Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = three-dimensional histological reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1595 KiB  
Article
Evaluating the Biocompatibility and Efficacy of Absorbable Three-Dimensional Micro-Nanofiber Scaffolds for Volume Restoration Following Post-Mastectomy Breast Reconstruction: An Experimental Study
by Ji-Yeon Bae, JungHee Shim, Sunyoung Hwang, TaeHo Kim, BumMo Koo, Young Jin Lee, Ki Yong Hong and Chan Yeong Heo
J. Clin. Med. 2025, 14(11), 3754; https://doi.org/10.3390/jcm14113754 - 27 May 2025
Viewed by 596
Abstract
Background/Objectives: As the incidence of breast cancer increases, reliable, effective, and innovative solutions are required for breast deformities following breast-conserving surgery. We aimed to evaluate the biocompatibility and efficacy of optimized three-dimensional (3D) micro-nanofiber scaffolds and demonstrate their clinical potential through preclinical experiments. [...] Read more.
Background/Objectives: As the incidence of breast cancer increases, reliable, effective, and innovative solutions are required for breast deformities following breast-conserving surgery. We aimed to evaluate the biocompatibility and efficacy of optimized three-dimensional (3D) micro-nanofiber scaffolds and demonstrate their clinical potential through preclinical experiments. Methods: Seven-week-old male Sprague-Dawley rats were randomized into four groups. Group I (control group) received a 2-dimensional (2D) micro-nanofiber scaffold weighing 0.2 g; Groups II–IV received 3D micro-nanofiber scaffolds weighing 0.2, 0.3, and 0.6 g, respectively. These were subcutaneously implanted into the dorsal region and harvested with the surrounding tissues at 4, 8, and 16 weeks for histological evaluation. Results: The number of inflammatory cells was higher in Group IV than in Groups II and III at 4 weeks, with a significant increase in Group IV (p < 0.01) compared with that in Group I. At 8 weeks, it was significantly increased in Group III compared with that in Group I. Furthermore, at 16 weeks, it was significantly reduced in Group IV (p < 0.05) compared with that in Group I. The fibrosis depth in the 3D scaffolds revealed significant differences in Groups II, III, and IV (p < 0.001) compared with Group I at 4 weeks. The collagen fiber densities in the 3D groups were higher than those in the 2D group at 8 and 16 weeks. There were no statistically significant differences between the 3D groups. Conclusions: Absorbable 3D micro-nanofiber scaffolds enhance tissue integration and extracellular matrix formation following post-mastectomy breast reconstruction. Full article
(This article belongs to the Special Issue Current State of Breast Reconstruction)
Show Figures

Figure 1

16 pages, 2323 KiB  
Article
Real-Time Intraoperative Decision-Making in Head and Neck Tumor Surgery: A Histopathologically Grounded Hyperspectral Imaging and Deep Learning Approach
by Ayman Bali, Saskia Wolter, Daniela Pelzel, Ulrike Weyer, Tiago Azevedo, Pietro Lio, Mussab Kouka, Katharina Geißler, Thomas Bitter, Günther Ernst, Anna Xylander, Nadja Ziller, Anna Mühlig, Ferdinand von Eggeling, Orlando Guntinas-Lichius and David Pertzborn
Cancers 2025, 17(10), 1617; https://doi.org/10.3390/cancers17101617 - 10 May 2025
Viewed by 999
Abstract
Background: Accurate and rapid intraoperative tumor margin assessment remains a major challenge in surgical oncology. Current gold-standard methods, such as frozen section histology, are time-consuming, operator-dependent, and prone to misclassification, which limits their clinical utility. Objective: To develop and evaluate a novel hyperspectral [...] Read more.
Background: Accurate and rapid intraoperative tumor margin assessment remains a major challenge in surgical oncology. Current gold-standard methods, such as frozen section histology, are time-consuming, operator-dependent, and prone to misclassification, which limits their clinical utility. Objective: To develop and evaluate a novel hyperspectral imaging (HSI) workflow that integrates deep learning with three-dimensional (3D) tumor modeling for real-time, label-free tumor margin delineation in head and neck squamous cell carcinoma (HNSCC). Methods: Freshly resected HNSCC samples were snap-frozen and imaged ex vivo from multiple perspectives using a standardized HSI protocol, resulting in a 3D model derived from HSI. Each sample was serially sectioned, stained, and annotated by pathologists to create high-resolution 3D histological reconstructions. The volumetric histological models were co-registered with the HSI data (n = 712 Datacubes), enabling voxel-wise projection of tumor segmentation maps from the HSI-derived 3D model onto the corresponding histological ground truth. Three deep learning models were trained and validated on these datasets to differentiate tumor from non-tumor regions with high spatial precision. Results: This work demonstrates strong potential for the proposed HSI system, with an overall classification accuracy of 0.98 and a tumor sensitivity of 0.93, underscoring the system’s ability to reliably detect tumor regions and showing high concordance with histopathological findings. Conclusion: The integration of HSI with deep learning and 3D tumor modeling offers a promising approach for precise, real-time intraoperative tumor margin assessment in HNSCC. This novel workflow has the potential to improve surgical precision and patient outcomes by providing rapid, label-free tissue differentiation. Full article
Show Figures

