Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = thyroid cancer stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 98
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

20 pages, 1658 KiB  
Article
Preclinical In Vitro Evaluation of Extracellular Vesicles from Human Dental Pulp Stem Cells for the Safe and Selective Modulation of Anaplastic Thyroid Carcinoma
by Anderson Lucas Alievi, Michelli Ramires Teixeira, Vitor Rodrigues da Costa, Irina Kerkis and Rodrigo Pinheiro Araldi
Int. J. Mol. Sci. 2025, 26(13), 6443; https://doi.org/10.3390/ijms26136443 - 4 Jul 2025
Viewed by 360
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human [...] Read more.
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human dental pulp stem cell-derived extracellular vesicles (hDPSC-EVs) in three ATC cell lines (8505C, HTH83, KTC-2). Fluorescence and confocal microscopy confirmed the efficient, time-dependent internalization of hDPSC-EVs by ATC cells, with increased fluorescence intensity over 48 h. Functional assays revealed the selective inhibition of migration and invasion in a cell line-dependent manner, without affecting cell proliferation, viability, or tumorigenic traits, indicating a non-cytotoxic, context-specific modulation of tumor behavior. After 72 h of EV treatment, targeted qPCR of 92 cancer-related genes showed the strongest response in 8505C cells (24 genes; 16 up, 8 down), moderate changes in KTC-2 (16 genes; 14 up, 2 down), and few alterations in HTH83 (6 genes; 4 up, 2 down). Across all lines, FN1 emerged as a context-dependent target, downregulated in 8505C but upregulated in the other two. No broad pathway enrichment was observed, indicating the fine-tuning of key networks rather than wholesale reprogramming. Despite variations across cell lines, hDPSC-EVs consistently demonstrated no impact on cell proliferation and no evidence of cytotoxicity or tumorigenic behavior, with no adverse outcomes. These findings provide preclinical evidence for hDPSC-EVs as a promising, safe, and targeted therapeutic platform in precision oncology, particularly for aggressive cancers, like ATC, warranting further exploration in preclinical and clinical studies. Full article
(This article belongs to the Special Issue Preclinical and Translational Research in Thyroid Cancer)
Show Figures

Figure 1

16 pages, 23006 KiB  
Article
Towards Personalized Medicine: Microdevice-Assisted Evaluation of Cancer Stem Cell Dynamics and Treatment Response
by Eduardo Imanol Agüero, Silvia María Gómez López, Ana Belén Peñaherrera-Pazmiño, Matías Tellado, Maximiliano Sebastián Pérez, Betiana Lerner, Denise Belgorosky and Ana María Eiján
Cancers 2025, 17(12), 1922; https://doi.org/10.3390/cancers17121922 - 10 Jun 2025
Cited by 1 | Viewed by 1312
Abstract
Background/Objectives: Cancer stem cells (CSCs) represent a minor yet critical subpopulation within tumors, endowed with self-renewal and differentiation capacities, and are implicated in tumor initiation, progression, metastasis, therapeutic resistance, and recurrence. Reliable in vitro functional assays to characterize CSCs are pivotal for the [...] Read more.
Background/Objectives: Cancer stem cells (CSCs) represent a minor yet critical subpopulation within tumors, endowed with self-renewal and differentiation capacities, and are implicated in tumor initiation, progression, metastasis, therapeutic resistance, and recurrence. Reliable in vitro functional assays to characterize CSCs are pivotal for the development of personalized oncology strategies. This study sought to establish and validate a microfluidic device (MD) platform for the enrichment, functional assessment, and therapeutic evaluation of CSC populations derived from experimental models and primary tumor samples. Methods: Murine (LM38LP) and human (BPR6) breast cancer cell lines were cultured within MDs to promote sphere formation. CSC enrichment was confirmed through the expression analysis of pluripotency-associated genes (Oct4, Sox2, Nanog, and CD44) by quantitative PCR (qPCR) and immunofluorescence. Sphere number, size, and gene expression profiles were quantitatively assessed before (control) and after chemotherapeutic exposure. To validate the MD platform against conventional scale, parallel experiments were performed in 12 well plates. To extend translational relevance, three primary canine tumor samples (solid thyroid carcinoma, simple tubular carcinoma, and reactive lymph node) were mechanically disaggregated and processed within MDs for CSC characterization. Results: The MD platform enabled the consistent enrichment of CSC populations, showing significant modulation of sphere growth parameters and stemness marker expression following chemotherapeutic treatment. Beyond its comparability with conventional culture, the MD also supported immunofluorescence staining and allowed real-time monitoring of individual cell growth. Sphere formation efficiency (SFE) and CSC marker expression were similarly demonstrated in primary veterinary tumor cultures, highlighting the device’s cross-species applicability. Conclusions: Microfluidic-based sphere assays represent a robust, reproducible, and scalable platform for the functional interrogation of CSC dynamics and therapeutic responses. This methodology holds great promise for advancing CSC-targeted therapies and supporting personalized oncology in both human and veterinary settings. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

