Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = tie rod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 12965 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme? Part I: A Review on the Provenance, Evolution and Properties of the System
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 32; https://doi.org/10.3390/cmtr18030032 - 12 Jul 2025
Cited by 1 | Viewed by 822
Abstract
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its [...] Read more.
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its technical and functional features. Results: The Matrix WaveTM System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion. Conclusion: The Matrix WaveTM MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of “omnidirectional” in-situ-bending provides a distinctive feature not found in alternate MMF solutions. Full article
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 276
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

22 pages, 12499 KiB  
Article
Optimization of Structural Configuration and Ridge Height for Large-Span Insulated Plastic Greenhouse Based on Finite Element Analysis
by Xiaoxing Dong, Fengzhi Piao, Nanshan Du, Han Dong, Tao Zhang, Yanping Qin, Yaling Li and Zhixin Guo
Agriculture 2025, 15(13), 1333; https://doi.org/10.3390/agriculture15131333 - 21 Jun 2025
Viewed by 310
Abstract
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability [...] Read more.
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability of large-span insulated plastic greenhouses with different structural configurations were investigated using the finite element method. Subsequently, the ultimate bearing capacity of large-span insulated plastic greenhouses with varying ridge heights was examined. The research indicated that the greenhouse with a plane truss and double-layer tie rod exhibited the smallest deformation and stress in its members, as well as the highest ultimate load-bearing capacity. The analysis revealed that the installation of double-layer tie rods not only enhanced the collaborative effect of arch frames within the structural calculation unit but also reduced displacement along the Z direction, effectively mitigated the P- effect, reduced out-of-plane bending stress, and improved the ultimate load-bearing capacity. Ridge height affected the load-bearing capacity of the greenhouse structure. However, a higher ridge height did not necessarily result in a stronger ultimate load-bearing capacity. The greenhouse structure with a ridge height of 5 m demonstrated the maximum ultimate load-bearing capacity, capable of bearing 1.98 times the initial load. This study provides theoretical support for the configuration of structural components of large-span insulated plastic greenhouses and offers a scientific basis for the optimal design of ridge height. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 8657 KiB  
Article
The Influence of Stone Cladding Elements on the Seismic Behaviour of a Bell Tower
by Luciana Di Gennaro, Mariateresa Guadagnuolo, Mariano Nuzzo and Giuseppe Faella
Buildings 2025, 15(10), 1700; https://doi.org/10.3390/buildings15101700 - 17 May 2025
Viewed by 312
Abstract
Bell towers, due to their slender geometry and structural configuration, are among the buildings most susceptible to deterioration from weathering and seismic events. These aspects influence the structural assessment of these historic towers, which is essential for their conservation and maintenance. The “Carmine [...] Read more.
Bell towers, due to their slender geometry and structural configuration, are among the buildings most susceptible to deterioration from weathering and seismic events. These aspects influence the structural assessment of these historic towers, which is essential for their conservation and maintenance. The “Carmine Maggiore” bell tower in Naples (Italy) has been an important and prominent landmark of the city for centuries. It is square in plan and 72 m high. Over time, it suffered extensive damage and was severely damaged by the earthquake of 1456. Reconstruction began in the first decade of the 17th century and the original design was modified, adding two stories and changing the shape of the plan to octagonal. In the centuries that followed, the structure was damaged again and further interventions were carried out, adding tie-rods and replacing damaged elements. Today, the bell tower has very elaborate façades with mouldings and decorations, so that the supporting structure appears to be covered with plaster, stucco, and stone elements. This paper describes the results of FEM analyses of the bell tower, obtained from models with different levels of complexity to evaluate the influence of stone cladding elements on the seismic behaviour. In particular, the difference in the IS safety indices, calculated as the ratio of capacity to demand, exceeds 15%, due to the mechanical consistency of the cladding elements, which contribute significantly to both stiffness and strength. Full article
(This article belongs to the Special Issue Mechanics of Masonry Towers)
Show Figures

