Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective
Abstract
:1. Introduction
2. Brief Overview of AI, ML, and DL in Pathology
- Enhanced Diagnostic Accuracy: AI algorithms can assist in identifying subtle histopathological features that may be challenging to detect with the naked eye, thereby reducing diagnostic errors.
- Increased Efficiency: Automated image analysis can expedite the diagnostic process, allowing pathologists to focus on more complex cases and potentially increasing overall productivity.
- Standardization: AI provides consistent analysis, minimizing inter-observer variability and contributing to more standardized diagnoses.
- Data Quality and Quantity: Training robust AI models requires large datasets of high-quality, annotated images, which can be resource-intensive to compile.
- Interpretability: Many AI models, particularly deep learning networks, operate as “black boxes,” making it difficult to understand the rationale behind their predictions. This lack of transparency can hinder trust and acceptance among clinicians.
- Integration into Clinical Workflows: Incorporating AI tools into existing pathology practices necessitates careful consideration of workflow integration, user training, and regulatory compliance.
3. Advancements in Artificial Intelligence for Placental Histology
4. The Potential of Machine Learning in Placental Pathology
5. Current Applications of AI and ML in Placental Histopathology
5.1. Decidual Vasculopathy
5.2. Maternal Vascular Malperfusion
6. Challenges and Limitations of AI in Placental Pathology
6.1. Structural and Interpretative Limitations
6.2. Dataset Challenges in AI Applications for Placental Pathology
6.3. Implementation Challenges for AI in Placental Pathology
- (a)
- Regulatory Approval
- (b)
- Cost and Infrastructure Requirements
- (c)
- Pathologist Training and Acceptance
6.4. Ethical Considerations for AI in Placental Pathology
- (a)
- Patient Data Privacy and Confidentiality
- (b)
- Informed Consent
- (c)
- Algorithmic Bias and Fairness
- (d)
- Accountability and Transparency
- (e)
- Impact of AI Misdiagnosis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Curtin, W.M.; Krauss, S.; Metlay, L.A.; Katzman, P.J. Pathologic examination of the placenta and observed practice. Obstet. Gynecol. 2007, 109, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Sills, A.; Steigman, C.; Ounpraseuth, S.T.; Odibo, I.; Sandlin, A.T.; Magann, E.F. Pathologic examination of the placenta: Recommended versus observed practice in a university hospital. Int. J. Women’s Health 2013, 5, 309–312. [Google Scholar]
- Giorgione, V.; Cavoretto, P.; Cormio, G.; Valsecchi, L.; Vimercati, A.; De Gennaro, A.; Rabaiotti, E.; Candiani, M.; Mangili, G. Prenatal diagnosis of twin pregnancies with complete hydatidiform mole and coexistent normal fetus: A series of 13 cases. Gynecol. Obstet. Investig. 2017, 82, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Malvasi, A.; Kuczkowski, K.; Marinelli, E.; Zaami, S. Intrapartum sonography of fetal head in second stage of labor with neuraxial analgesia: A literature review and possible medicolegal aftermath. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3159–3166. [Google Scholar]
- Marletta, S.; Pantanowitz, L.; Santonicco, N.; Caputo, A.; Bragantini, E.; Brunelli, M.; Girolami, I.; Eccher, A. Application of digital imaging and artificial intelligence to pathology of the placenta. Pediatr. Dev. Pathol. 2023, 26, 5–12. [Google Scholar] [CrossRef]
- Addante, F.; d’Amati, A.; Santoro, A.; Angelico, G.; Inzani, F.; Arciuolo, D.; Travaglino, A.; Raffone, A.; D’Alessandris, N.; Scaglione, G.; et al. Mismatch Repair Deficiency as a Predictive and Prognostic Biomarker in Endometrial Cancer: A Review on Immunohistochemistry Staining Patterns and Clinical Implications. Int. J. Mol. Sci. 2024, 25, 1056. [Google Scholar] [CrossRef]
