Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = three-center hydrogen bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2479 KiB  
Article
Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
by Bojana Nedić Vasiljević, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang and Danica Bajuk-Bogdanović
Molecules 2025, 30(15), 3267; https://doi.org/10.3390/molecules30153267 - 4 Aug 2025
Viewed by 161
Abstract
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, [...] Read more.
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (−2.2 eV), with thiamethoxam having a lower binding energy of −1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids’ adsorption and can help with the design of future adsorbents. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

14 pages, 1458 KiB  
Article
Synthesis, Reductive Reactivity and Anticancer Activity of Cobalt(III)– and Manganese(III)–Salen Complexes
by Amy Kanina, Haiyu Mei, Cheska Palma, Michelle C. Neary, Shu-Yuan Cheng and Guoqi Zhang
Chemistry 2025, 7(3), 85; https://doi.org/10.3390/chemistry7030085 - 23 May 2025
Cited by 1 | Viewed by 786
Abstract
Mn(III)– and Co(III)–salen complexes (Mn-1 and Co-2) have been synthesized by a simple one-pot procedure through oxidation of Mn(II) and Co(II) precursors in air. X-ray structural analysis reveals that both complexes adopt similar coordination modes, including a typical square planar metal/salen [...] Read more.
Mn(III)– and Co(III)–salen complexes (Mn-1 and Co-2) have been synthesized by a simple one-pot procedure through oxidation of Mn(II) and Co(II) precursors in air. X-ray structural analysis reveals that both complexes adopt similar coordination modes, including a typical square planar metal/salen coordination sphere, which is further occupied by two axial ligands, i.e., an acetate anion and a water molecule. Despite their structural similarity, they are not isomorphous given their distinct cell parameters. In the solid-state structures, both complexes exist as hydrogen-bonded dimers through hydrogen bonding interactions between the axially coordinating water molecules and outer O4 cavity from another molecule of the complex. The reductive activity of both complexes has been explored. While the reaction of Mn-1 with potassium triethylborohydride was unsuccessful, leading to a complicated mixture, the use of Co-2 furnished the formation of a novel product (CoK-3) that was isolated as red crystals in reasonable yield. CoK-3 was characterized as a heterometallic dimer involving the coordination of a K+ ion within the O4 cavity of a semi-hydrogenated salen/cobalt complex while the cobalt center has been reduced from Co(III) to Co(II). In addition, an attempt at reducing Co-2 with pinacolborane resulted in the isolation of crystals of Co-4, whose structure was determined as a simple square planar CoII–salen complex. Finally, three complexes (Mn-1, Co-2 and CoK-3) have been investigated for their cytotoxic activities against two human breast cancer cell lines (MCF-7 and MDA-MB 468) and a normal breast epitheliel cell line (MCF-10A), with cisplatin used as a reference in order to discover potential drug candidates that may compete with cisplatin. The results reveal that Co-2 can be a promising drug candidate, specifically for the MCF-7 cancer cells, with minimal damage to healthy cells. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