16 pages, 1931 KiB  
Article
Single Cell RNA Sequencing of Papillary Cancer Mesenchymal Stem/Stromal Cells Reveals a Transcriptional Profile That Supports a Role for These Cells in Cancer Progression
by Danny Jandu, Nani Latar, Artida Bajrami, Rachel Queen, Megan Hasoon, Matthew Teasdale, Rafiqul Hussain, Jonathan Coxhead, Sebastian Aspinall and Annette Meeson
Int. J. Mol. Sci. 2025, 26(10), 4957; https://doi.org/10.3390/ijms26104957 - 21 May 2025
Viewed by 792
Abstract
Papillary thyroid cancer (PTC) contains mesenchymal stem/stromal cells (MSCs), but their contribution to PTC progression is not clear. In this study, we compared the transcriptional signatures of normal thyroid (NT) and PTC-derived MSCs with the aim of determining if these have distinct transcriptomes [...] Read more.
Papillary thyroid cancer (PTC) contains mesenchymal stem/stromal cells (MSCs), but their contribution to PTC progression is not clear. In this study, we compared the transcriptional signatures of normal thyroid (NT) and PTC-derived MSCs with the aim of determining if these have distinct transcriptomes that might influence PTC progression. We used flow cytometry in combination with a panel of MSC clusters of differentiation (CD) markers and showed that both thyroid MSC populations expressed MSC markers and lacked expression of markers not normally expressed by MSCs. In addition, we determined that both MSC populations could differentiate to adipocytes and osteocytes. Analysis of single cell RNA sequencing data from both MSC populations revealed, regardless of tissue of origin, that both contained similar numbers of subpopulations. Cluster analysis revealed similarity in expression of both MSC populations for stromal markers, the vascular marker VEGFA and the smooth muscle marker CALD1, while smaller subpopulations expressed markers of more lineage-committed thyroid cells. PTC MSCs also showed upregulated expression of 28 genes, many of which are known to be involved in epithelial–mesenchymal transition (EMT) and/or disease progression in several types of cancers, including but not limited to breast cancer, gastric cancer, cervical carcinoma, bladder cancer and thyroid cancer. This included several members of the S100 and IGFBP gene families. Taken together, these data support a role for PTC MSCs in PTC progression. Full article
Show Figures