- Santoro, A.; Angelico, G.; Inzani, F.; Arciuolo, D.; d’Amati, A.; Addante, F.; Travaglino, A.; Scaglione, G.; D’Alessandris, N.; Valente, M.; et al. The emerging and challenging role of PD-L1 in patients with gynecological cancers: An updating review with clinico-pathological considerations. Gynecol. Oncol. 2024, 184, 57–66. [Google Scholar] [CrossRef]
- Etrusco, A.; Lagana, A.S.; Chiantera, V.; Mikus, M.; Arsalan, H.M.; d’Amati, A.; Vitagliano, A.; Cicinelli, E.; Favilli, A.; D’Amato, A. Reproductive and Oncologic Outcomes in Young Women with Stage IA and Grade 2 Endometrial Carcinoma Undergoing Fertility-Sparing Treatment: A Systematic Review. Biomolecules 2024, 14, 306. [Google Scholar] [CrossRef]
- Kozai, A.C.; Skvarca, L.B.; Parks, W.T.; Lane, A.; Gibbs, B.B.; Catov, J.M. A novel technique to estimate intravillous fetal vasculature on routine placenta histologic sections. Placenta 2024, 145, 60–64. [Google Scholar] [CrossRef]
- Naicker, T.; Khedun, S.M.; Moodley, J.; Pijnenborg, R. Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet. Gynecol. Scand. 2003, 82, 722–729. [Google Scholar] [CrossRef]
- Szabo, S.; Xu, Y.; Romero, R.; Fule, T.; Karaszi, K.; Bhatti, G.; Varkonyi, T.; Varkonyi, I.; Krenacs, T.; Dong, Z. Changes of placental syndecan-1 expression in preeclampsia and HELLP syndrome. Virchows Arch. 2013, 463, 445–458. [Google Scholar] [PubMed]
- Bhalla, A.; Stone, P.; Liddell, H.; Zanderigo, A.; Chamley, L. Comparison of the expression of human leukocyte antigen (HLA)-G and HLA-E in women with normal pregnancy and those with recurrent miscarriage. Reproduction 2006, 131, 583–589. [Google Scholar] [PubMed]
- Moodley, M.; Moodley, J.; Naicker, T. Evaluation of placental chorionic villi histone 2A expression in HIV-infected women with pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 245, 127–133. [Google Scholar]
- Ptacek, I.; Smith, A.; Garrod, A.; Bullough, S.; Bradley, N.; Batra, G.; Sibley, C.P.; Jones, R.L.; Brownbill, P.; Heazell, A.E. Quantitative assessment of placental morphology may identify specific causes of stillbirth. BMC Clin. Pathol. 2016, 16, 1. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Abouzid, M.; Kaczmarek, E. Deep Learning Approaches in Histopathology. Cancers 2022, 14, 5264. [Google Scholar] [CrossRef]
- Shafi, S.; Parwani, A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef]
- McGenity, C.; Clarke, E.L.; Jennings, C.; Matthews, G.; Cartlidge, C.; Freduah-Agyemang, H.; Stocken, D.D.; Treanor, D. Artificial intelligence in digital pathology: A systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit. Med. 2024, 7, 114. [Google Scholar] [CrossRef]
- Rundo, L.; Militello, C. Image biomarkers and explainable AI: Handcrafted features versus deep learned features. Eur. Radiol. Exp. 2024, 8, 130. [Google Scholar] [CrossRef]
- Chou, T.; Goldstein, J.A. How can artificial intelligence models advance placental biology? Placenta, 2025; in press. ISSN 0143-4004. [Google Scholar] [CrossRef]
- Clymer, D.; Kostadinov, S.; Catov, J.; Skvarca, L.; Pantanowitz, L.; Cagan, J.; LeDuc, P. Decidual vasculopathy identification in whole slide images using multiresolution hierarchical convolutional neural networks. Am. J. Pathol. 2020, 190, 2111–2122. [Google Scholar] [CrossRef]
- Kidron, D.; Vainer, I.; Fisher, Y.; Sharony, R. Automated image analysis of placental villi and syncytial knots in histological sections. Placenta 2017, 53, 113–118. [Google Scholar]