17 pages, 7192 KiB  
Article
Effect of Dy3+ Ions on Structural, Thermal and Spectroscopic Properties of L-Threonine Crystals: A Visible Light-Emitting Material
by João G. de Oliveira Neto, Otávio C. da Silva Neto, Jéssica A. O. Rodrigues, Jailton R. Viana, Alysson Steimacher, Franciana Pedrochi, Francisco F. de Sousa and Adenilson O. dos Santos
Quantum Beam Sci. 2025, 9(1), 3; https://doi.org/10.3390/qubs9010003 - 13 Jan 2025
Cited by 1 | Viewed by 1342
Abstract
In this study, L-threonine crystals (L-thr) containing Dy3+ ions (L-thrDy5 and L-thrDy10) with varying mass concentrations (5% and 10%) were successfully synthesized using a solvent slow evaporation method. The structural properties were characterized by Powder X-ray diffraction and Rietveld refinement. The data [...] Read more.
In this study, L-threonine crystals (L-thr) containing Dy3+ ions (L-thrDy5 and L-thrDy10) with varying mass concentrations (5% and 10%) were successfully synthesized using a solvent slow evaporation method. The structural properties were characterized by Powder X-ray diffraction and Rietveld refinement. The data revealed that all three samples crystallized in orthorhombic symmetry (P212121-space group) and presented four molecules per unit cell (Z = 4). However, the addition of Dy3+ ions induced a dilation effect in the lattice parameters and cell volume of the organic structure. Additionally, the average crystallite size, lattice microstrain, percentage of void centers, and Hirshfeld surface were calculated for the crystals. Thermogravimetric and differential thermal analysis experiments showed that L-thr containing Dy3+ ions are thermally stable up to 214 °C. Fourier transform infrared and Raman spectroscopy results indicated that the Dy3+ ions interact indirectly with the L-thr molecule via hydrogen bonds, slightly affecting the crystalline structure of the amino acid. Optical analysis in the ultraviolet–visible region displayed eight absorption bands associated with the electronic transitions characteristic of Dy3+ ions in samples containing lanthanides. Furthermore, L-thrDy5 and L-thrDy10 crystals, when optically excited at 385 nm, exhibited three photoluminescence bands centered around approximately 554, 575, and 652 nm, corresponding to the 4F7/26H11/2, 4F9/26H13/2, and 4F9/26H11/2 de-excitations. Therefore, this study demonstrated that L-thr crystals containing Dy3+ ions are promising candidates for the development of optical materials due to their favorable physical and chemical properties. Additionally, it is noteworthy that the synthesis of these systems is cost-effective, and the synthesis method used is efficient. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Graphical abstract

14 pages, 5883 KiB  
Article
Solvatomorphic Diversity in Coordination Compounds of Copper(II) with l-Homoserine and 1,10-Phenanthroline: Syntheses, Crystal Structures and ESR Study
by Darko Vušak, Marta Šimunović Letić, Marina Tašner, Dubravka Matković-Čalogović, Jurica Jurec, Dijana Žilić and Biserka Prugovečki
Molecules 2024, 29(23), 5621; https://doi.org/10.3390/molecules29235621 - 27 Nov 2024
Viewed by 1131
Abstract
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(H2O)(phen)]2SO4·5H2O [...] Read more.
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(H2O)(phen)]2SO4·5H2O (1·5H2O), [Cu(μ-l-hser)(H2O)(phen)][Cu(l-hser)(H2O)(phen)]3(SO4)2∙12H2O (2·12H2O), {[Cu(μ-l-hser)(H2O)(phen)][Cu(μ-l-hser)(phen)]SO4·6H2O}n (3·6H2O), {[Cu(μ-l-hser)(H2O)(phen)]2SO4·3H2O}n (4·3H2O), [Cu(l-hser)(H2O)(phen)][Cu(l-hser)(CH3OH)(phen)]SO4·4H2O (5·4H2O) and {[Cu(l-hser)(CH3OH)(phen)][Cu(μ-l-hser)(phen)]SO4·5CH3OH}n (6·5CH3OH). It was shown that slight differences in water content in the synthetic mixtures highly influence the final product, so in some cases, two or three different products were obtained. The compounds were characterized by single-crystal X-ray diffraction and ESR spectroscopy. Crystal packings are based on intensive networks of hydrogen bonds and π interactions. Most water solvent molecules in these microporous compounds are found in discrete pockets (1∙5H2O, 2∙12H2O, 3∙6H2O, 4∙3H2O). In 5∙4H2O, water molecules are packed in pockets and 1D channels and in 6∙5CH3OH methanol solvent molecules form 1D channels. ESR spectroscopy measured from room down to liquid nitrogen temperature was used for local magnetic characterization of copper centers. The spin Hamiltonian parameters obtained from the spectral simulation revealed copper coordination geometry that is in agreement with the structural results. Furthermore, ESR spectra revealed no significant exchange coupling between copper ions. 3·6H2O showed pronounced antiproliferative activity toward human colon cancer cell lines (HCT116), human breast cancer cell line (MCF-7) and human lung cancer cell lines (H460). Full article
Show Figures