Figure 1

18 pages, 4882 KiB  
Review
Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective
by Antonio d’Amati, Giorgio Maria Baldini, Tommaso Difonzo, Angela Santoro, Miriam Dellino, Gerardo Cazzato, Antonio Malvasi, Antonella Vimercati, Leonardo Resta, Gian Franco Zannoni and Eliano Cascardi
J. Imaging 2025, 11(4), 110; https://doi.org/10.3390/jimaging11040110 - 3 Apr 2025
Viewed by 1331
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in placental pathology, offering novel diagnostic methods that promise to improve accuracy, reduce inter-observer variability, and positively impact pregnancy outcomes. The primary objective of this review is to summarize recent developments in AI applications [...] Read more.
Artificial intelligence (AI) has emerged as a transformative tool in placental pathology, offering novel diagnostic methods that promise to improve accuracy, reduce inter-observer variability, and positively impact pregnancy outcomes. The primary objective of this review is to summarize recent developments in AI applications tailored specifically to placental histopathology. Current AI-driven approaches include advanced digital image analysis, three-dimensional placental reconstruction, and deep learning models such as GestAltNet for precise gestational age estimation and automated identification of histological lesions, including decidual vasculopathy and maternal vascular malperfusion. Despite these advancements, significant challenges remain, notably dataset heterogeneity, interpretative limitations of current AI algorithms, and issues regarding model transparency. We critically address these limitations by proposing targeted solutions, such as augmenting training datasets with annotated artifacts, promoting explainable AI methods, and enhancing cross-institutional collaborations. Finally, we outline future research directions, emphasizing the refinement of AI algorithms for routine clinical integration and fostering interdisciplinary cooperation among pathologists, computational researchers, and clinical specialists. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

9 pages, 3724 KiB  
Interesting Images
Advanced Imaging and Preoperative MR-Based Cinematic Rendering Reconstructions for Neoplasms in the Oral and Maxillofacial Region
by Adib Al-Haj Husain, Milica Stojicevic, Nicolin Hainc and Bernd Stadlinger
Diagnostics 2025, 15(1), 33; https://doi.org/10.3390/diagnostics15010033 - 26 Dec 2024
Viewed by 832
Abstract
This case study highlights the use of cinematic rendering (CR) in preoperative planning for the excision of a cyst in the oral and maxillofacial region of a 60-year-old man. The patient presented with a firm, non-tender mass in the right cheek, clinically suspected [...] Read more.
This case study highlights the use of cinematic rendering (CR) in preoperative planning for the excision of a cyst in the oral and maxillofacial region of a 60-year-old man. The patient presented with a firm, non-tender mass in the right cheek, clinically suspected to be an epidermoid cyst. Conventional imaging, including dental magnetic resonance imaging (MRI) protocols, confirmed the lesion’s size, location, and benign nature. CR reconstructions, combining advanced algorithms and novel skin presets, allow for the generation of highly realistic, three-dimensional visualizations from conventional imaging datasets. CR provided an enhanced, detailed depiction of the lesion within its anatomical context, significantly improving spatial understanding for surgical planning. The surgical excision was performed without complications, and histological analysis confirmed the diagnosis of a benign epidermoid cyst with no evidence of dysplasia or malignancy. This case demonstrates the potential of CR to refine preoperative planning, especially in complex anatomical regions such as the face and jaw, by offering superior visualization of superficial and deep structures. Thus, the integration of CR into clinical workflows has the potential to lead to improved diagnostic accuracy and better surgical outcomes. Full article
(This article belongs to the Collection Interesting Images)
Show Figures