Figure 1

24 pages, 3327 KiB  
Review
CD44 Variant Expression in Follicular Cell-Derived Thyroid Cancers: Implications for Overcoming Multidrug Resistance
by Benny Mosoane, Michelle McCabe, Brandon S. Jackson and Zodwa Dlamini
Molecules 2025, 30(9), 1899; https://doi.org/10.3390/molecules30091899 - 24 Apr 2025
Viewed by 805
Abstract
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC), [...] Read more.
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC), and poorly differentiated (PDTC) subtypes—the role of CD44 variants has emerged as a critical factor influencing tumor progression and multidrug resistance (MDR). CD44, a transmembrane glycoprotein, and its splice variants (CD44v) mediate cell adhesion, migration, and survival, contributing to cancer stem cell (CSC) maintenance and therapy resistance. Differential expression patterns of CD44 isoforms across TC subtypes have shown diagnostic, prognostic, and therapeutic implications. Specifically, CD44v6 expression in PTC has been correlated with metastasis and aggressive tumor behavior, while in FTC, its expression aids in distinguishing malignant from benign lesions. Furthermore, CD44 contributes to MDR through enhanced drug efflux via ABC transporters, apoptosis evasion, and CSC maintenance via the Wnt/β-catenin and PI3K/Akt pathways. Targeted therapies against CD44 such as monoclonal antibodies, hyaluronic acid-based nanocarriers, and gene-editing technologies hold promise in overcoming MDR. However, despite the mounting evidence supporting CD44-targeted strategies in various cancers, research on this therapeutic potential in TC remains limited. This review synthesizes existing knowledge on CD44 variant expression in follicular cell-derived thyroid cancers and highlights potential therapeutic strategies to mitigate MDR, particularly in high-burden regions, thereby improving patient outcomes and survival. Full article
Show Figures

Figure 1

23 pages, 1871 KiB  
Review
Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health
by Nelson Adolfo López Garzón, María Virginia Pinzón-Fernández, Jhan S. Saavedra T., Humberto A. Nati-Castillo, Marlon Arias-Intriago, Camila Salazar-Santoliva and Juan S. Izquierdo-Condoy
Int. J. Mol. Sci. 2025, 26(7), 3058; https://doi.org/10.3390/ijms26073058 - 27 Mar 2025
Cited by 2 | Viewed by 1873
Abstract
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key [...] Read more.
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key mechanisms, such as T cell activation, cytokine production, and macrophage differentiation, leading to increased susceptibility to infections. In cancer biology, it promotes the formation of spheroids in cancer stem cells and thyroid cancer cells, which closely mimic in vivo tumor dynamics, providing novel insights for oncology research. Additionally, microgravity enhances tissue regeneration by modulating critical pathways, including Hippo and PI3K-Akt, thereby improving stem cell differentiation into hematopoietic and cardiomyocyte lineages. At the organ level, microgravity induces notable changes in hepatic metabolism, endothelial function, and bone mechanotransduction, contributing to lipid dysregulation, vascular remodeling, and accelerated bone loss. Notably, cardiomyocytes derived from human pluripotent stem cells and cultured under microgravity exhibit enhanced mitochondrial biogenesis, improved calcium handling, and advanced structural maturation, including increased sarcomere length and nuclear eccentricity. These advancements enable the development of functional cardiomyocytes, presenting promising therapeutic opportunities for treating cardiac diseases, such as myocardial infarctions. These findings underscore the dual implications of microgravity for space medicine and terrestrial health. They highlight its potential to drive advances in regenerative therapies, oncology, and immunological interventions. Continued research into the biological effects of microgravity is essential for protecting astronaut health during prolonged space missions and fostering biomedical innovations with transformative applications on Earth. Full article
Show Figures