- Maly, A.; Goshen, G.; Sela, J.; Pinelis, A.; Stark, M.; Maly, B. Histomorphometric study of placental villi vascular volume in toxemia and diabetes. Hum. Pathol. 2005, 36, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Swiderska-Chadaj, Z.; Markiewicz, T.; Koktysz, R.; Cierniak, S. Image processing methods for the structural detection and gradation of placental villi. Comput. Biol. Med. 2018, 100, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Mobadersany, P.; Cooper, L.A.D.; Goldstein, J.A. GestAltNet: Aggregation and attention to improve deep learning of gestational age from placental whole-slide images. Lab. Investig. 2021, 101, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Mehta, M.; Goldstein, J.A.; Ngonzi, J.; Bebell, L.M.; Roberts, D.J.; Carreon, C.K.; Gallagher, K.; Walker, R.E.; Gernand, A.D.; et al. Cross-modal contrastive learning for unified placenta analysis using photographs. Patterns 2024, 5, 101097. [Google Scholar] [CrossRef]
- Patnaik, P.; Khodaee, A.; Vasam, G.; Mukherjee, A.; Salsabili, S.; Ukwatta, E.; Grynspan, D.; Chan, A.D.C.; Bainbridge, S. Automated detection of microscopic placental features indicative of maternal vascular malperfusion using machine learning. Placenta 2024, 145, 19–26. [Google Scholar] [CrossRef]
- Zafaranieh, S.; Kummer, D.; van Poppel, M.N.; Desoye, G.; Huppertz, B. Automated stereological image analysis approach of the human placenta: Surface areas and vascularization. Placenta 2023, 142, 115–118. [Google Scholar] [CrossRef]
- Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Sheibak, N. Quantitative changes of extravillous trophoblast cells in heavy smoker mothers compared with healthy controls. Reprod. Fertil. Dev. 2018, 30, 409–414. [Google Scholar] [CrossRef]
- Ahenkorah, J.; Tetteh-Quarcoo, P.B.; Nuamah, M.A.; Kwansa–Bentum, B.; Nuamah, H.G.; Hottor, B.; Korankye, E.; Torto, M.; Ntumy, M.; Addai, F.K. The impact of Plasmodium infection on placental histomorphology: A stereological preliminary study. Infect. Dis. Obstet. Gynecol. 2019, 2019, 2094560. [Google Scholar] [CrossRef]
- Heidari, Z.; Sakhavar, N.; Mahmoudzadeh-Sagheb, H.; Ezazi-Bojnourdi, T. Stereological analysis of human placenta in cases of placenta previa in comparison with normally implanted controls. J. Reprod. Infertil. 2015, 16, 90. [Google Scholar]
- Güven, D.; Altunkaynak, B.; Altun, G.; Alkan, I.; Kocak, I. Histomorphometric changes in the placenta and umbilical cord during complications of pregnancy. Biotech. Histochem. 2018, 93, 198–210. [Google Scholar] [CrossRef]
- Kurtoglu, E.; Altunkaynak, B.Z.; Aydin, I.; Ozdemir, A.Z.; Altun, G.; Kokcu, A.; Kaplan, S. Role of vascular endothelial growth factor and placental growth factor expression on placenta structure in pre-eclamptic pregnancy. J. Obstet. Gynaecol. Res. 2015, 41, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, R.; Orsi, N.; Treanor, D.; Moran, O.; Vernooij, M.; Magee, D.; Roberts, N.; Stahlschmidt, J.; Simpson, N. Three-dimensional digital reconstruction of human placental villus architecture in normal and complicated pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 197, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Vanea, C.; Dzigurski, J.; Rukins, V.; Dodi, O.; Siigur, S.; Salumae, L.; Meir, K.; Parks, W.T.; Hochner-Celnikier, D.; Fraser, A.; et al. Mapping cell-to-tissue graphs across human placenta histology whole slide images using deep learning with HAPPY. Nat. Commun. 2024, 15, 2710. [Google Scholar] [CrossRef]
- Jung, Y.M.; Park, S.; Ahn, Y.; Kim, H.; Kim, E.N.; Park, H.E.; Kim, S.M.; Kim, B.J.; Lee, J.; Park, C.W.; et al. Identification of Preeclamptic Placenta in Whole Slide Images Using Artificial Intelligence Placenta Analysis. J. Korean Med. Sci. 2024, 39, e271. [Google Scholar] [CrossRef]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef]
- Tizhoosh, H.R.; Pantanowitz, L. Artificial intelligence and digital pathology: Challenges and opportunities. J. Pathol. Inform. 2018, 9, 38. [Google Scholar] [CrossRef]
- Dellino, M.; Cerbone, M.; d’Amati, A.; Bochicchio, M.; Laganà, A.S.; Etrusco, A.; Malvasi, A.; Vitagliano, A.; Pinto, V.; Cicinelli, E. Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges. AI 2024, 5, 2984–3000. [Google Scholar] [CrossRef]
