.3.00). The first model simulates the original structure, strengthened by grout injections, while the second represents the current condition of the structural system following RC additions. Soil–structure interaction was also investigated, given that the local soil is classified as Category D according to Eurocode 8 (EC8). Each model was analyzed under two different support conditions: fixed-base and SSI-inclusive. A suite of appropriate accelerograms was applied to both models, in compliance with Eurocode 8 using the SeismoMatch software, and linear time-history analyses were conducted. The results underscore the significant impact of SSI on the increase of peak tensile stress and interstorey drift ratios (IDRs), and highlight the influence of different strengthening techniques on the seismic response of historic load-bearing masonry structures. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

21 pages, 3168 KiB  
Article
Prediction on Slip Modulus of Screwed Connection for Timber–Concrete Composite Structures Based on Machine Learning
by Wen-Wu Lu, Yu-Wei Chen, Ji-Gang Xu, Hui-Feng Yang, Hao-Tian Tao, Wei Zheng and Ben-Kai Shi
Buildings 2025, 15(14), 2458; https://doi.org/10.3390/buildings15142458 - 13 Jul 2025
Viewed by 470
Abstract
Screwed connections are widely adopted in timber–concrete composite (TCC) structures. Owing to the diverse connection configurations and complex shear mechanisms, existing empirical models or theoretical formulas cannot accurately and efficiently predict the shear modulus of a screwed connection. Therefore, this study develops machine [...] Read more.
Screwed connections are widely adopted in timber–concrete composite (TCC) structures. Owing to the diverse connection configurations and complex shear mechanisms, existing empirical models or theoretical formulas cannot accurately and efficiently predict the shear modulus of a screwed connection. Therefore, this study develops machine learning (ML) algorithms to accurately predict the slip modulus. A data set including 222 sets of testing results was established by collecting the values of the slip modulus and associated ten features. Four ML methods, including decision tree (DT), random forest (RF), adaptive boosting machine (AdaBoost), and gradient boosting regression tree (GBRT), are adopted to develop the ML algorithm. The Shapley Additive Explanation (SHAP) framework was employed to interpret the effects of related features on the slip modulus. GBRT demonstrated the best accuracy compared with the other three ML methods in terms of four popular quantitative metrics. Moreover, all ML methods showed an evident accuracy advantage compared to existing analytical methods. Through a SHAP analysis, it was found that concrete strength, screw inclination, timber density, and timber type have a large impact on the slip modulus of a screwed connection compared to other input features. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

22 pages, 5614 KiB  
Article
Fatigue Design Research on Notch–Stud Connectors of Timber–Concrete Composite Structures
by Zuen Zheng, Shuai Yuan and Guojing He
Buildings 2025, 15(12), 2033; https://doi.org/10.3390/buildings15122033 - 12 Jun 2025
Viewed by 520
Abstract
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, [...] Read more.
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, stiffness degradation, and cumulative damage laws of connectors. Numerical simulations with up to 100 load cycles explored timber/concrete damage effects on stud fatigue performance. Based on the results, an S-N curve was established, a fatigue damage model developed, and a fatigue design method proposed for such connectors. Primary failure modes were stud fracture and local concrete crushing in notches. Stiffness degradation followed an inverted “S”-shaped “fast–slow–fast” pattern. Using residual slip as the damage variable, a two-stage fatigue damage evolution model was constructed from the damage–cycle ratio relationship, offering a new method for shear connector fatigue damage calculation in timber–concrete composites and enabling remaining life prediction for similar composite beam connectors. Finite element simulations of push-out specimens showed high consistency between calculated and experimental fatigue life/damage results, validating the conclusions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1551 KiB  
Article
Development and Validation of a Theoretical Model for Flexural Behavior in Timber-Concrete and Bamboo-Concrete Composite Beams
by Thaís P. L. Siqueira, M’hamed Y. R. da Glória, Enzo Martinelli and Romildo D. Toledo Filho
Buildings 2025, 15(12), 2021; https://doi.org/10.3390/buildings15122021 - 12 Jun 2025
Viewed by 645
Abstract
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the [...] Read more.
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the nonlinear interaction between materials and their mechanical connections. This study aims to develop and validate a finite element model to simulate the nonlinear flexural behavior of these composite beams. The model is based on an exact solution for two-layer elastic systems and incorporates nonlinear constitutive laws for concrete and timber/bamboo, along with a trilinear shear–slip law to represent interface behavior. Unlike most models, it is applicable to different connector types and a range of materials—including bamboo, timber, and both conventional and lightweight concrete. An incremental–iterative solution captures progressive deformations and failure mechanisms. Validation against 16 experimental beams showed accurate predictions of linear load capacity, mid-span deflection, and initial stiffness. Over 80% of the results showed deviations below 30%, and 50% were within 20%. The model also correctly captured the experimental failure mode in all cases. This approach provides a reliable and versatile tool for the structural analysis and design of composite beams. Full article
(This article belongs to the Special Issue Contemporary Applications of Wood in Architecture and Construction)
Show Figures