Graphical abstract

12 pages, 2416 KiB  
Article
Ultralight Cellulose-Derived Carbon Nanofibers from Freeze-Drying Emulsion Towards Superior Microwave Absorption
by Anran Li, Zongquan Li and Lei Qian
Inorganics 2024, 12(11), 272; https://doi.org/10.3390/inorganics12110272 - 23 Oct 2024
Cited by 1 | Viewed by 1537
Abstract
Carbon nanofibers (CNFs) are usually prepared by the carbonization of cellulose aerogels obtained from freeze-drying. However, cellulose with low concentration (below 1 wt%) is required to maintain the good porosity of the aerogels due to the strong hydrogen bonding between the cellulose molecules. [...] Read more.
Carbon nanofibers (CNFs) are usually prepared by the carbonization of cellulose aerogels obtained from freeze-drying. However, cellulose with low concentration (below 1 wt%) is required to maintain the good porosity of the aerogels due to the strong hydrogen bonding between the cellulose molecules. In order to address this problem, here, ultralight cellulose-derived CNFs have been fabricated by freeze-drying cyclohexane (CHE)/cellulose nanofiber emulsions and carbonization. Field emission scanning electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are used to characterize the resulting CNFs. It is found that the CNFs consist of three-dimensional carbon networks, whose microstructure is easily adjusted by changing the CHE ratio (from 0 to 25 vol%) in the emulsions. The CNFs with high porosity are attributed to the fact that CHE as the oil phase can effectively weaken the hydrogen bonding and reduce the aggregation of the cellulose nanofibers. Carbon lattice defects and residual oxygen-containing functional groups are regarded as polarization centers, leading to the enhancement of dielectric loss. The conductive carbon networks also improve the conductive loss. All these factors improve the microwave absorption performance of the CNFs. So, the produced CNFs exhibit a superior electromagnetic wave performance with a minimum reflection loss of −42.18 dB and effective absorption bandwidth up to 4.9 GHz at 2 mm with a filling ratio of 2 wt%. This work provides a simple, low-cost, and sustainable synthesis route for CNFs used for ultralight high-performance microwave absorption materials. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology)
Show Figures

Figure 1

20 pages, 5701 KiB  
Article
Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands
by Claudia C. Gatto, Cássia de Q. O. Cavalcante, Francielle C. Lima, Érica C. M. Nascimento, João B. L. Martins, Brunna L. O. Santana, Ana C. M. Gualberto and Fabio Pittella-Silva
Molecules 2024, 29(12), 2759; https://doi.org/10.3390/molecules29122759 - 10 Jun 2024
Cited by 2 | Viewed by 1735
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed [...] Read more.
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C–H···H and C–H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration. Full article
Show Figures