- Cartus, A.R. Machine learning to study placental pathology: Risk of reification and other considerations. Paediatr. Perinat. Epidemiol. 2023, 37, 362–364. [Google Scholar] [CrossRef]
- Hao, R.; Namdar, K.; Liu, L.; Haider, M.A.; Khalvati, F. A Comprehensive Study of Data Augmentation Strategies for Prostate Cancer Detection in Diffusion-Weighted MRI Using Convolutional Neural Networks. J. Digit. Imaging 2021, 34, 862–876. [Google Scholar] [CrossRef]
- Wang, J.; Kim, C.-S.; Kwak, J.T. Patch stitching data augmentation for cancer classification in pathology images. In Proceedings of the Medical Imaging 2024: Digital and Computational Pathology, San Diego, CA, USA, 18–22 February 2024; pp. 324–329. [Google Scholar]
- Yang, R.; Wang, R.; Deng, Y.; Jia, X.; Zhang, H. Rethinking the random cropping data augmentation method used in the training of CNN-based SAR image ship detector. Remote Sens. 2020, 13, 34. [Google Scholar] [CrossRef]
- Irmakci, I.; Nateghi, R.; Zhou, R.; Vescovo, M.; Saft, M.; Ross, A.E.; Yang, X.J.; Cooper, L.A.; Goldstein, J.A. Tissue contamination challenges the credibility of machine learning models in real world digital pathology. Mod. Pathol. 2024, 37, 100422. [Google Scholar] [PubMed]
- Goldstein, J.A.; Nateghi, R.; Irmakci, I.; Cooper, L.A. Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta 2023, 135, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Salafia, C.M.; Vintzileos, A.M. Why all placentas should be examined by a pathologist in 1990. Am. J. Obstet. Gynecol. 1990, 163, 1282–1293. [Google Scholar]
- Hutchinson, J.C.; Picarsic, J.; McGenity, C.; Treanor, D.; Williams, B.; Sebire, N.J. Whole Slide Imaging, Artificial Intelligence, and Machine Learning in Pediatric and Perinatal Pathology: Current Status and Future Directions. Pediatr. Dev. Pathol. 2025, 28, 91–98. [Google Scholar] [CrossRef]
- Spencer, M.K.; Khong, T.Y. Conformity to guidelines for pathologic examination of the placenta: Rates of submission and listing of clinical indications. Arch. Pathol. Lab. Med. 2003, 127, 205–207. [Google Scholar]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.; Boyd, T.K.; Brundler, M.-A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef]
- Romero, R.; Kim, Y.M.; Pacora, P.; Kim, C.J.; Benshalom-Tirosh, N.; Jaiman, S.; Bhatti, G.; Kim, J.-S.; Qureshi, F.; Jacques, S.M. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J. Perinat. Med. 2018, 46, 613–630. [Google Scholar]
- Zur, R.L.; McLaughlin, K.; Aalto, L.; Jiang, Y.; Huszti, E.; Parks, W.T.; Kingdom, J.C. Phenotypes of maternal vascular malperfusion placental pathology and adverse pregnancy outcomes: A retrospective cohort study. BJOG 2024, 131, 1515–1523. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Redline, R.W.; Ravishankar, S. Fetal vascular malperfusion, an update. Apmis 2018, 126, 561–569. [Google Scholar]
- McBride, C.A.; Bernstein, I.M.; Sybenga, A.B.; McLean, K.C.; Orfeo, T.; Bravo, M.C. Placental maternal vascular malperfusion is associated with prepregnancy and early pregnancy maternal cardiovascular and thrombotic profiles. Reprod. Med. 2022, 3, 50–61. [Google Scholar] [CrossRef]
- Homeyer, A.; Geissler, C.; Schwen, L.O.; Zakrzewski, F.; Evans, T.; Strohmenger, K.; Westphal, M.; Bulow, R.D.; Kargl, M.; Karjauv, A.; et al. Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology. Mod. Pathol. 2022, 35, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Aghbolaghi, M.; Darbandsari, A.; Zhang, A.; Contreras-Sanz, A.; Boschman, J.; Ahmadvand, P.; Kobel, M.; Farnell, D.; Huntsman, D.G.; Churg, A.; et al. Learning generalizable AI models for multi-center histopathology image classification. NPJ Precis. Oncol. 2024, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Van Booven, D.J.; Chen, C.-B.; Kryvenko, O.; Punnen, S.; Sandoval, V.; Malpani, S.; Noman, A.; Ismael, F.; Briseño, A.; Wang, Y. Synthetic histology images for training ai models: A novel approach to improve prostate cancer diagnosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Devnath, L.; Summons, P.; Luo, S.; Wang, D.; Shaukat, K.; Hameed, I.A.; Aljuaid, H. Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 6439. [Google Scholar] [CrossRef] [PubMed]