Figure 1

33 pages, 8892 KiB  
Article
Performance Analysis of Hybrid Steel–Concrete and Timber–Concrete Composite Pile Systems in Variable Density Sandy Soils Using Experimental and Numerical Insights
by Ibrahim Haruna Umar, Müge Elif Fırat, Hang Lin, Hamza Tijjani Shehu and Rihong Cao
Appl. Sci. 2025, 15(11), 5868; https://doi.org/10.3390/app15115868 - 23 May 2025
Viewed by 475
Abstract
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance [...] Read more.
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance foundation systems that are adaptable to diverse geotechnical conditions. The research evaluates the mechanical behavior of steel–concrete and timber–concrete hybrid piles, quantifying skin friction dynamics, combining eight (8) classical ultimate bearing capacity (UBC) methods (Vesic, Hansen, Coyle and Castello, etc.) with numerical simulations, and assessing load distribution across sand relative densities (10%, 35%, 50%, 75%, 95%). Laboratory investigations included the geotechnical characterization of Wudil River well-graded sand (SW), direct shear tests, and interface shear tests on composite materials. Relative densities were calibrated using electro-pneumatic compaction. Increasing Dr from 10% to 95% reduced void ratios (0.886–0.476) and permeability (0.01–0.0001 cm/s) while elevating dry unit weight (14.1–18.0 kN/m3). Skin friction angles rose from 12.8° (steel–concrete) to 37.4° (timber–concrete) at Dr = 95%, with timber interfaces outperforming steel by 7.4° at Dr = 10%. UBC for steel–concrete piles spanned from 353.1 kN (Vesic, Dr = 10%) to 14,379 kN (Vesic, Dr = 95%), while timber–concrete systems achieved 9537.5 kN (Hansen, Dr = 95%). PLAXIS simulations aligned closely with Vesic’s predictions (14,202 vs. 14,379 kN). The study underscores the significance of soil density, material interfaces, and method selection in foundation design. Full article
(This article belongs to the Special Issue Advances and Application of Construction Materials)
Show Figures

Graphical abstract

21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 377
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 7040 KiB  
Article
Experimental Investigation of Vibration Control in Timber–Concrete Composite (TCC) Floors Using Tuned Mass Damper
by Huifeng Yang, Xuhui Lu, Hao Sun, Yuxin Pan, Benkai Shi, Yifei Li and Haoyu Huang
Buildings 2025, 15(10), 1642; https://doi.org/10.3390/buildings15101642 - 13 May 2025
Viewed by 720
Abstract
Timber–concrete composite (TCC) floors are gaining popularity in sustainable construction due to their enhanced stiffness and structural efficiency. However, excessive vibrations, particularly those induced by human activity, pose significant challenges to occupant comfort and structural integrity. This study investigates the application of Tuned [...] Read more.
Timber–concrete composite (TCC) floors are gaining popularity in sustainable construction due to their enhanced stiffness and structural efficiency. However, excessive vibrations, particularly those induced by human activity, pose significant challenges to occupant comfort and structural integrity. This study investigates the application of Tuned Mass Dampers (TMDs) to mitigate vibrations in TCC floors, with a focus on enhancing damping performance through the incorporation of pre-strained Shape Memory Alloys (SMAs) (Kellogg’s Research Labs, New Boston, NH, USA). A novel pre-strained SMA–TMD system was designed and experimentally tested to evaluate its effectiveness in vibration control under various loading conditions. The results demonstrate that pre-straining significantly increases the damping ratio of the SMA–TMD, improving its vibration mitigation capability. Compared to non-pre-strained SMA–TMD, the pre-strained SMA–TMD system exhibited superior adaptability and robustness in reducing floor vibrations, achieving a peak acceleration reduction of up to 49.91%. These findings provide valuable knowledge into the development of advanced damping solutions for timber floors, contributing to the broader application of vibration control strategies in sustainable and high-performance building systems. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