Figure 1

28 pages, 14638 KiB  
Article
Comprehensive Analysis Reveals That ISCA1 Is Correlated with Ferroptosis-Related Genes Across Cancers and Is a Biomarker in Thyroid Carcinoma
by Dejun Xiong, Zhao Li, Ling Zuo, Juan Ge, Yuhan Gu, Erhao Zhang, Xiaorong Zhou, Guiping Yu and Mengmeng Sang
Genes 2024, 15(12), 1538; https://doi.org/10.3390/genes15121538 - 28 Nov 2024
Cited by 1 | Viewed by 1083
Abstract
Background: ISCA1 (Iron–Sulfur Cluster Assembly 1) is involved in the assembly of iron–sulfur (Fe–S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of ISCA1 in tumor progression through interactions with ferroptosis-related genes (FRGs) and the [...] Read more.
Background: ISCA1 (Iron–Sulfur Cluster Assembly 1) is involved in the assembly of iron–sulfur (Fe–S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of ISCA1 in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types. Methods: In this study, we analyzed the expression and prognosis of ISCA1 RNA, CNV, methylation, and protein in multiple tumor tissues via data from the TCGA and CPTAC databases and clinical information. We conducted a comprehensive analysis of the correlations between ISCA1 and FRGs, immune-related genes (including immune regulatory genes and immune checkpoint genes), immune cell infiltration, immune infiltration scores, tumor stemness, and genomic heterogeneity. Results: We performed drug prediction and validation through molecular docking and molecular dynamics analysis to identify candidate drugs that could promote or inhibit ISCA1 RNA expression. Our findings revealed that ISCA1 could serve as a biomarker in thyroid carcinoma, play a role with different FRGs in various cell types, and mediate different ligand–receptor pathways for cell–cell communication. Conclusions: Overall, our study highlights the potential of ISCA1 as a novel biomarker for predicting prognosis and immunotherapeutic efficacy in thyroid carcinoma and suggests its potential for developing novel antitumor drugs or improving immunotherapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 3881 KiB  
Article
DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines
by Danilo Dias da Silva, Rodrigo Pinheiro Araldi, Mariana Rocha Belizario, Welbert Gomes Rocha, Rui Monteiro de Barros Maciel and Janete Maria Cerutti
Int. J. Mol. Sci. 2024, 25(22), 11924; https://doi.org/10.3390/ijms252211924 - 6 Nov 2024
Viewed by 1333
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to [...] Read more.
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1− cells (those lacking DLK1 expression). These findings underscore DLK1’s role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Figure 1

16 pages, 1548 KiB  
Review
NF-κB in Thyroid Cancer: An Update
by Elvira Crescenzi, Antonio Leonardi and Francesco Pacifico
Int. J. Mol. Sci. 2024, 25(21), 11464; https://doi.org/10.3390/ijms252111464 - 25 Oct 2024
Cited by 6 | Viewed by 1688
Abstract
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in [...] Read more.
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment. In addition, NF-κB signaling plays an important role in cancer stem cells from more aggressive thyroid carcinomas. Interfering with the different upstream and/or downstream pathways that drive NF-κB activity in thyroid neoplastic cells is an attractive strategy for the development of novel therapeutic drugs capable of overcoming the therapy resistance of advanced thyroid carcinomas. This review focuses on the recent findings about the key functions of NF-κB in thyroid cancer and discusses the potential implications of targeting NF-κB in advanced thyroid carcinomas. Full article
(This article belongs to the Special Issue Immunotherapy for Cancer)
Show Figures