Figure 1

11 pages, 4913 KiB  
Article
Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits
by Mi Hyun Lim, Jung Ho Jeon, Sun Hwa Park, Byeong Gon Yun, Seok-Won Kim, Dong-Woo Cho, Jeong Hak Lee, Do Hyun Kim and Sung Won Kim
Medicina 2024, 60(12), 2111; https://doi.org/10.3390/medicina60122111 - 23 Dec 2024
Viewed by 1267
Abstract
Background and Objectives: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. [...] Read more.
Background and Objectives: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model. Materials and Methods: hNTSCs were induced to differentiate into either mucosal epithelial or osteogenic cells in vitro. hNTSCs were seeded into polycaprolactone scaffold (three-dimensionally printed) that were implanted into rabbits with maxillary defects. Four weeks later, tissue regeneration was analyzed via histological evaluation and immunofluorescence staining. Results: In vitro, hNTSCs differentiated into both mucosal epithelial and osteogenic cells. hNTSC differentiation into respiratory epithelial cells was confirmed by Alcian Blue staining, cilia in SEM, and increased expression levels of FOXJ1 and E-cadherin through quantitative RT-PCR. hNTSC differentiation into bone was confirmed by Alizarin Red staining, increased mRNA expression levels of BMP2 (6.1-fold) and RUNX2 (2.3-fold) in the hNTSC group compared to the control. Four weeks post-transplantation, the rabbit maxilla was harvested, and H&E, SEM, and immunohistofluorescence staining were performed. H&E staining and SEM showed that new tissue and cilia around the maxillary defect were more prominent in the hNTSC group. Also, the hNTSCs group showed positive immunohistofluorescence staining for acetylated α-tubulin and cytokerin-5 compared to the control group. Conclusions: hNTSCs combined with PCL scaffold enhanced the regeneration of mucosal tissue and bone in vitro and promoted mucosal tissue regeneration in the in vivo rabbit model. Full article
(This article belongs to the Special Issue New Insights into Plastic and Reconstructive Surgery)
Show Figures