18 pages, 5896 KiB  
Article
Efficiency of Alternative Reinforcement Methods for Wooden Ceilings and Their Ecological Aspects
by Karl Deix, Christian Huber and Josip Gogic
Materials 2025, 18(9), 2032; https://doi.org/10.3390/ma18092032 - 29 Apr 2025
Viewed by 401
Abstract
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the [...] Read more.
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the beams with structural steel or fiber composites (aramid or carbon-fiber-reinforced polymer). This work investigates how significant effects on the load-bearing and deformation behavior can be achieved with these materials in terms of construction practice. The article is intended to show structural engineers which reinforcement measures lead to which forces, deformations, etc., and how these are utilized. This should form the basis for the planning of reinforcement measures, as it is not clear from the beginning whether AFRP, CFRP, or steel is the most suitable material. For this purpose, a comparative parameter study was carried out under practical conditions and with a variable degree of reinforcement using the corresponding formulas. The internal forces in the timber and reinforcement cross-sections, the deflection behavior, and the failure loads at the strength and design levels were calculated. It was demonstrated that, particularly for steel and carbon-fiber-reinforced polymer (CFRP) reinforcements, significant increases in the ultimate load can be achieved and the often-important deformation behavior can be significantly improved. Especially the steel variant leads to high improvements in deflection and breaking load behavior, with the base material (wood) also being utilized more economically as a result. A comparative ecological study in the form of the global warming potential showed that reinforcement methods are also advantageous from the point of view of sustainability compared to renovations with timber concrete composite slabs or new concrete slabs. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 2 | Viewed by 1027
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

16 pages, 5351 KiB  
Article
Recycling of Building Interior Decoration and Renovation Waste: A Case Study in China
by Wenjia Pan, Hong Zhang, Shanggang Hei, Yingjian Yang, Xifeng Xu, Chao Zhou, Baolin Huang and Haochen Xu
Buildings 2025, 15(2), 252; https://doi.org/10.3390/buildings15020252 - 16 Jan 2025
Viewed by 1057
Abstract
Of all the construction waste, the building interior decoration and renovation waste (D&R waste) is difficult to dispose of and recycle due to its complex components and varied producers. The goal of this study is to reveal the current situation of D&R waste [...] Read more.
Of all the construction waste, the building interior decoration and renovation waste (D&R waste) is difficult to dispose of and recycle due to its complex components and varied producers. The goal of this study is to reveal the current situation of D&R waste disposal through case studies and put forward the correlation proposal to improve standards of D&R waste recycling. This study investigated the various stages of the D&R waste management process, including generation, collection, transportation, sorting, recycling, and landfilling. Detailed studies were conducted for (i) the composition of D&R waste and (ii) the material flow analysis (MFA) of D&R waste recycling in different cases with different sorting technology. The results show that (i) concrete, stone, and other hard inorganic materials accounted for about 35–55% of the total. Soft inorganic materials such as aerated concrete and gypsum made up 5–25%, slag 15–20%, timber 5–10%, combustible matter such as plastic, rubber, and paper 9–12%, and glass and metal 1–5%, and (ii) artificial intelligence (AI) sorting offers better sorting performance and economic advantages over manual sorting, promoting the application of artificial AI sorting equipment as important solutions to face the key challenges of D&R waste recycling. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3484 KiB  
Review
Performance of Timber-Concrete Composite (TCC) Systems Connected with Inclined Screws: A Literature Review
by Shadi Esmaeildoust, Douglas Tomlinson and Ying Hei Chui
J. Compos. Sci. 2025, 9(1), 13; https://doi.org/10.3390/jcs9010013 - 2 Jan 2025
Cited by 1 | Viewed by 1376
Abstract
Timber–concrete composite (TCC) systems present a viable alternative to conventional timber or reinforced concrete systems. TCC leverages the advantages of both materials, resulting in an enhanced composite structure. Historically, traditional mechanical connectors such as nails, bolts, and dowels have been used in TCC [...] Read more.
Timber–concrete composite (TCC) systems present a viable alternative to conventional timber or reinforced concrete systems. TCC leverages the advantages of both materials, resulting in an enhanced composite structure. Historically, traditional mechanical connectors such as nails, bolts, and dowels have been used in TCC systems to join timber and concrete components. However, these connectors often fall short in providing sufficient load transfer efficiency. Therefore, the use of screws and, more recently, inclined screws in TCC systems has increased due to their enhanced load transfer efficiency and greater stiffness compared to traditional connections. This review paper consolidates findings from contemporary experimental studies and analytical models, examining the influence of factors such as screw type and inclination angle on the performance of TCC systems for both connection and beam specimens in ultimate and serviceability limit states. Key issues addressed include the shear strength, stiffness, and long-term behaviour of the connection type. By offering a comprehensive synthesis of existing knowledge, this paper aims to inform design practices and contribute to the development of more resilient and efficient TCC systems, supporting their increased adoption in sustainable construction. Full article
(This article belongs to the Special Issue Research on Sustainable Cement-Based Composites)
Show Figures