Figure 1

29 pages, 6722 KiB  
Article
Experimental Investigation of the Flexural Bearing Capacity of Pull-Up Cantilever Scaffolds with Adjustable Steel Tie Rods
by Zhanbo Huang, Jianjun Yang, Shizhong Zhou, Chenyang Zhang and Jintao Yang
Buildings 2025, 15(6), 861; https://doi.org/10.3390/buildings15060861 - 10 Mar 2025
Viewed by 803
Abstract
This study presents experimental investigations of the flexural bearing capacity of the lower load-bearing structures of pull-up cantilever scaffolds with adjustable steel tie rods. First, load-bearing structures with three different specifications are tested to analyze their primary failure modes and failure mechanisms. The [...] Read more.
This study presents experimental investigations of the flexural bearing capacity of the lower load-bearing structures of pull-up cantilever scaffolds with adjustable steel tie rods. First, load-bearing structures with three different specifications are tested to analyze their primary failure modes and failure mechanisms. The experimental results are then simulated and validated using a finite element analysis (FEA) method. Subsequently, an extended parametric analysis is performed numerically, and a simplified calculation formula is derived through nonlinear curve fitting to evaluate the load-bearing capacity. Finally, the effects of the transverse spacing of the vertical rods, the length of the cantilever beams, and the spacing of the hanging ears on the flexural bearing capacity of the structures are analyzed. Full article
Show Figures

Figure 1

14 pages, 3881 KiB  
Article
Tension Estimation in Anchor Rods Using Multimodal Ultrasonic Guided Waves
by Thilakson Raveendran and Frédéric Taillade
Sensors 2025, 25(6), 1665; https://doi.org/10.3390/s25061665 - 7 Mar 2025
Cited by 1 | Viewed by 542
Abstract
The diagnosis of post-stressed anchor rods is essential for maintaining the service and ensuring the safety of Electricité de France (EDF) structures. These rods are critical for the mechanical strength of structures and electromechanical components. Currently, the standard method for estimating the effective [...] Read more.
The diagnosis of post-stressed anchor rods is essential for maintaining the service and ensuring the safety of Electricité de France (EDF) structures. These rods are critical for the mechanical strength of structures and electromechanical components. Currently, the standard method for estimating the effective tension of post-stressed tie rods with a free length involves measuring the residual force using a hydraulic jack. However, this method can be costly, impact the structure’s operation, and pose risks to employees. Until now, there has been no reliable on-field approach to estimating residual tension using a lightweight setup. This research introduces a nondestructive method using multimodal ultrasonic guided waves to evaluate the residual tension of anchor rods with a few centimeters free at one end. The methodology was developed through both laboratory experiments and simulations. This new method allows for the extraction of dispersion curves for the first three modes, bending, torsional, and longitudinal, using time–frequency analysis and enables the estimation of the steel bar’s properties. Future work will focus on applying this methodology in the field. Full article
Show Figures

Figure 1

21 pages, 10984 KiB  
Article
Lumped Parameter Model for Structural Analysis of Over-Constrained Multi-Legged Parallel Mechanism Supporting System Applied to Cryogenic Devices
by Luca Piacentini, Luca Dassa, Diego Perini, Andris Ratkus, Toms Torims and Stefano Uberti
Machines 2025, 13(2), 129; https://doi.org/10.3390/machines13020129 - 8 Feb 2025
Viewed by 494
Abstract
While the design of a cryostat is being developed, one of the most relevant sub-systems is the internal supporting system that sustains the cooled component. According to the literature, the arrangement and number of supports chosen often result in a multi-leg over-constrained architecture. [...] Read more.
While the design of a cryostat is being developed, one of the most relevant sub-systems is the internal supporting system that sustains the cooled component. According to the literature, the arrangement and number of supports chosen often result in a multi-leg over-constrained architecture. These are usually studied by means of finite element analysis tools alone, which makes studies like the optimization of supporting systems computationally expensive. This paper proposes a more structured and general analytical model compared to the existing models for this application. The proposed lumped parameter model allows designers to study the influence of external loads, pre-load, and cool-down on stress levels and deformation status of the supports of the cryogenic device as well as the consequent misalignment of the cooled component. The general lumped parameter model for n tie-rods of different shapes, dimensions, and materials is proposed. Two particularized models of eight and eleven supports are validated by comparing the results with those from standard finite element analysis software. Results show that the proposed model has a strong agreement with finite element simulations, and the median of relative errors is about 1.4%. This accuracy is obtained for models of randomly arranged supports, which proves the effectiveness of the model in predicting results even for non-symmetrical support configurations. Comparable and accurate results are obtained, which are about 130 times faster than in finite element analysis, thus proving the effective reduction in computational cost. Additionally, the proposed code lets designers change input parameters in a quicker and reliable way. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