Figure 1

11 pages, 267 KiB  
Review
Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques
by Razvan-George Bogdan, Alina Helgiu, Anca-Maria Cimpean, Cristian Ichim, Samuel Bogdan Todor, Mihai Iliescu-Glaja, Ioan Catalin Bodea and Zorin Petrisor Crainiceanu
J. Clin. Med. 2024, 13(23), 7209; https://doi.org/10.3390/jcm13237209 - 27 Nov 2024
Cited by 10 | Viewed by 2746
Abstract
Fat grafting has gained prominence in reconstructive and aesthetic surgery, necessitating accurate assessment methods for evaluating graft volume retention. This paper reviews various techniques for assessing fat and fat grafts, including their benefits and limitations. Three-dimensional (3D) scanning offers highly accurate, non-invasive volumetric [...] Read more.
Fat grafting has gained prominence in reconstructive and aesthetic surgery, necessitating accurate assessment methods for evaluating graft volume retention. This paper reviews various techniques for assessing fat and fat grafts, including their benefits and limitations. Three-dimensional (3D) scanning offers highly accurate, non-invasive volumetric assessments with minimal interference from breathing patterns. Magnetic resonance imaging (MRI) is recognized as the gold standard, providing precise volumetric evaluations and sensitivity to complications like oil cysts and necrosis. Computed tomography (CT) is useful for fat volume assessment but may overestimate retention rates. Ultrasonography presents a reliable, non-invasive method for measuring subcutaneous fat thickness. Other methods, such as digital imaging, histological analysis, and weight estimation, contribute to fat graft quantification. The integration of these methodologies is essential for advancing fat graft assessment, promoting standardized practices, and improving patient outcomes in clinical settings. Full article
15 pages, 3789 KiB  
Article
Are Artificial Intelligence-Assisted Three-Dimensional Histological Reconstructions Reliable for the Assessment of Trabecular Microarchitecture?
by János Báskay, Dorottya Pénzes, Endre Kontsek, Adrián Pesti, András Kiss, Bruna Katherine Guimarães Carvalho, Miklós Szócska, Bence Tamás Szabó, Csaba Dobó-Nagy, Dániel Csete, Attila Mócsai, Orsolya Németh, Péter Pollner, Eitan Mijiritsky and Márton Kivovics
J. Clin. Med. 2024, 13(4), 1106; https://doi.org/10.3390/jcm13041106 - 15 Feb 2024
Cited by 4 | Viewed by 2677
Abstract
Objectives: This study aimed to create a three-dimensional histological reconstruction through the AI-assisted classification of tissues and the alignment of serial sections. The secondary aim was to evaluate if the novel technique for histological reconstruction accurately replicated the trabecular microarchitecture of bone. This [...] Read more.
Objectives: This study aimed to create a three-dimensional histological reconstruction through the AI-assisted classification of tissues and the alignment of serial sections. The secondary aim was to evaluate if the novel technique for histological reconstruction accurately replicated the trabecular microarchitecture of bone. This was performed by conducting micromorphometric measurements on the reconstruction and comparing the results obtained with those of microCT reconstructions. Methods: A bone biopsy sample was harvested upon re-entry following sinus floor augmentation. Following microCT scanning and histological processing, a modified version of the U-Net architecture was trained to categorize tissues on the sections. Detector-free local feature matching with transformers was used to create the histological reconstruction. The micromorphometric parameters were calculated using Bruker’s CTAn software (version 1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets. Results: Correlation coefficients calculated between the micromorphometric parameters measured on the microCT and histological reconstruction suggest a strong linear relationship between the two with p-values of 0.777, 0.717, 0.705, 0.666, and 0.687 for BV/TV, BS/TV, Tb.Pf Tb.Th, and Tb.Sp, respectively. Bland–Altman and mountain plots suggest good agreement between BV/TV measurements on the two reconstruction methods. Conclusions: This novel method for three-dimensional histological reconstruction provides researchers with a tool that enables the assessment of accurate trabecular microarchitecture and histological information simultaneously. Full article
(This article belongs to the Special Issue Modern Patient-Centered Dental Care)
Show Figures

Figure 1

26 pages, 4294 KiB  
Article
Breast Cancer Cell Type and Biomechanical Properties of Decellularized Mouse Organs Drives Tumor Cell Colonization
by Anton D. Pospelov, Olga M. Kutova, Yuri M. Efremov, Albina A. Nekrasova, Daria B. Trushina, Sofia D. Gefter, Elena I. Cherkasova, Lidia B. Timofeeva, Peter S. Timashev, Andrei V. Zvyagin and Irina V. Balalaeva
Cells 2023, 12(16), 2030; https://doi.org/10.3390/cells12162030 - 9 Aug 2023
Cited by 7 | Viewed by 3313
Abstract
Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such [...] Read more.
Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ. We introduce a facile decellularization protocol universally applicable to murine organs, including liver, lungs, spleen, kidneys, and ovaries, with demonstrated robustness, reproducibility, high purification from cell debris, and architecture preservation, as confirmed by the histological and SEM analysis. The biomechanical properties of as-produced DCL organs expressed in terms of the local and total stiffness were measured using our facile methodology and were found well preserved in comparison with the intact organs. To demonstrate the utility of the developed DCL model to cancer research, we engineered three-dimensional tissue constructs by recellularization representative decellularized organs and collagenous hydrogel with human breast cancer cells of pronounced mesenchymal (MDA-MB-231) or epithelial (SKBR-3) phenotypes. The biomechanical properties of the DCL organs were found pivotal to determining the cancer cell fate and progression. Our histological and scanning electron microscopy (SEM) study revealed that the larger the ECM mean pore size and the smaller the total stiffness (as in lung and ovary), the more proliferative and invasive the mesenchymal cells became. At the same time, the low local stiffness ECMs (ranged 2.8–3.6 kPa) did support the epithelial-like SKBR-3 cells’ viability (as in lung and spleen), while stiff ECMs did not. The total and local stiffness of the collagenous hydrogel was measured too low to sustain the proliferative potential of both cell lines. The observed cell proliferation patterns were easily interpretable in terms of the ECM biomechanical properties, such as binding sites, embedment facilities, and migration space. As such, our three-dimensional tissue engineering model is scalable and adaptable for pharmacological testing and cancer biology research of metastatic and primary tumors, including early metastatic colonization in native organ-specific ECM. Full article
(This article belongs to the Special Issue Multiscale Studies of Cell Behavior)
Show Figures