Graphical abstract

27 pages, 6218 KiB  
Article
Development of Potential Multi-Target Inhibitors for Human Cholinesterases and Beta-Secretase 1: A Computational Approach
by Deyse B. Barbosa, Mayra R. do Bomfim, Tiago A. de Oliveira, Alisson M. da Silva, Alex G. Taranto, Jorddy N. Cruz, Paulo B. de Carvalho, Joaquín M. Campos, Cleydson B. R. Santos and Franco H. A. Leite
Pharmaceuticals 2023, 16(12), 1657; https://doi.org/10.3390/ph16121657 - 28 Nov 2023
Cited by 4 | Viewed by 2219
Abstract
Alzheimer’s disease causes chronic neurodegeneration and is the leading cause of dementia in the world. The causes of this disease are not fully understood but seem to involve two essential cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and BACE-1, [...] Read more.
Alzheimer’s disease causes chronic neurodegeneration and is the leading cause of dementia in the world. The causes of this disease are not fully understood but seem to involve two essential cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and BACE-1, essential enzymes involved in those pathways, is a promising therapeutic approach to treat the symptoms and, hopefully, also halt the disease progression. This study sought to identify triple enzymatic inhibitors based on stereo-electronic requirements deduced from molecular modeling of AChE, BuChE, and BACE-1 active sites. A pharmacophore model was built, displaying four hydrophobic centers, three hydrogen bond acceptors, and one positively charged nitrogen, and used to prioritize molecules found in virtual libraries. Compounds showing adequate overlapping rates with the pharmacophore were subjected to molecular docking against the three enzymes and those with an adequate docking score (n = 12) were evaluated for physicochemical and toxicological parameters and commercial availability. The structure exhibiting the greatest inhibitory potential against all three enzymes was subjected to molecular dynamics simulations (100 ns) to assess the stability of the inhibitor-enzyme systems. The results of this in silico approach indicate ZINC1733 can be a potential multi-target inhibitor of AChE, BuChE, and BACE-1, and future enzymatic assays are planned to validate those results. Full article
Show Figures

Figure 1

22 pages, 8163 KiB  
Article
Halogen-Dependent Diversity and Weak Interactions in the Heterometallic Ni/Cd Complex Solids: Structural and Theoretical Investigation
by Oksana V. Nesterova, Svitlana R. Petrusenko, Brian W. Skelton and Dmytro S. Nesterov
Molecules 2023, 28(22), 7652; https://doi.org/10.3390/molecules28227652 - 18 Nov 2023
Viewed by 1330
Abstract
Three novel heterometallic Ni/Cd coordination compounds [Ni(en)3][CdCl4]∙3dmso (1), [Ni(en)2(dmf)2][CdBr4] (2), and [Ni(en)3]2[CdI4](I)2 (3) have been synthesized through the self-assembly process [...] Read more.
Three novel heterometallic Ni/Cd coordination compounds [Ni(en)3][CdCl4]∙3dmso (1), [Ni(en)2(dmf)2][CdBr4] (2), and [Ni(en)3]2[CdI4](I)2 (3) have been synthesized through the self-assembly process in a one-pot reaction of cadmium oxide, nickel salt (or nickel powder), NH4X (X = Cl, Br, I), and ethylenediamine in non-aqueous solvents dmso (for 1) or dmf (for 2 and 3). Formation of the one- (1) or three-dimensional (2 and 3) hydrogen-bonded frameworks has been observed depending on the nature of the [CdX4]2− counter-anion, as well as on the nature of the solvent. The electronic structures of [Ni(en)3]2+ and [Ni(en)2(dmf)2]2+ cations were studied at the DFT and CASSCF levels, including the ab initio ligand field theory (AILFT) calculations. The non-covalent intermolecular contacts between the cationic nickel and anionic cadmium blocks in the solid state were investigated by the QTAIM analysis. The mechanism of ligand substitution at the nickel center in [Ni(en)2(dmf)2]2+ was theoretically investigated at the ωB97X-D4/ma-def2-TZVP//DLPNO-CCSD(T)/ma-def2-TZVPP level. The results demonstrate that thermodynamic factors are structure-determining ones due to low energy barriers of the rotation of dmf ligands in [Ni(en)2(dmf)2]2+ (below 3 kcal mol−1) and the reversible transformation of [Ni(en)2(dmf)2]2+ into [Ni(en)3]2+ (below 20 kcal mol−1). Full article
Show Figures

