High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 2013, 75, 183. [Google Scholar] [CrossRef]
- Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 2001, 86, 997–1002. [Google Scholar] [CrossRef]
- Isshiki, M.; Irifune, T.; Hirose, K.; Ono, S.; Ohishi, Y.; Watanuki, T.; Nishibori, E.; Takata, M.; Sakata, M. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 2004, 427, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Boulard, E.; Menguy, N.; Auzende, A.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.P. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. 2012, 117, B02208. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Marqueño, T.; Gomis, O.; MacLeod, S.; Popescu, C. Phase stability of natural Ni0.75Mg0.22Ca0.03CO3 gaspeite mineral at high pressure and temperature. J. Phys. Chem. C 2020, 124, 19781–19792. [Google Scholar] [CrossRef]
- Zhang, J.; Reeder, R.J. Comparative compressibilities of calcite structure carbonates: Deviations from empirical relations. Am Mineral. 1999, 84, 861–870. [Google Scholar] [CrossRef]
- Ono, S.; Brodholt, J.P.; Price, G.D. Phase transitions of BaCO3 at high pressures. Mineral. Mag. 2008, 72, 659–665. [Google Scholar] [CrossRef]
- Ono, S. High-pressure phase transformation in MnCO3: A synchrotron XRD study. Mineral. Mag. 2007, 71, 105–111. [Google Scholar] [CrossRef]
- Mao, Z.; Armentrout, M.; Rainey, E.; Manning, C.E.; Dera, P.; Prakapenka, V.B.; Kavner, A. Dolomite III: A new candidate lower mantle carbonate. Geophys. Res. Lett. 2011, 38, L22303. [Google Scholar] [CrossRef]
- Merlini, M.; Crichton, W.A.; Hanfland, M.; Gemmi, M.; Müller, H.; Kupenko, I.; Dubrovinsky, L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceed. Nat. Acad. Sci. USA 2012, 109, 13509–13514. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Marqueño, T.; MacLeod, S.; Popescu, C. Pressure and temperature effects on low-density Mg3Ca(CO3)4 huntite carbonate. J. Phys. Chem. C 2020, 124, 1077–1087. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Compressibility and phase stability of iron-rich ankerite. Minerals 2021, 11, 607. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Crystal structure of BaCa(CO3)2 alstonite carbonate and its phase stability upon compression. ACS Earth Space Chem. 2021, 5, 1130–1139. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Gonzalez-Platas, J.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Popescu, C. Phase stability and dense polymorph of the BaCa(CO3)2 barytocalcite carbonate. Sci. Rep. 2022, 12, 7413. [Google Scholar] [CrossRef]
- Gao, J.; Huang, W.F.; Wu, X.; Fan, D.W.; Wu, Z.Y.; Xia, D.G.; Qin, S. Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner. 2015, 42, 191–201. [Google Scholar] [CrossRef]
- Gao, J.; Wu, X.; Qin, S. The crystal chemistry and the compressibility of silicatecarbonate minerals: Spurrite, galuskinite and tilleyite. Geosci. Front. 2015, 6, 771–777. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Marqueño, T.; Pellicer-Porres, J.; Chulia-Jordan, R.; MacLeod, S.; Popescu, C. Structural behavior of natural silicate–carbonate spurrite mineral, Ca5(SiO4)2(CO3), under high-pressure, high-temperature conditions. Inorg. Chem. 2018, 57, 98–105. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Peña-Alvarez, M.; Chulia-Jordan, R.; Marqueño, T.; Zimmer, D.; Gutierrez-Cano, V.; MacLeod, S.; Gregoryanz, E.; Popescu, C.; et al. Post-tilleyite, a dense calcium silicate-carbonate phase. Sci. Rep. 2019, 9, 7898. [Google Scholar] [CrossRef]