14 pages, 4090 KiB  
Article
Trial Design of a Truss Bridge Prefabricated Using a Rectangular Steel Tube—Ultra-High-Performance Concrete Composite
by Shujie Shang, Lei Jiang, Yongquan Dong, Zhengbo Li and Runsheng Pei
Appl. Sci. 2024, 14(23), 11244; https://doi.org/10.3390/app142311244 - 2 Dec 2024
Viewed by 2471
Abstract
In order to promote the development of bridge assembly technology and accelerate the application of rectangular steel-tube–concrete composite truss bridges, this study focuses on the Yellow River Diversion Jiqing Main Canal Bridge as the engineering example and conducts a numerical analysis of a [...] Read more.
In order to promote the development of bridge assembly technology and accelerate the application of rectangular steel-tube–concrete composite truss bridges, this study focuses on the Yellow River Diversion Jiqing Main Canal Bridge as the engineering example and conducts a numerical analysis of a rectangular steel-tube–concrete composite truss bridge. Based on the results of the analysis, structural optimization is achieved in three dimensions—structural design, construction methods, and force analysis—leading to the establishment of key design parameters for through-type ultra-high-performance rectangular steel-tube–concrete composite truss bridges. The results show that filling the hollow sections with ultra-high-strength concrete can significantly enhance the load-bearing capacity. Additionally, employing prestressed concrete components addresses the bending and tensile load capacity challenges of composite structures, thus maximizing the material strength advantages. The proposed preliminary design scheme incorporates prestressed PBL-reinforced tie rods filled with ultra-high-performance concrete with optimal design parameters, such as high span ratios, wide span ratios, and ideal segment lengths, are suggested to ensure that the strength, stiffness, and stability comply with relevant standards. While ensuring that the structure meets safety, applicability, and durability criteria, the preliminary design scheme reduces steel usage by 23.5%, concrete usage by 11.6%, and overall costs by 17.29% compared to the original design. The proposed design demonstrates distinct advantages over the original in terms of mechanical performance, construction efficiency, economic viability, and durability, highlighting its promising application potential. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 15633 KiB  
Article
Control Study on Surrounding Rock of Gob-Side Entry Retaining below near Distance Goaf
by Shengrong Xie, Zaisheng Jiang, Dongdong Chen, Liwei Zhai and Zhiqiang Yan
Processes 2024, 12(9), 1966; https://doi.org/10.3390/pr12091966 - 12 Sep 2024
Cited by 3 | Viewed by 887
Abstract
To explore the control technology on surrounding rock of gob-side entry retaining (GSER) below a goaf in a near distance coal seam (NDCS), research was conducted on the floor ruin range, the floor stress distribution features, the layout of the GSER below near [...] Read more.
To explore the control technology on surrounding rock of gob-side entry retaining (GSER) below a goaf in a near distance coal seam (NDCS), research was conducted on the floor ruin range, the floor stress distribution features, the layout of the GSER below near distance goaf, the width of the roadside filling wall (RFW), and the control technology of the GSER surrounding rock below the near distance goaf after upper coal seam (UCS) mining. The results show that (1) the stress of the goaf floor has obvious regional features, being divided into stress high value zone (Zone A), stress extremely low zone (Zone B), stress rebound zone (Zone C), stress transition zone (Zone D), and stress recovery zone (Zone E) according to different stress states. The stress distribution features at different depths below the goaf floor in each zone also have differences. (2) Arranging the roadway in Zone A below a coal pillar, the roadway is at high stress levels, which is not conducive to the stability of the surrounding rock. Arranging the roadway in Zone B below the goaf floor, the bearing capacity of the surrounding rock itself is weak, making it difficult to control the surrounding rock. Arranging the roadway in Zone C, the mechanical properties of the surrounding rock are good, and the difficulty of controlling the surrounding rock is relatively low. Arranging the roadway in Zone D and Zone E, there is a relatively small degree of stress concentration in the roadway rib. (3) When the RFW width is 0.5–1.5 m, stress concentration is more pronounced on the solid coal rib, and the overlying rock pressure is mainly borne by the solid coal rib, with less stress on the RFW. When the RFW width is 2~3 m, the stress on the RFW is enhanced, and the bearing capacity is significantly increased compared to RFW of 0.5–1.5 m width. The RFW contributes to supporting the overlying rock layers. (4) A comprehensive control technology for GSER surrounding rock in lower coal seam (LCS) has been proposed, which includes the grouting modification of coal and rock mass on the GSER roof, establishing a composite anchoring structure formed by utilizing bolts (cables); the strong support roof and control floor by one beam + three columns, reinforcing the RFW utilizing tie rods pre-tightening; and the hydraulic prop protection RFW and bolts (cables) protection roof at roadside. This technology has been successfully applied in field practice. Full article
Show Figures