Graphical abstract

22 pages, 1107 KiB  
Review
Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses
by Clemens Gögele, Judith Hahn and Gundula Schulze-Tanzil
Int. J. Mol. Sci. 2023, 24(11), 9745; https://doi.org/10.3390/ijms24119745 - 5 Jun 2023
Cited by 12 | Viewed by 5162
Abstract
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be [...] Read more.
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches. Full article
(This article belongs to the Special Issue A Road Map to Tendon Regeneration)
Show Figures

Figure 1

18 pages, 6525 KiB  
Article
A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy
by Annunziatina Laurino, Alessandra Franceschini, Luca Pesce, Lorenzo Cinci, Alberto Montalbano, Giacomo Mazzamuto, Giuseppe Sancataldo, Gabriella Nesi, Irene Costantini, Ludovico Silvestri and Francesco Saverio Pavone
Int. J. Mol. Sci. 2023, 24(7), 6747; https://doi.org/10.3390/ijms24076747 - 4 Apr 2023
Cited by 17 | Viewed by 5499
Abstract
The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. [...] Read more.
The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. The combination of these techniques with classical hematoxylin and eosin (H&E) staining has led to the birth of three-dimensional (3D) histology. Here, we present an overview of the state-of-the-art methods, highlighting the optimal combinations of different clearing methods and advanced fluorescence microscopy techniques for the investigation of all types of biological tissues. We employed fluorescence nuclear and eosin Y staining that enabled us to obtain hematoxylin and eosin pseudo-coloring comparable with the gold standard H&E analysis. The computational reconstructions obtained with 3D optical imaging can be analyzed by a pathologist without any specific training in volumetric microscopy, paving the way for new biomedical applications in clinical pathology. Full article
(This article belongs to the Special Issue Biomedical Optics in Cell Biology)
Show Figures

Figure 1

12 pages, 1637 KiB  
Article
Characterization of Microscopic Multicellular Foci in Grossly Normal Renal Parenchyma of Von Hippel-Lindau Kidney
by Nayef S. Al-Gharaibeh, Sharon B. Shively and Alexander O. Vortmeyer
Medicina 2022, 58(12), 1725; https://doi.org/10.3390/medicina58121725 - 24 Nov 2022
Cited by 2 | Viewed by 1998
Abstract
Background and Objectives: This study aims to describe the earliest renal lesions in patients with von Hippel-Lindau (VHL) disease, especially the multicellular microscopic pathologic events, to get information into the genesis of renal neoplasms in this condition. Materials and Methods: Multicellular [...] Read more.
Background and Objectives: This study aims to describe the earliest renal lesions in patients with von Hippel-Lindau (VHL) disease, especially the multicellular microscopic pathologic events, to get information into the genesis of renal neoplasms in this condition. Materials and Methods: Multicellular events were identified, and 3dimensional reconstruction was performed in grossly normal kidney parenchyma from VHL disease patients by using H&E-stained slides previously prepared. Results: The lesions were measured and the volume of clusters was calculated. Immunohistochemistry was performed for downstream HIF-target protein carbonic anhydrase 9 (CAIX) as well as CD34 for assessment of angiogenesis. We divided lesions into four types according to lesion height/size. The number of lesions was markedly decreased from lesion 1 (smallest) to lesion 2, then from lesions 2 to 3, and again from lesion 3 to 4. Distribution was highly consistent in the four cases, and the same decrement pattern was seen in all blocks studied. The volumes of clusters were measured and divided into three categories according to their volume. The most frequent pathologic event in VHL kidneys was category 1 (smallest volume), then category 2, and then category 3. Conclusion: We demonstrate that tracking histologic and morphologic changes in 3 dimensions of multicellular microscopic pathologic events enabled us to confirm a protracted sequence of events from smaller to larger cellular amplification events in VHL kidney. Full article
Show Figures