Figure 1

17 pages, 11924 KiB  
Article
Auranofin as a Novel Anticancer Drug for Anaplastic Thyroid Cancer
by Seung-Chan An, Hak Hoon Jun, Kyeong Mi Kim, Issac Kim, Sujin Choi, Hyunjeong Yeo, Soonchul Lee and Hyun-Ju An
Pharmaceuticals 2024, 17(10), 1394; https://doi.org/10.3390/ph17101394 - 18 Oct 2024
Cited by 1 | Viewed by 2198
Abstract
Background/Objectives: Anaplastic thyroid cancer (ATC) is an aggressive and rare cancer with a poor prognosis, and traditional therapies have limited efficacy. This study investigates drug repositioning, focusing on auranofin, a gold-based drug originally used for rheumatoid arthritis, as a potential treatment for ATC. [...] Read more.
Background/Objectives: Anaplastic thyroid cancer (ATC) is an aggressive and rare cancer with a poor prognosis, and traditional therapies have limited efficacy. This study investigates drug repositioning, focusing on auranofin, a gold-based drug originally used for rheumatoid arthritis, as a potential treatment for ATC. Methods: Auranofin was identified from an FDA-approved drug library and tested on two thyroid cancer cell lines, 8505C and FRO. Antitumor efficacy was evaluated through gene and protein expression analysis using Western blot, FACS, and mRNA sequencing. In vivo experiments were conducted using subcutaneous injections in nude mice to confirm the anticancer effects of auranofin. Results: Auranofin induced reactive oxygen species (ROS) production and apoptosis, leading to a dose-dependent reduction in cell viability, G1/S phase cell cycle arrest, and altered expression of regulatory proteins. It also inhibited cancer stem cell activity and suppressed epithelial–mesenchymal transition. mRNA sequencing revealed significant changes in the extracellular matrix–receptor interaction pathway, supported by Western blot results. In vivo xenograft models demonstrated strong antitumor activity. Conclusions: Auranofin shows promise as a repurposed therapeutic agent for ATC, effectively inhibiting cell proliferation, reducing metastasis, and promoting apoptosis. These findings suggest that auranofin could play a key role in future ATC treatment strategies. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development)
Show Figures

Figure 1

19 pages, 847 KiB  
Review
Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma
by Siddharth Shah and Brandon Lucke-Wold
Cancers 2024, 16(16), 2892; https://doi.org/10.3390/cancers16162892 - 20 Aug 2024
Cited by 2 | Viewed by 1783
Abstract
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. Methods: This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words ‘radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma’ were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. Results: As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. Conclusion: The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancers)
Show Figures

Figure 1

18 pages, 3892 KiB  
Article
Exploring the Therapeutic Potential of Extracellular Vesicles Derived from Human Immature Dental Pulp Cells on Papillary Thyroid Cancer
by Michelli Ramires Teixeira, Anderson Lucas Alievi, Vitor Rodrigues da Costa, Irina Kerkis and Rodrigo Pinheiro Araldi
Int. J. Mol. Sci. 2024, 25(15), 8178; https://doi.org/10.3390/ijms25158178 - 26 Jul 2024
Cited by 2 | Viewed by 1278
Abstract
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, [...] Read more.
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents. Full article
Show Figures