Graphical abstract

16 pages, 6983 KiB  
Article
Synthesis, X-ray Structures and Hirshfeld Analysis of Two Novel Thiocyanate-Bridged Ag(I) Coordination Polymers
by Mezna Saleh Altowyan, Eman M. Fathalla, Jörg H. Albering, Morsy A. M. Abu-Youssef, Taher S. Kassem, Assem Barakat, Matti Haukka, Ahmed M. A. Badr and Saied M. Soliman
Inorganics 2023, 11(10), 417; https://doi.org/10.3390/inorganics11100417 - 23 Oct 2023
Cited by 3 | Viewed by 2726
Abstract
Two novel silver(I) coordination polymers, [Ag(4BP)(SCN)]n (1) and {(4BPH)+[Ag(SCN)2]}n (2) (4BP = 4-benzoyl pyridine), have been synthesized. The two complexes were prepared using almost the same [...] Read more.
Two novel silver(I) coordination polymers, [Ag(4BP)(SCN)]n (1) and {(4BPH)+[Ag(SCN)2]}n (2) (4BP = 4-benzoyl pyridine), have been synthesized. The two complexes were prepared using almost the same reagents, which were AgNO3, 4BP and NH4SCN. The only difference was the presence of 1:1 (v/v) HNO3 in the synthesis of 2. In the two complexes, the Ag(I) has distorted tetrahedral coordination geometry. The structure of both complexes and the involvement of the thiocyanate anion as a linker between the Ag(I) centers were confirmed using single-crystal X-ray diffraction. 4BP participated as a monodentate ligand in the coordination sphere of complex 1, while in 2 it is found protonated (4BP-H)+ and acts as a counter ion, which balances the charge of the anionic [Ag(SCN)2] moiety. The thiocyanate anion shows different coordination modes in the two complexes. In complex 1, the thiocyanate anion exhibits a µ1,1,3 bridging mode, which binds three Ag(I) ions to build a boat-like ten-membered ring structure leading to a two-dimensional coordination polymer. In 2, there are mixed µ1,1 and µ1,3 bridging thiocyanate groups, which form the one-dimensional polymeric chain running in the a-direction. Several interactions affected the stability of the crystal structure of the two complexes. These interactions were examined using Hirshfeld surface analysis. The coordination interactions (Ag-S and Ag-N) have a great impact on the stability of the polymeric structure of the two complexes. Additionally, the hydrogen-bonding interactions are crucial in the assembly of these coordination polymers. The O…H (10.7%) and C…H (34.2%) contacts in 1 as well as the N···H (15.3%) and S···H (14.9%) contacts in 2 are the most significant. Moreover, the argentophilic interaction (Ag…Ag = 3.378 Å) and π- π stacking play an important role in the assembly of complex 2. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

14 pages, 5836 KiB  
Article
Camphor Sulfonimine Compounds: Bottom-Up Design of MOFs from Organic Frameworks Based on X-rays and DFT-D3
by Joana Pais da Costa, Maria Fernanda Nascimento Neves de Carvalho and Adelino Moura Galvão
Crystals 2023, 13(10), 1499; https://doi.org/10.3390/cryst13101499 - 14 Oct 2023
Cited by 1 | Viewed by 1486
Abstract
DFT-D3 calculations based on structural X-ray diffraction data obtained for 3-oxo-camphorsulfonyl imine (1), camphorsulfonyl chloride (2) and seven camphor sulfonimines (O2SNC10H13NR, L1L7), from which L2 (R=4-OHC6 [...] Read more.
DFT-D3 calculations based on structural X-ray diffraction data obtained for 3-oxo-camphorsulfonyl imine (1), camphorsulfonyl chloride (2) and seven camphor sulfonimines (O2SNC10H13NR, L1L7), from which L2 (R=4-OHC6H4), L4 (R=4-ClC6H4) and L6 (R=3,5-(CH3)2C6H3) are synthesized and characterized in this work, provide information into the intra- and inter-molecular interactions with concomitant elucidation of the supramolecular arrangement of the compounds. The DFT-D3 calculations performed in small clusters of two or three molecular units reproduce the interactions observed via X-ray analyses, showing that, as a general trend, the structural arrangement of the molecules is driven by electronic rather than by packing parameters. In all compounds, the self-assembly of 3D structures involves the sulfonyl imine group (-NSO2) either to establish hydrogen bonds through oxygen atoms or non-classic oxygen–aliphatic hydrogen or non-bonding interactions (NBIs), which also involve sulfonyl oxygen atoms. Interestingly, the camphor sulfonimine compounds (L2, L3), having protic groups (R=C6H4X:X=OH, L2 or X=NH2, L3) at the aromatic imine substituents (=NR), present an extra π-π stacking, which is absent in the other compounds’ aromatic derivatives. The X-ray analysis shows that all the reported camphor sulfonimine compounds display the E configuration with respect to the imine substituent (R). The study of the redox behavior of the compounds by cyclic voltammetry enables insight into the solution properties of the compounds and the rationalization of the molecular interactions that stand in the solid and solution states. Camphor sulfonimine compounds (L) display appropriate binding atoms to coordinate transition metals. The results herein show that monodentate coordination through the nitrogen atom of the sulfonimine five-membered ring to the {Ag(NO3)} metal center is favored. When this imine nitrogen atom is not itself involved in the organic framework, DFT-D3 calculations show that the complexation does not affect the non-covalent interactions that are reproduced in the MOF structure. Full article
(This article belongs to the Special Issue Exploring the Frontier of MOFs through Crystallographic Studies)
Show Figures