Figure 1

13 pages, 5632 KiB  
Article
Multiscale Analysis of Cellular Composition and Morphology in Intact Cerebral Organoids
by Haihua Ma, Juan Chen, Zhiyu Deng, Tingting Sun, Qingming Luo, Hui Gong, Xiangning Li and Ben Long
Biology 2022, 11(9), 1270; https://doi.org/10.3390/biology11091270 - 26 Aug 2022
Cited by 8 | Viewed by 4013
Abstract
Cerebral organoids recapitulate in vivo phenotypes and physiological functions of the brain and have great potential in studying brain development, modeling diseases, and conducting neural network research. It is essential to obtain whole-mount three-dimensional (3D) images of cerebral organoids at cellular levels to [...] Read more.
Cerebral organoids recapitulate in vivo phenotypes and physiological functions of the brain and have great potential in studying brain development, modeling diseases, and conducting neural network research. It is essential to obtain whole-mount three-dimensional (3D) images of cerebral organoids at cellular levels to explore their characteristics and applications. Existing histological strategies sacrifice inherent spatial characteristics of organoids, and the strategy for volume imaging and 3D analysis of entire organoids is urgently needed. Here, we proposed a high-resolution imaging pipeline based on fluorescent labeling by viral transduction and 3D immunostaining with fluorescence micro-optical sectioning tomography (fMOST). We were able to image intact organoids using our pipeline, revealing cytoarchitecture information of organoids and the spatial localization of neurons and glial fibrillary acidic protein positive cells (GFAP+ cells). We performed single-cell reconstruction to analyze the morphology of neurons and GFAP+ cells. Localization and quantitative analysis of cortical layer markers revealed heterogeneity of organoids. This pipeline enabled acquisition of high-resolution spatial information of millimeter-scale organoids for analyzing their cell composition and morphology. Full article
Show Figures

Figure 1

15 pages, 5215 KiB  
Article
Effect of Melatonin on Psoriatic Phenotype in Human Reconstructed Skin Model
by Sarah Adriana Scuderi, Laura Cucinotta, Alessia Filippone, Marika Lanza, Michela Campolo, Irene Paterniti and Emanuela Esposito
Biomedicines 2022, 10(4), 752; https://doi.org/10.3390/biomedicines10040752 - 23 Mar 2022
Cited by 14 | Viewed by 3643
Abstract
Psoriasis is an inflammatory and auto-immune skin-disease characterized by uncontrolled keratinocyte proliferation. Its pathogenesis is not still fully understood; however, an aberrant and excessive inflammatory and immune response can contribute to its progression. Recently, more attention has been given to the anti-inflammatory and [...] Read more.
Psoriasis is an inflammatory and auto-immune skin-disease characterized by uncontrolled keratinocyte proliferation. Its pathogenesis is not still fully understood; however, an aberrant and excessive inflammatory and immune response can contribute to its progression. Recently, more attention has been given to the anti-inflammatory and immunomodulators effects of melatonin in inflammatory diseases. The aim of this paper was to investigate the effect of melatonin on psoriatic phenotype and also in S. aureus infection-associated psoriasis, with an in vitro model using Skinethic Reconstructed Human Epidermis (RHE). An in vitro model was constructed using the RHE, a three-dimensional-model obtained from human primary-keratinocytes. RHE-cells were exposed to a mix of pro-inflammatory cytokines, to induce a psoriatic phenotype; cells were also infected with S. aureus to aggravate psoriasis disease, and then were treated with melatonin at the concentrations of 1 nM, 10 nM, and 50 nM. Our results demonstrated that melatonin at higher concentrations significantly reduced histological damage, compared to the cytokine and S. aureus groups. Additionally, the treatment with melatonin restored tight-junction expression and reduced pro-inflammatory cytokine levels, such as interleukin-1β and interleukin-12. Our results suggest that melatonin could be considered a promising strategy for psoriasis-like skin inflammation, as well as complications of psoriasis, such as S. aureus infection. Full article
(This article belongs to the Special Issue New Advancements in Chronic Inflammatory Skin Disease)
Show Figures