Figure 1

11 pages, 1098 KiB  
Review
Mechanism of DAPK1 for Regulating Cancer Stem Cells in Thyroid Cancer
by Mi-Hyeon You
Curr. Issues Mol. Biol. 2024, 46(7), 7086-7096; https://doi.org/10.3390/cimb46070422 - 5 Jul 2024
Cited by 1 | Viewed by 1934
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled [...] Read more.
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled by epigenetic, transcriptional, posttranscriptional, and posttranslational processes. DAPK1 is known to regulate not only cancer cells but also stromal cells. Recent studies showed that DAPK1 was involved not only in tumor suppression but also in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in colon and thyroid cancers. CSCs are major factors in determining cancer aggressiveness in cancer metastasis and treatment prognosis by influencing EMT. However, the molecular mechanism involved in the regulation of cancer cells by DAPK1 remains unclear. In particular, little is known about the existence of CSCs and how they are regulated in papillary thyroid carcinoma (PTC) among thyroid cancers. In this review, we describe the molecular mechanism of CSC regulation by DAPK1 in PTC progression. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Article
Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs)
by Paul Marcoux, Jin Wook Hwang, Christophe Desterke, Jusuf Imeri, Annelise Bennaceur-Griscelli and Ali G. Turhan
Cells 2023, 12(24), 2847; https://doi.org/10.3390/cells12242847 - 15 Dec 2023
Cited by 4 | Viewed by 2051
Abstract
REarranged during Transfection (RET) oncogenic rearrangements can occur in 1–2% of lung adenocarcinomas. While RET-driven NSCLC models have been developed using various approaches, no model based on patient-derived induced pluripotent stem cells (iPSCs) has yet been described. Patient-derived iPSCs hold great promise for [...] Read more.
REarranged during Transfection (RET) oncogenic rearrangements can occur in 1–2% of lung adenocarcinomas. While RET-driven NSCLC models have been developed using various approaches, no model based on patient-derived induced pluripotent stem cells (iPSCs) has yet been described. Patient-derived iPSCs hold great promise for disease modeling and drug screening. However, generating iPSCs with specific oncogenic drivers, like RET rearrangements, presents challenges due to reprogramming efficiency and genotypic variability within tumors. To address this issue, we aimed to generate lung progenitor cells (LPCs) from patient-derived iPSCs carrying the mutation RETC634Y, commonly associated with medullary thyroid carcinoma. Additionally, we established a RETC634Y knock-in iPSC model to validate the effect of this oncogenic mutation during LPC differentiation. We successfully generated LPCs from RETC634Y iPSCs using a 16-day protocol and detected an overexpression of cancer-associated markers as compared to control iPSCs. Transcriptomic analysis revealed a distinct signature of NSCLC tumor repression, suggesting a lung multilineage lung dedifferentiation, along with an upregulated signature associated with RETC634Y mutation, potentially linked to poor NSCLC prognosis. These findings were validated using the RETC634Y knock-in iPSC model, highlighting key cancerous targets such as PROM2 and C1QTNF6, known to be associated with poor prognostic outcomes. Furthermore, the LPCs derived from RETC634Y iPSCs exhibited a positive response to the RET inhibitor pralsetinib, evidenced by the downregulation of the cancer markers. This study provides a novel patient-derived off-the-shelf iPSC model of RET-driven NSCLC, paving the way for exploring the molecular mechanisms involved in RET-driven NSCLC to study disease progression and to uncover potential therapeutic targets. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

16 pages, 1721 KiB  
Article
Antioxidant Defense Capacity Is Reduced in Thyroid Stem/Precursor Cells Compared to Differentiated Thyrocytes
by Fiorenza Gianì, Fabio Allia, Maria Antonietta Trovato, Roberta Masto, Gabriella Pellegriti and Riccardo Vigneri
Int. J. Mol. Sci. 2023, 24(14), 11509; https://doi.org/10.3390/ijms241411509 - 15 Jul 2023
Viewed by 1758
Abstract
There is much evidence linking oxidative stress to thyroid cancer, and stem cells are thought to play a key role in the tumor-initiating mechanism. Their vulnerability to oxidative stress is unexplored. This study aimed to comparatively evaluate the antioxidant capacity of stem/precursor thyroid [...] Read more.
There is much evidence linking oxidative stress to thyroid cancer, and stem cells are thought to play a key role in the tumor-initiating mechanism. Their vulnerability to oxidative stress is unexplored. This study aimed to comparatively evaluate the antioxidant capacity of stem/precursor thyroid cells and mature thyrocytes. Human stem/precursor cells and mature thyrocytes were exposed to increasing concentrations of menadione, an oxidative-stress-producing agent, and reactive oxygen species (ROS) production and cell viability were measured. The expression of antioxidant and detoxification genes was measured via qPCR as well as the total antioxidant capacity and the content of glutathione. Menadione elevated ROS generation in stem/precursor thyroid cells more than in mature thyrocytes. The ROS increase was inversely correlated (p = 0.005) with cell viability, an effect that was partially prevented by the antioxidant curcumin. Most thyroid antioxidant defense genes, notably those encoding for the glutathione-generating system and phase I detoxification enzymes, were significantly less expressed in stem/precursor thyroid cells. As a result, the glutathione level and the total antioxidant capacity in stem/precursor thyroid cells were significantly decreased. This reduced antioxidant defense may have clinical implications, making stem/precursor thyroid cells critical targets for environmental conditions that are not detrimental for differentiated thyrocytes. Full article
(This article belongs to the Special Issue Molecular Advances in Endocrine Toxicity)
Show Figures

Figure 1

Back to TopTop