- Merlini, M.; Perchiazzi, N.; Hanfland, M.; Bossak, A. Phase transition at high pressure in Cu2CO3(OH)2 related to the reduction of the Jahn-Teller effect. Acta Cryst. B 2012, 68, 266–274. [Google Scholar] [CrossRef]
- Xu, J.; Kuang, Y.; Zhang, B.; Liu, Y.; Fan, D.; Zhou, W.; Xie, H. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner. 2015, 42, 805–816. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, X.; Chen, B.; Liu, Z.; Su, W. High-pressure phase transformation of carbonate malachite Cu2(CO3)(OH)2 driven by [CuO6] regularization and [CO3] rotation. Geosci. Front. 2021, 12, 965–976. [Google Scholar] [CrossRef]
- Gorce, J.S.; Caddick, M.J.; Bodnar, R.J. Thermodynamic constraints on carbonate stability and carbon volatility during subduction. Earth Planet Sci. Lett. 2019, 519, 213–222. [Google Scholar] [CrossRef]
- Giester, G.; Rieck, B. Crystal structure refinement of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, from the Lavrion Mining District, Greece. N. Jb. Miner. Abh. 2014, 191, 225–232. [Google Scholar] [CrossRef]
- Harding, M.M.; Kariuki, B.M.; Cernik, R.; Cressey, G. The structure of Aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Cryst. B 1994, 50, 673–676. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Song, H.; Chou, L. Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu,Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2. J. Nat. Gas Chem. 2011, 20, 629–634. [Google Scholar] [CrossRef]
- Charnock, J.M.; Schofield, P.F.; Henderson, C.M.B.; Cressey, G.; Cressey, B.A. Cu and Zn ordering in aurichalcite. Mineral. Mag. 1996, 60, 887–896. [Google Scholar] [CrossRef]
- Ghose, S. The crystal structure of Hydrozincite, Zn5(OH)6(CO3)2. Acta Cryst. 1964, 17, 1051. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Zhang, X.; Li, Z.; Xie, K. Structural and electronic properties of Cu-doped Zn5(OH)6(CO3)2 from first principles. J. Mater. Sci. 2015, 50, 6794–6807. [Google Scholar] [CrossRef]
- Reddy, B.J.; Nieto, F.; Sanchez-Navas, A. Spectroscopic characterization of rosasite and aurichalcite. N. Jb. Miner. Mh. 2004, 7, 302–316. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L.; Locke, A. Synthesis and spectroscopic characterization of aurichacite (Cu,Zn)5(OH)6(CO3)2: Implications for Cu-ZnO catalyst precursors. Transition Met. Chem. 2008, 33, 331–339. [Google Scholar] [CrossRef]
- Frost, R.L.; Locke, A.J.; Hales, M.C.; Martens, W.N. Thermal stability and synthetic aurichalcite implications for making mixed metal oxides for use as catalysts. J. Therm. Anal. Calor. 2008, 94, 203–208. [Google Scholar] [CrossRef]
- Fauth, F.; Peral, I.; Popescu, C.; Knapp, M. The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B. 2004, 70, 094112. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Nolze, G.; Kraus, W. Powdercell 2.0 for Windows. Powd. Diffract. 1998, 13, 256–259. [Google Scholar]
- Blöch, P.E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Cond. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef]
- Becke, A.D. On the large-gradient behavior of the density functional exchange energy. J. Chem. Phys. 1986, 85, 7184. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R. The Exchange-Hole Dipole Moment Dispersion Model. In Non-Covalent Interactions in Quantum Chemistry and Physics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 169–194. [Google Scholar]
- Becke, A.D.; Johnson, E.R. Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 2007, 127, 154108. [Google Scholar] [CrossRef] [PubMed]
- Otero-de-la-Roza, A.; Johnson, E.R. Van der Waals interactions in solids using the exchange-hole dipole moment model. J. Chem. Phys. 2012, 136, 174109. [Google Scholar] [CrossRef]