Figure 1

21 pages, 8384 KiB  
Article
Axial Compression Performance Test and Bearing Capacity Calculation Method of Square Steel Tube–Timber–Concrete Composite L-Shaped Columns
by Weisu Weng, Haonan Lv, Bo Liu, Minli Zhang, Ziteng Jing, Jianghao Hu and Shuqian Hu
Buildings 2024, 14(12), 4001; https://doi.org/10.3390/buildings14124001 - 17 Dec 2024
Cited by 1 | Viewed by 996
Abstract
The square steel tube–timber–concrete composite L-shaped columns are lighter in weight due to the inclusion of wood and exhibit superior seismic performance. This combination not only reduces transportation and labor costs but also enhances earthquake resistance. The wood contributes lightness and flexibility, the [...] Read more.
The square steel tube–timber–concrete composite L-shaped columns are lighter in weight due to the inclusion of wood and exhibit superior seismic performance. This combination not only reduces transportation and labor costs but also enhances earthquake resistance. The wood contributes lightness and flexibility, the steel provides strength, and the concrete offers excellent compressive performance, thereby achieving an optimized design for performance. To investigate the axial compression performance of square steel tube–timber–concrete composite L-shaped short columns, axial compression tests were conducted on eight groups of L-shaped columns. The study examined ultimate load, failure modes, load–displacement relationships, initial stiffness, ductility, and bearing capacity improvement factors under different slenderness ratios, steel tube wall thicknesses, and wood content rates. The results show that the mechanical performance of the composite columns is excellent. Local buckling of the steel tube is the primary failure mode, with ‘bulging bands’ forming at the middle and ends. When the wood content reaches 25%, the synergy between the steel tube, concrete, and wood is optimal, significantly enhancing ductility and bearing capacity. The ductility of the specimen increased by 31.1%, and the bearing capacity increased by 4.14%. The bearing capacity increases with the steel tube wall thickness but decreases with increasing slenderness ratio. Additionally, based on the Mander principle and considering the partitioned constraint effects of concrete, a simplified calculation method for the axial compressive bearing capacity was proposed using the superposition principle. This method was validated to match well with the test results and can provide a reference for the design and application of these composite L-shaped columns. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 13927 KiB  
Article
Longitudinal Shear in Timber–Concrete Composites with Flexible Adhesive Connections—Experimental and Numerical Investigations
by Klaudia Śliwa-Wieczorek, Armando La Scala, Wit Derkowski and Eva Binder
Materials 2024, 17(24), 6055; https://doi.org/10.3390/ma17246055 - 11 Dec 2024
Viewed by 987
Abstract
Timber–concrete composites are established structural elements to combine the advantageous properties of both materials by connecting them. In this work, an innovative flexible adhesive connection in different configurations is investigated. Load-bearing capacity, stiffness, and the failure modes were first experimentally investigated by performing [...] Read more.
Timber–concrete composites are established structural elements to combine the advantageous properties of both materials by connecting them. In this work, an innovative flexible adhesive connection in different configurations is investigated. Load-bearing capacity, stiffness, and the failure modes were first experimentally investigated by performing push-out tests. Subsequently, a numerical evaluation using ABAQUS 2017/Standard software was carried out in order to develop a three-dimensional numerical model. The Cohesive Zone Model (CZM) is employed to represent the adhesive characteristics at the contact areas between the Cross-Laminated Timber (CLT) and concrete elements. Three different connection configurations were evaluated, each consisting of five push-out specimens. The study investigates the impact of bonding surface area and the alignment of prefabricated glue strips with the load direction on the connection’s longitudinal shear load-bearing capacity, stiffness, and slip modulus. In addition, the impact of cyclic loads and the impact of time on displacements were analyzed. The average load capacity of the full surface connection (type A) is 44.5% and 46.2% higher than the vertical adhesive strips (type B) and the horizontal adhesive strips (type C), respectively. However, the initial stiffness of the tested joints depends on the orientation of the prefabricated adhesive fasteners, being approximately 20% higher when the bonding elements are aligned parallel to the load direction compared to when they are oriented perpendicularly. Full article
Show Figures