Figure 1

18 pages, 10832 KiB  
Article
Stability Investigation of Fully Recycled Support System of Steel-Pipe-Anchored Sheet Pile in Soft Soil Excavation
by Peng Li, Gang Wu, Junjie Yang and Qiang Liu
Appl. Sci. 2024, 14(13), 5485; https://doi.org/10.3390/app14135485 - 24 Jun 2024
Cited by 2 | Viewed by 1728
Abstract
As a temporary project, the supporting system of excavation often encounters issues such as the waste of support components, environmental pollution, and high carbon emissions. This article presents a foundation pit support technology that utilizes steel tube anchorage sheet piles, which can be [...] Read more.
As a temporary project, the supporting system of excavation often encounters issues such as the waste of support components, environmental pollution, and high carbon emissions. This article presents a foundation pit support technology that utilizes steel tube anchorage sheet piles, which can be assembled and fully recycled. The composition of the support system is also introduced. Furthermore, a large-scale model test of steel-pipe-anchored sheet piles was designed and implemented. The displacement of each component of system and stability during excavation were investigated using 3D finite element modeling and analysis. The study results indicate that the deformation and failure mode of the model foundation under the steel-pipe-anchored sheet pile support system are closely related to the distance between the pipe pile and the sheet pile. When the distance is 10 cm, both the pipe pile and the sheet pile tilt simultaneously. When the distance is approximately 30–50 cm, the sliding surface becomes exposed from the position of the pipe pile. At distances up to 100 cm, the sliding surface is exposed between the pipe pile and the sheet pile. The anchoring effect of pipe piles and tie rods can effectively reduce the horizontal displacement of the sheet pile itself. The horizontal displacement at the top of both the pipe pile and sheet pile remains consistent throughout the excavation period of this model foundation. During excavation, measured earth pressure on the sheet pile is less with theoretical active earth pressure. After excavation, the maximum horizontal displacement of the top of the pipe pile exhibits a hyperbolic relationship with excavation depth. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 7723 KiB  
Article
Bayesian Updating for Random Tensile Force Identification of Ancient Tie Rods Using Modal Data
by Chiara Pepi and Massimiliano Gioffrè
Appl. Sci. 2024, 14(9), 3698; https://doi.org/10.3390/app14093698 - 26 Apr 2024
Cited by 2 | Viewed by 1383
Abstract
Tie rods play a crucial role in civil engineering, particularly in controlling lateral thrusts in arches and vaults, and enhancing the structural integrity of masonry buildings, both historic and contemporary. Accurately assessing the tensile axial forces in tie rods is challenging due to [...] Read more.
Tie rods play a crucial role in civil engineering, particularly in controlling lateral thrusts in arches and vaults, and enhancing the structural integrity of masonry buildings, both historic and contemporary. Accurately assessing the tensile axial forces in tie rods is challenging due to the limitations of existing methodologies. These methodologies often rely on indirect measurements, computational models, and optimization procedures, resulting in single-point solutions and neglecting both modeling and measurement uncertainties. This study introduces a novel Bayesian updating framework to effectively address these limitations. The framework aims to accurately identify the structural parameters influencing tie rod behavior and estimate uncertainties using natural frequencies as references. A key innovation lies in the mathematical formulation of Bayesian updating, which is founded upon the definition of computational models integrating uncertain updating parameters and latent random variables derived from a rigorous sensitivity analysis aimed at quantifying the impact of the updating parameters on the natural frequencies. Notably, the application of Bayesian updating to the structural identification problem of ancient tie rods represents a significant advancement. The framework provides a comprehensive description of the uncertainties associated with computational models, offering valuable insights for practitioners and researchers alike. Moreover, the results of the sensitivity analysis serve as a valuable tool for setting up inverse problems geared towards accurately identifying tensile axial forces. Full article
Show Figures