- Borlido, P.; Aull, T.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J. Chem. Theory Comput. 2019, 15, 5069–5079. [Google Scholar] [CrossRef]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 2011, 182, 1708–1720. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Abbasi-Perez, D.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Pavic, L.; Chulia-Jordan, R.; Ruiz-Fuertes, J.; Popescu, C.; Otero-de-la-Roza, A. Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperatures. Solid State Sci. 2023, 135, 107068. [Google Scholar] [CrossRef]
Pressure (GPa) | a Axis (Å) | b Axis (Å) | c Axis (Å) | β (°) | Volume (Å3) |
---|---|---|---|---|---|
0.00 | 13.809(7) | 6.412(2) | 5.313(3) | 100.70(5) | 462.3(3) |
0.00 | 13.806(7) | 6.410(2) | 5.315(3) | 100.65(5) | 462.3(3) |
0.10 | 13.806(7) | 6.413(2) | 5.315(3) | 100.68(5) | 462.5(3) |
0.15 | 13.800(7) | 6.408(2) | 5.310(3) | 100.64(5) | 461.6(3) |
0.25 | 13.794(7) | 6.401(2) | 5.309(3) | 100.60(5) | 460.8(3) |
0.40 | 13.787(7) | 6.399(2) | 5.304(3) | 100.58(5) | 460.1(3) |
0.6 | 13.774(7) | 6.388(2) | 5.300(3) | 100.52(5) | 458.5(3) |
0.75 | 13.767(7) | 6.386(2) | 5.293(3) | 100.50(5) | 457.7(3) |
0.9 | 13.759(7) | 6.379(2) | 5.293(3) | 100.45(5) | 456.9(3) |
1.05 | 13.750(7) | 6.374(2) | 5.286(3) | 100.42(5) | 455.8(3) |
1.25 | 13.741(7) | 6.368(2) | 5.281(3) | 100.39(5) | 454.7(3) |
1.35 | 13.731(7) | 6.361(2) | 5.280(3) | 100.33(5) | 453.7(3) |
1.55 | 13.721(7) | 6.356(2) | 5.273(3) | 100.31(5) | 452.6(3) |
1.70 | 13.715(7) | 6.350(2) | 5.272(3) | 100.26(5) | 451.8(3) |
1.90 | 13.706(7) | 6.344(2) | 5.266(3) | 100.23(5) | 450.7(3) |
2.1 | 13.698(7) | 6.337(2) | 5.262(3) | 100.18(5) | 449.6(3) |
2.35 | 13.685(7) | 6.331(2) | 5.258(3) | 100.14(5) | 448.5(3) |
2.60 | 13.674(7) | 6.323(2) | 5.251(3) | 100.06(5) | 447.1(3) |
2.80 | 13.663(7) | 6.316(2) | 5.248(3) | 100.04(5) | 446.0(3) |
Pressure (GPa) | a Axis (Å) | b Axis (Å) | c Axis (Å) | α (°) | β (°) | γ (°) | Volume (Å3) |
---|---|---|---|---|---|---|---|
3.3 | 13.663(8) | 6.307(3) | 5.244(4) | 90.28(7) | 100.05(6) | 89.52(8) | 444.9(5) |
3.5 | 13.653(8) | 6.298(3) | 5.240(4) | 90.30(7) | 100.03(6) | 89.44(8) | 443.6(5) |
4.0 | 13.638(9) | 6.287(3) | 5.232(4) | 90.30(7) | 100.00(6) | 89.37(8) | 441.7(5) |
4.6 | 13.622(9) | 6.275(3) | 5.224(4) | 90.30(7) | 99.97(7) | 89.31(8) | 439.8(5) |
4.9 | 13.607(9) | 6.266(3) | 5.219(4) | 90.29(7) | 99.93(7) | 89.25(8) | 438.3(5) |
5.4 | 13.599(9) | 6.258(3) | 5.214(4) | 90.28(7) | 99.94(7) | 89.20(8) | 437.0(5) |
6.0 | 13.583(10) | 6.246(3) | 5.206(5) | 90.25(7) | 99.96(7) | 89.09(9) | 435.0(6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría-Pérez, D.; Chuliá-Jordán, R.; Otero-de-la-Roza, A.; Oliva, R.; Popescu, C. High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals 2023, 13, 619. https://doi.org/10.3390/min13050619
Santamaría-Pérez D, Chuliá-Jordán R, Otero-de-la-Roza A, Oliva R, Popescu C. High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals. 2023; 13(5):619. https://doi.org/10.3390/min13050619
Chicago/Turabian StyleSantamaría-Pérez, David, Raquel Chuliá-Jordán, Alberto Otero-de-la-Roza, Robert Oliva, and Catalin Popescu. 2023. "High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral" Minerals 13, no. 5: 619. https://doi.org/10.3390/min13050619
APA StyleSantamaría-Pérez, D., Chuliá-Jordán, R., Otero-de-la-Roza, A., Oliva, R., & Popescu, C. (2023). High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals, 13(5), 619. https://doi.org/10.3390/min13050619