- Simon, B.D.; Ozyoruk, K.B.; Gelikman, D.G.; Harmon, S.A.; Turkbey, B. The future of multimodal artificial intelligence models for integrating imaging and clinical metadata: A narrative review. Diagn. Interv. Radiol. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G.; Pantanowitz, L.; Jackson, B.; Palmer, O.; Visweswaran, S.; Pantanowitz, J.; Deebajah, M.; Rashidi, H.H. Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Mod. Pathol. 2025, 38, 100686. [Google Scholar] [CrossRef]
- Vaidya, A.; Chen, R.J.; Williamson, D.F.K.; Song, A.H.; Jaume, G.; Yang, Y.; Hartvigsen, T.; Dyer, E.C.; Lu, M.Y.; Lipkova, J.; et al. Demographic bias in misdiagnosis by computational pathology models. Nat. Med. 2024, 30, 1174–1190. [Google Scholar] [CrossRef]
- Dunn, C.; Brettle, D.; Hodgson, C.; Hughes, R.; Treanor, D. An international study of stain variability in histopathology using qualitative and quantitative analysis. J. Pathol. Inform. 2025, 17, 100423. [Google Scholar] [CrossRef]
- Ayad, M.A.; Nateghi, R.; Sharma, A.; Chillrud, L.; Seesillapachai, T.; Cooper, L.A.; Goldstein, J.A. Deep Learning for Fetal Inflammatory Response Diagnosis in the Umbilical Cord. arXiv 2024, arXiv:2411.09767. [Google Scholar]
- Reis-Filho, J.S.; Kather, J.N. Overcoming the challenges to implementation of artificial intelligence in pathology. J. Natl. Cancer Inst. 2023, 115, 608–612. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Abel, J.T.; Balis, U.G.J.; McClintock, D.S.; Pantanowitz, L. Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. Am. J. Pathol. 2021, 191, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, C.; Gullapalli, R.R. Ethics of AI in Pathology: Current Paradigms and Emerging Issues. Am. J. Pathol. 2021, 191, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L.; Hanna, M.; Pantanowitz, J.; Lennerz, J.; Henricks, W.H.; Shen, P.; Quinn, B.; Bennet, S.; Rashidi, H.H. Regulatory Aspects of Artificial Intelligence and Machine Learning. Mod. Pathol. 2024, 37, 100609. [Google Scholar] [CrossRef] [PubMed]
AI Method | Authors | Year | Main Application | Technical Features | Clinical Implications |
---|---|---|---|---|---|
GestAltNet | Mobadersany et al. [24] | 2021 | Gestational age estimation from histological images | Deep learning CNN with attention mechanism; approx. ±1 week error | Early detection of villous maturation anomalies, gestational diabetes, preeclampsia |
3D Stereological Reconstruction | Zafaranieh et al. [27] | 2023 | Quantification of villous volume, intervillar spaces, vascular structures, and fibrin areas | Automated stereological methods analyzing serial histological slides | Enhanced diagnosis of gestational diabetes, infections, and placental diseases |
3D Placental Reconstruction | McCarthy et al. [33] | 2023 | Full 3D reconstruction from 200 serial histological slides | Automated labeling and digital alignment of serial sections | Detailed morphological analysis; improved decision-making for complicated pregnancies |
PlacentaVision | Pan et al [25]. | 2024 | Rapid placental image analysis at birth | AI-driven pathology detection of neonatal infections and maternal complications | Accelerated clinical intervention; early diagnosis |
HAPPY | Vanea et al. [34] | 2024 | Prediction of placental cell types and cellular interactions | AI-based histopathology analysis pipeline | Improved understanding of placental health, disease mechanisms, and cell biology |
Dataset/Repository | Access | Data Type | Annotations Available | Notes |
---|---|---|---|---|