Figure 1

16 pages, 3676 KiB  
Article
Osteogenic Potential of Magnesium (Mg)-Doped Multicomponent Bioactive Glass: In Vitro and In Vivo Animal Studies
by Saeid Kargozar, Peiman Brouki Milan, Moein Amoupour, Farzad Kermani, Sara Gorgani, Simin Nazarnezhad, Sara Hooshmand and Francesco Baino
Materials 2022, 15(1), 318; https://doi.org/10.3390/ma15010318 - 3 Jan 2022
Cited by 41 | Viewed by 4751
Abstract
The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2 [...] Read more.
The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2O–7MgO–4K2O (mol.%)) was synthesized for being used in bone reconstruction. The prepared BGs were then manufactured as three-dimensional (3D) scaffolds by using the sponge replica approach. The microstructure of the samples was assessed by X-ray diffraction (XRD) and the surface morphology was observed by using scanning electron microscopy (SEM). The in vitro bioactivity and the release of osteo-stimulatory Mg2+ ions from the prepared samples were investigated over 7 days of incubation in simulated body fluids (SBF). In vitro cellular analyses revealed the compatibility of the Mg-doped BGs with human osteosarcoma cells (MG-63 cell line). Moreover, the Mg-doped BGs could induce bone nodule formation in vitro and improve the migratory ability of human umbilical vein endothelial cells (HUVECs). In vivo osteogenic capacity was further evaluated by implanting the BG-derived scaffolds into surgically-created critical-size bone defects in rats. Histological and immunohistological observations revealed an appropriate bone regeneration in the animals receiving the glass-based scaffolds after 12 weeks of surgery. In conclusion, our study indicates the effectiveness of the Mg-doped BGs in stimulating osteogenesis in both in vitro and in vivo conditions. Full article
Show Figures

Figure 1

18 pages, 4612 KiB  
Review
High-Resolution Episcopic Microscopy (HREM) in Multimodal Imaging Approaches
by Katharina S. Keuenhof, Anoop Kavirayani, Susanne Reier, Stefan H. Geyer, Wolfgang J. Weninger and Andreas Walter
Biomedicines 2021, 9(12), 1918; https://doi.org/10.3390/biomedicines9121918 - 15 Dec 2021
Cited by 9 | Viewed by 3835
Abstract
High-resolution episcopic microscopy (HREM) is a three-dimensional (3D) episcopic imaging modality based on the acquisition of two-dimensional (2D) images from the cut surface of a block of tissue embedded in resin. Such images, acquired serially through the entire length/depth of the tissue block, [...] Read more.
High-resolution episcopic microscopy (HREM) is a three-dimensional (3D) episcopic imaging modality based on the acquisition of two-dimensional (2D) images from the cut surface of a block of tissue embedded in resin. Such images, acquired serially through the entire length/depth of the tissue block, are aligned and stacked for 3D reconstruction. HREM has proven to be specifically advantageous when integrated in correlative multimodal imaging (CMI) pipelines. CMI creates a composite and zoomable view of exactly the same specimen and region of interest by (sequentially) correlating two or more modalities. CMI combines complementary modalities to gain holistic structural, functional, and chemical information of the entire sample and place molecular details into their overall spatiotemporal multiscale context. HREM has an advantage over in vivo 3D imaging techniques on account of better histomorphologic resolution while simultaneously providing volume data. HREM also has certain advantages over ex vivo light microscopy modalities. The latter can provide better cellular resolution but usually covers a limited area or volume of tissue, with limited 3D structural context. HREM has predominantly filled a niche in the phenotyping of embryos and characterisation of anatomic developmental abnormalities in various species. Under the umbrella of CMI, when combined with histopathology in a mutually complementary manner, HREM could find wider application in additional nonclinical and translational areas. HREM, being a modified histology technique, could also be incorporated into specialised preclinical pathology workflows. This review will highlight HREM as a versatile imaging platform in CMI approaches and present its benefits and limitations. Full article
Show Figures

Figure 1

Back to TopTop