Figure 1

18 pages, 11992 KiB  
Article
A Scaffolding Assembly Deficiency Detection System with Deep Learning and Augmented Reality
by Ren-Jye Dzeng, Chen-Wei Cheng and Ching-Yu Cheng
Buildings 2024, 14(2), 385; https://doi.org/10.3390/buildings14020385 - 1 Feb 2024
Cited by 7 | Viewed by 3043
Abstract
Scaffoldings play a critical role as temporary structures in supporting construction processes. Accidents at construction sites frequently stem from issues related to scaffoldings, including insufficient support caused by deviations from the construction design, insecure rod connections, or absence of cross-bracing, which result in [...] Read more.
Scaffoldings play a critical role as temporary structures in supporting construction processes. Accidents at construction sites frequently stem from issues related to scaffoldings, including insufficient support caused by deviations from the construction design, insecure rod connections, or absence of cross-bracing, which result in uneven loading and potential collapse, leading to casualties. This research introduces a novel approach employing deep learning (i.e., YOLO v5) and augmented reality (AR), termed the scaffolding assembly deficiency detection system (SADDS), designed to aid field inspectors in discerning deficiencies within scaffolding assemblies. Inspectors have the flexibility to utilize SADDS through various devices, such as video cameras, mobile phones, or AR goggles, for the automated identification of deficiencies in scaffolding assemblies. The conducted test yielded satisfactory results, with a mean average precision of 0.89 and individual precision values of 0.96, 0.82, 0.90, and 0.89 for qualified frames and frames with the missing cross-tie rod, missing lower-tie rod, and missing footboard deficiencies, respectively. Subsequent field tests conducted at two construction sites demonstrated improved system performance compared to the training test. Furthermore, the advantages and disadvantages of employing mobile phones and AR goggles were discussed, elucidating certain limitations of the SADDS system, such as self-occlusion and efficiency issues. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

14 pages, 6525 KiB  
Article
Comparison and Selection of Multiple Construction Schemes for the Large-Span and Heavy-Load Transfer Truss
by Tao Lan, Guangjie Xing, Guangchong Qin, Zexu Li and Ruixiang Gao
Buildings 2023, 13(12), 3056; https://doi.org/10.3390/buildings13123056 - 8 Dec 2023
Viewed by 4692
Abstract
The main building of Zone II of Zhanjiang Bay Laboratory R&D Building adopts a steel frame–core tube shear wall structure system, with a 53.4 m large-span and heavy-load-transfer truss on the fourth floor. In order to propose the optimal construction and installation scheme [...] Read more.
The main building of Zone II of Zhanjiang Bay Laboratory R&D Building adopts a steel frame–core tube shear wall structure system, with a 53.4 m large-span and heavy-load-transfer truss on the fourth floor. In order to propose the optimal construction and installation scheme for the large-span and heavy-load-transfer truss, the simplified model, single model, and 3D model are utilized to compare Scheme 1 with rigid connection and Scheme 2 with elastic connection and rigid connection. After completing the construction of the underground layer and towers on both sides, in Scheme 1, the fourth-floor transfer truss is directly connected to the towers on both sides in a rigid manner. Subsequently, the support at the bottom of the transfer truss is removed, allowing for layer-by-layer construction. The transfer truss remains rigidly connected to both side towers throughout. On the other hand, in Scheme 2, initially, the transfer truss is connected to both side towers through upper chords and diagonal bars before being constructed upwards until reaching the sixth floor. Once formed as a whole with two floors above using large diagonal tie rods, lower chords of the large-span and heavy-load-transfer truss are then connected with another diagonal bar to establish a rigid connection between the transfer truss and towers; thereafter, upward construction continues. Following completion of constructing a seven-story large diagonal tie rod, whereupon removal of support at the bottom of the conversion truss occurs, subsequent layer-by-layer construction takes place accordingly. It has been observed that employing Scheme 2 can enhance stress distribution within core barrel shear walls as well as transfer trusses while ensuring deflection and stress levels meet requirements for the large-span and heavy-load-transfer truss, thereby rendering structural stress more rationalized, leading to significantly improved overall safety. Full article
(This article belongs to the Special Issue Advancements in Large-Span Steel Structures and Architectural Design)
Show Figures