Figure 1

25 pages, 7729 KiB  
Article
A Fast-Calibrated Computational Fluid Dynamic Model for Timber–Concrete Composite Ventilated Façades
by Sofia Pastori, Mohammed-Sadegh Salehi, Stefan Radl and Enrico Sergio Mazzucchelli
Buildings 2024, 14(11), 3567; https://doi.org/10.3390/buildings14113567 - 9 Nov 2024
Viewed by 1042
Abstract
Timber–concrete composite (TCC) systems join the positive aspects of engineered wood products (good seismftaic behaviour, low thermal conductivity, environmental sustainability, good behaviour under fire if appropriately designed) with those of concrete (high thermal inertia, durability, excellent fire resistance). TCC facades are typically composed [...] Read more.
Timber–concrete composite (TCC) systems join the positive aspects of engineered wood products (good seismftaic behaviour, low thermal conductivity, environmental sustainability, good behaviour under fire if appropriately designed) with those of concrete (high thermal inertia, durability, excellent fire resistance). TCC facades are typically composed of an internal insulated timber-frame wall and an external concrete slab, separated by a ventilated air cavity. However, there is very limited knowledge concerning the performance of TCC facades, especially concerning their thermal behaviour. The present paper deals with the development and optimization of a 2D Computational Fluid Dynamic (CFD) model for the analysis of TCC ventilated façades’ thermal behaviour. The model is calibrated and validated against experimental data collected during the annual monitoring of a real TCC ventilated envelope in the north of Italy. Also, a new solver algorithm is developed to significantly speed up the simulation (i.e., 45 times faster simulation at an error below 3.5 °C compared to a typical CFD solver). The final model can be used for the time-efficient analysis (simulation time of approximately 23 min for a full day in real-time) and the optimization of the thermal performance of TCC ventilated facades, as well as other ventilated facades with external massive cladding. Our simulation strategy partially avoids the expensive and time-consuming construction of mock-ups, or the use of comparably slow (conventional) CFD solvers that are less suitable for optimization studies. Full article
(This article belongs to the Special Issue Thermal Fluid Flow and Heat Transfer in Buildings)
Show Figures

Figure 1

16 pages, 6578 KiB  
Article
Behaviour Analysis of Beam-Type Timber and Timber-Concrete Composite Panels
by Elza Briuka, Dmitrijs Serdjuks, Pavel Akishin, Genadijs Sahmenko, Andrejs Podkoritovs and Raimonds Ozolins
Appl. Sci. 2024, 14(16), 7403; https://doi.org/10.3390/app14167403 - 22 Aug 2024
Cited by 1 | Viewed by 1080
Abstract
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of [...] Read more.
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of flexure-tested specimens were analysed as follows: (1) timber panels (1400 mm × 400 mm) with two 100 mm thick CLT panels and two 60 mm thick CLT panels reinforced with 150 × 80 mm timber ribs; (2) eight specimens (600 mm × 100 mm × 150 mm) with CLT members (600 mm × 100 mm × 100 mm) connected to a 50 mm concrete layer using granite chips and Sikadur-31 (AB) epoxy adhesive; (3) six CLT panels (1400 mm × 400 mm × 50 mm) bonded to a 50 mm concrete layer, with two panels containing polypropylene microfibres and two panels incorporating polyethene dowels for mechanical connection. Specimens were subjected to three-point bending tests and analysed using the transformed section method, γ-method, and finite element method with ANSYS 2023R2 software. Results indicated a 53% increase in load-carrying capacity for ribbed CLT panels with no additional material consumption, a 24.8–41.1% increase for CLT panels strengthened with a concrete layer, and improved ductility and prevention of disintegration in timber-concrete composites with polypropylene microfibres. Full article
(This article belongs to the Special Issue Latest Advances in Cement and Concrete Composites: 2nd Edition)
Show Figures

Figure 1

Back to TopTop