Figure 1

18 pages, 3001 KiB  
Article
Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures
by Sławomir J. Grabowski
Int. J. Mol. Sci. 2023, 24(15), 12212; https://doi.org/10.3390/ijms241512212 - 30 Jul 2023
Viewed by 1779
Abstract
Structures characterized by the trigonal coordination of the gallium center that interacts with electron rich carbon sites are described. These interactions may be classified as Ga···C triel bonds. Their properties are analyzed in this study since these interactions may be important in numerous [...] Read more.
Structures characterized by the trigonal coordination of the gallium center that interacts with electron rich carbon sites are described. These interactions may be classified as Ga···C triel bonds. Their properties are analyzed in this study since these interactions may be important in numerous chemical processes including catalytical activities; additionally, geometrical parameters of corresponding species are described. The Ga···C triel bonds discussed here, categorized also as the π-hole bonds, do not change the trigonal configuration of the gallium center into the tetrahedral one despite total interactions in dimers being strong; however, the main contribution to the stabilization of corresponding structures comes from the electrostatic forces. The systems analyzed theoretically here come from crystal structures since the Cambridge Structural Database, CSD, search was performed to find structures where the gallium center linked to CC bonds of Lewis base units occurs. The majority structures found in CSD are characterized by parallel, stacking-like arrangements of species containing the Ga-centers. The theoretical results show that interactions within dimers are not classified as the three-centers links as in a case of typical hydrogen bonds and numerous other interactions. The total interactions in dimers analyzed here consist of several local intermolecular atom–atom interactions; these are mainly the Ga···C links. The DFT results are supported in this study by calculations with the use of the quantum theory of atoms in molecules, QTAIM, the natural bond orbital, NBO, and the energy decomposition analysis, EDA, approaches. Full article
Show Figures

Figure 1

12 pages, 2872 KiB  
Article
Selective C–H Bond Cleavage with a High-Spin FeIV–Oxido Complex
by Chen Sun, Jennifer L. Jaimes, Alec H. Follmer, Joseph W. Ziller and Andrew S. Borovik
Molecules 2023, 28(12), 4755; https://doi.org/10.3390/molecules28124755 - 14 Jun 2023
Cited by 1 | Viewed by 1980
Abstract
Non-heme Fe monooxygenases activate C–H bonds using intermediates with high-spin FeIV–oxido centers. To mimic these sites, a new tripodal ligand [pop]3− was prepared that contains three phosphoryl amido groups that are capable of stabilizing metal centers in high oxidation states. [...] Read more.
Non-heme Fe monooxygenases activate C–H bonds using intermediates with high-spin FeIV–oxido centers. To mimic these sites, a new tripodal ligand [pop]3− was prepared that contains three phosphoryl amido groups that are capable of stabilizing metal centers in high oxidation states. The ligand was used to generate [FeIVpop(O)], a new FeIV–oxido complex with an S = 2 spin ground state. Spectroscopic measurements, which included low-temperature absorption and electron paramagnetic resonance spectroscopy, supported the assignment of a high-spin FeIV center. The complex showed reactivity with benzyl alcohol as the external substrate but not with related compounds (e.g., ethyl benzene and benzyl methyl ether), suggesting the possibility that hydrogen bonding interaction(s) between the substrate and [FeIVpop(O)] was necessary for reactivity. These results exemplify the potential role of the secondary coordination sphere in metal-mediated processes. Full article
Show Figures