Figure 1

26 pages, 7758 KiB  
Article
Assessment of Safety of Masonry Buildings near Deep Excavations: Ultimate Limit States
by Radosław Jasiński, Slavka Harabinova, Kamila Kotrasova and Izabela Skrzypczak
Buildings 2023, 13(11), 2803; https://doi.org/10.3390/buildings13112803 - 8 Nov 2023
Cited by 1 | Viewed by 1355
Abstract
It is a common practice to construct new buildings in the close vicinity of existing buildings. New buildings require deep excavations, which cause non-uniform displacement of the ground, causing a negative impact on the safety and technical conditions of adjacent buildings, including masonry [...] Read more.
It is a common practice to construct new buildings in the close vicinity of existing buildings. New buildings require deep excavations, which cause non-uniform displacement of the ground, causing a negative impact on the safety and technical conditions of adjacent buildings, including masonry buildings. The fundamental condition to verify structural safety is the knowledge of impacts and the load-bearing capacity of non-strengthened or strengthened structures. Safety is provided via strengthening the structure against deformations related to the ground displacement or by reducing non-uniform displacements of the building structure. This paper focuses on strengthening the ground and underground parts of masonry buildings. It also describes general requirements for providing safety of buildings according to the standard Eurokode 0 and the simplified method for protecting building structures with the use of steel tie rods. Based on the design methods for masonry structures specified in Eurocode 6 and the know-how of the authors in the field of protecting buildings in mining areas, the original method was proposed to determine the required area of reinforcement in the form of steel rods. Also, the original methods were introduced to verify ULS for inclined walls primarily under vertical load and shearing of pillars between openings. In addition to these analytical methods, this paper also illustrates methods for strengthening the ground and underground parts of masonry buildings. Presented in this paper, original solutions used to determine the strengthening of masonry structures and original models used to verify ULS for deflected walls primarily under vertical load can be directly employed in the design practice. The standard criteria were applied and the effects of building deflections, which are not specified in Eurocode 6, were considered. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

17 pages, 11646 KiB  
Article
Enhancing Contrast of Spatial Details in X-ray Phase-Contrast Imaging through Modified Fourier Filtering
by Bei Yu, Gang Li, Jie Zhang, Yanping Wang, Tijian Deng, Rui Sun, Mei Huang and Gangjian Guaerjia
Photonics 2023, 10(11), 1204; https://doi.org/10.3390/photonics10111204 - 28 Oct 2023
Viewed by 1627
Abstract
In-line X-ray phase contrast imaging, which is simple to experiment with, provides significantly higher sensitivity, compared to conventional X-ray absorption imaging. The inversion of the relationship between recorded Fresnel diffraction intensity and the phase shift induced by the object is called phase retrieval. [...] Read more.
In-line X-ray phase contrast imaging, which is simple to experiment with, provides significantly higher sensitivity, compared to conventional X-ray absorption imaging. The inversion of the relationship between recorded Fresnel diffraction intensity and the phase shift induced by the object is called phase retrieval. The transport of intensity equation (TIE), a simple method of phase retrieval, which is solved by the fast Fourier transform algorithm proposed by Paganin et al., has been widely adopted. However, the existing method suffers from excessive suppression of high-frequency information, resulting in loss of image details after phase retrieval, or insufficient detail contrast, leading to blurry images. Here, we present a straightforward extension of the two-distance FFT-TIE method by modifying the Fourier filter through the use of a five-point approximation to calculate the inverse Laplacian in a discrete manner. Additionally, we utilize a combination of continuous Fourier transform and a four-point approximation to compute the gradient operator. The method is evaluated by simulating samples with a shape similar to the resolution test map and by using a photograph of a dog for further evaluation. The algorithm that incorporates the modified gradient operator and the algorithm that solely utilizes the continuous Fourier transform for gradient computation were compared with the results obtained using the two-distance FFT-TIE method. The comparisons were conducted using the results obtained from two distances from the sample to the detector. The results show that this method improves the contrast of spatial details and reduces the suppression of high spatial frequencies compared to the two-distance FFT-TIE method. Furthermore, in the low-frequency domain, our algorithm does not lose much information compared to the original method, yielding consistent results. Furthermore, we conducted our experiments using carbon rods. The results show that both our method and the FFT-TIE method exhibit low-frequency distortion due to the requirement of close proximity between the absorption maps and the detector. However, upon closer inspection, our proposed method demonstrates superior accuracy in reproducing the finer details of the carbon rod fibers. Full article
Show Figures

Figure 1

Back to TopTop