The Cancer Genome Atlas (TCGA)—Placenta subset | Public | Genomic + limited WSIs | Clinical and molecular metadata | Limited placenta cases; useful for AI benchmarking |
PathLAKE (UK NHS) | By request | Whole-slide images (WSIs) | Clinical metadata, outcome data | Placental cases included in organ-level collections |
HAPPY Dataset (Vanea et al., 2024) [34] | Private (upon request) | H&E WSIs | Cell type segmentation, spatial relationships | Used for deep learning of cell-tissue interactions |
PlacentaVision Dataset (Pan et al., 2024) [25] | Private | Histological and clinical images | Neonatal/maternal outcome annotations | Multimodal dataset; not yet publicly available |
Institutional datasets (e.g., Ottawa, Pittsburgh) | Private | WSIs | Expert-labeled histological lesions | Used in training ML models for DV/MVM |
Aspect | Description |
---|---|
Definition | Decidual vasculopathy (DV) involves abnormalities in decidual arterioles, including fibrinoid necrosis and hypertrophy. |
AI Application | Deep learning models analyze digital placental slides to detect microscopic DV lesions and predict preeclampsia risk. |
Deep Learning Pipeline | Three stages: object detection (locating blood vessels), classification (healthy vs. diseased), and aggregation of results. |
Challenges in DV Detection | Issues with truncated blood vessels and distinguishing between similar histological features can affect accuracy. |
Pathologist Involvement | AI models assist but require human validation to confirm lesions and avoid misinterpretation of artifacts. |
Future Directions | Refinements in AI training, increased dataset diversity, and better integration of clinical metadata to improve accuracy. |
Aspect | Description |
---|---|
Definition | Maternal Vascular Malperfusion (MVM) is a placental condition associated with hypertensive disorders and fetal growth restriction (FGR). |
AI Application | Machine learning models classify placental lesions indicative of MVM, such as infarcts, villous hypoplasia, and arteriopathy. |
Automated MVM Classification | A ResNet18-based ML model achieved 79% accuracy in identifying MVM in placental samples from hypertensive and FGR pregnancies. |
Challenges in MVM Diagnosis | Histological variability and overlapping placental lesions can lead to misclassification, particularly in preterm cases. |
Impact on Clinical Outcomes | AI-based MVM detection can aid in early diagnosis and risk stratification for pregnancy complications. |
Future Directions | Enhancements in dataset diversity, multi-class models, and refined classification thresholds to improve diagnostic precision. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Amati, A.; Baldini, G.M.; Difonzo, T.; Santoro, A.; Dellino, M.; Cazzato, G.; Malvasi, A.; Vimercati, A.; Resta, L.; Zannoni, G.F.; et al. Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective. J. Imaging 2025, 11, 110. https://doi.org/10.3390/jimaging11040110
d’Amati A, Baldini GM, Difonzo T, Santoro A, Dellino M, Cazzato G, Malvasi A, Vimercati A, Resta L, Zannoni GF, et al. Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective. Journal of Imaging. 2025; 11(4):110. https://doi.org/10.3390/jimaging11040110
Chicago/Turabian Styled’Amati, Antonio, Giorgio Maria Baldini, Tommaso Difonzo, Angela Santoro, Miriam Dellino, Gerardo Cazzato, Antonio Malvasi, Antonella Vimercati, Leonardo Resta, Gian Franco Zannoni, and et al. 2025. "Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective" Journal of Imaging 11, no. 4: 110. https://doi.org/10.3390/jimaging11040110
APA Styled’Amati, A., Baldini, G. M., Difonzo, T., Santoro, A., Dellino, M., Cazzato, G., Malvasi, A., Vimercati, A., Resta, L., Zannoni, G. F., & Cascardi, E. (2025). Artificial Intelligence in Placental Pathology: New Diagnostic Imaging Tools in Evolution and in Perspective. Journal of Imaging, 11(4), 110. https://doi.org/10.3390/jimaging11040110