Figure 1

18 pages, 11401 KiB  
Article
Multifunctional Properties of Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Epoxy Nanocomposites
by Liberata Guadagno, Andrea Sorrentino, Raffaele Longo and Marialuigia Raimondo
Polymers 2023, 15(10), 2297; https://doi.org/10.3390/polym15102297 - 13 May 2023
Cited by 19 | Viewed by 2818
Abstract
In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to [...] Read more.
In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials II)
Show Figures

Figure 1

28 pages, 5349 KiB  
Article
Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization
by Carlota J. F. Conceição, Elin Moe, Paulo A. Ribeiro and Maria Raposo
Nanomaterials 2023, 13(10), 1613; https://doi.org/10.3390/nano13101613 - 11 May 2023
Cited by 5 | Viewed by 2943
Abstract
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1′-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film [...] Read more.
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1′-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below −30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors’ protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode. Full article
(This article belongs to the Special Issue Application of Lipid Nanoparticles in Drug and Gene Delivery)
Show Figures

Figure 1

12 pages, 4174 KiB  
Article
High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral
by David Santamaría-Pérez, Raquel Chuliá-Jordán, Alberto Otero-de-la-Roza, Robert Oliva and Catalin Popescu
Minerals 2023, 13(5), 619; https://doi.org/10.3390/min13050619 - 28 Apr 2023
Cited by 2 | Viewed by 1803
Abstract
We report on high-pressure angle-dispersive synchrotron X-ray diffraction data of a natural Zn3.78(2)Cu1.22(2)(CO3)2(OH)6 aurichalcite mineral up to 7.6 GPa and ab initio total energy calculations of the aurichalcite structure with three different Zn-Cu stoichiometries [...] Read more.
We report on high-pressure angle-dispersive synchrotron X-ray diffraction data of a natural Zn3.78(2)Cu1.22(2)(CO3)2(OH)6 aurichalcite mineral up to 7.6 GPa and ab initio total energy calculations of the aurichalcite structure with three different Zn-Cu stoichiometries (Zn:Cu ratios = 10:0, 8:2 and 6:4). A monoclinic-to-triclinic displacive second-order phase transition was found experimentally at 3 GPa. The experimental bulk modulus of the initial P21/m aurichalcite is B0 = 66(2) GPa, with a first-pressure derivative of B0′ = 9(2). A comparison with other basic copper and zinc carbonates shows that this B0 value is considerably larger than those of malachite and azurite. This relative incompressibility occurs despite the fact that aurichalcite features a layered structure due to the number of directed hydrogen bonds between carbonate groups and the cation-centered oxygen polyhedra forming complex sheets. The existence of different bond types and polyhedral compressibilities entails a certain anisotropic compression, with axial compressibilities κa0 = 3.79(5)·10−3 GPa−1, κb0 = 5.44(9)·10−3 GPa−1 and κc0 = 4.61(9)·10−3 GPa−1. Additional density-functional theory calculations on the C2/m hydrozincite-type structure with different Zn:Cu compositional ratios shows that the aurichalcite structure is energetically more stable than the hydrozincite one for compositions of Zn:Cu = 10:0, 8:2 and 6:4 at room pressure. The pure Zn aurichalcite phase, however, was predicted to transform into hydrozincite at 18 GPa, which suggests that the experimentally observed hydrozincite structure is a metastable phase. Full article
Show Figures

Figure 1

Back to TopTop