Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,194)

Search Parameters:
Keywords = threats and management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 852 KB  
Communication
Maize Diseases in Northeast China: Current Status and Emerging Threats
by Bingbing Liang, Dongyu Li, Lingxi He, Huaiyu Dong, Lijuan Wang, Le Chen, Kejie Liu and Ping Wang
Agriculture 2026, 16(2), 249; https://doi.org/10.3390/agriculture16020249 - 19 Jan 2026
Abstract
A comprehensive two-year investigation (2024–2025) was conducted across Northeast China’s crucial grain production base to assess the status of maize diseases. Field surveys spanning three provinces and Inner Mongolia revealed a significant shift in the regional disease profile, with diagnosis performed by experienced [...] Read more.
A comprehensive two-year investigation (2024–2025) was conducted across Northeast China’s crucial grain production base to assess the status of maize diseases. Field surveys spanning three provinces and Inner Mongolia revealed a significant shift in the regional disease profile, with diagnosis performed by experienced personnel based on characteristic field symptoms. The results demonstrated that maize white spot (MWS) has emerged as a severe new threat, recording remarkably high disease severity indices exceeding 80 at multiple locations (e.g., LDD25-1: 86.83). Concurrently, gray leaf spot (GLS) was confirmed as the most prevalent foliar disease, forming stable areas of high severity in the eastern mountainous regions where its disease indices consistently surpassed 60 (e.g., LFS25-1: 65.26), thereby exceeding the impact of northern corn leaf blight. In contrast, stalk rot (SR) maintained a low field incidence rate below 10%, while other diseases such as Curvularia leaf spot and maize eyespot were only observed locally or were absent during the 2025 survey period. These findings underscore the emergence of MWS as a critical threat and affirm the dominant status of GLS, offering a scientific foundation for prioritizing disease management strategies in the region. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 21578 KB  
Article
Screening Various Bacterial-Produced Double-Stranded RNAs for Managing Asian Soybean Rust Disease Caused by Phakopsora pachyrhizi
by Yenjit R. Thibodeaux, Sunira Marahatta, Dongfang Hu, Maria Izabel Costa de Novaes, Isabel Hau, Tong Wang and Zhi-Yuan Chen
Plants 2026, 15(2), 294; https://doi.org/10.3390/plants15020294 - 19 Jan 2026
Abstract
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi (Syd.), poses a serious threat to global soybean production. The main approach to managing this disease has been through repeated fungicide applications which have reduced efficacy due to fungicide resistance. Recently, spray-induced gene silencing (SIGS) [...] Read more.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi (Syd.), poses a serious threat to global soybean production. The main approach to managing this disease has been through repeated fungicide applications which have reduced efficacy due to fungicide resistance. Recently, spray-induced gene silencing (SIGS) through exogenous application of double-stranded RNA (dsRNA) has emerged as a promising approach for plant disease management. In the present study, twelve different dsRNAs targeting genes important for P. pachyrhizi urediniospore germination, infection of the host plant or resistant to commonly used fungicides were produced in Escherichia coli on a large scale. Nine of these dsRNAs significantly reduced ASR severity (by 24.0% to 81.1%) and fungal biomass (50.5% to 83.1%) compared to the control when applied as a foliar spray in our growth chamber studies. Three of the most effective dsRNAs targeting an acyltransferase (ACE), cytochrome B (CYTB1) and a reductase (S12) also significantly reduced disease severity (78.2 to 82.3%) and fungal growth (79.8 to 85.4%) compared to the control in the greenhouse studies. Further investigation of the P. pachryrhizi urediniospore germination and hyphal growth in the presence of these dsRNAs in vitro revealed these dsRNAs reduced the spore germination rate from 72.1% to 0.0–26.6% at 4.5 h and hyphal growth from 254.0 µm to 2.7–40.5 µm at 9 h, with dsRNA targeting the S12 gene being the most effective. These results highlight the potential of SIGS using selected dsRNAs as a sustainable strategy for managing ASR through suppressing urediniospore germination and hyphal growth. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 2067 KB  
Article
Management of Fall Armyworm (Spodoptera frugiperda) Through Combined Plant Extracts and Microbial Biocontrol Agents
by David P. Tokpah and Ovgu Isbilen
Insects 2026, 17(1), 110; https://doi.org/10.3390/insects17010110 - 19 Jan 2026
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, poses a major threat to global maize production. Reliance on synthetic pesticides has contributed to pest resistance and environmental degradation, underscoring the need for sustainable alternatives. In this study, ethanolic extracts of neem (Azadirachta indica [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda, poses a major threat to global maize production. Reliance on synthetic pesticides has contributed to pest resistance and environmental degradation, underscoring the need for sustainable alternatives. In this study, ethanolic extracts of neem (Azadirachta indica) and moringa (Moringa oleifera), together with maize-associated bacterial isolates, were evaluated for their biocontrol potential against fall armyworm. Gas chromatography-mass spectrometry (GC-MS) analysis for bioextract identification revealed tissue-specific chemical diversity, identifying eight key phytochemicals, including octadecanoic acid, trimethyl fluorosilane, and hexadecanoic acid in neem, and trimethyl fluorosilane, ethyl oleate, ethyl (9Z,12Z), octadecanoic acid, and benzenedicarboxylic acid in moringa extracts. Eighty-nine bacterial isolates were screened for extracellular enzyme activities (cellulase, chitinase, glucanase, and protease) and siderophore production, among which four strains, DR-55 (Bacillus subtilis), HL-7 (Bacillus cereus), HL-37 (Bacillus cereus), and DR-63 (Enterobacter sp.), exhibited >50% biocontrol efficacy under greenhouse conditions. A strong correlation (r = 0.88) was observed between in vitro antagonistic activity and greenhouse performance, validating the screening approach. Fall armyworm mortality was the highest in larvae (up to 80%), moderate in pupae (15–17%), and the lowest in adults (6–7%), respectively. Overall, plant bio-extracts and maize-associated microbial isolates represent a promising, non-hazardous strategy for sustainable fall armyworm management while preserving maize plant health. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 6066 KB  
Article
Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast
by Dipali Rani Gupta, Shamfin Hossain Kasfy, Julfikar Ali, Farin Tasnova Hia, M. Nazmul Hoque, Mahfuz Rahman and Tofazzal Islam
J. Fungi 2026, 12(1), 73; https://doi.org/10.3390/jof12010073 (registering DOI) - 18 Jan 2026
Abstract
As an emerging threat to global food security, wheat blast necessitates the development of a rapid and field-deployable detection system to facilitate early diagnosis, enable effective management, and prevent its further spread to new regions. In this study, we aimed to validate and [...] Read more.
As an emerging threat to global food security, wheat blast necessitates the development of a rapid and field-deployable detection system to facilitate early diagnosis, enable effective management, and prevent its further spread to new regions. In this study, we aimed to validate and improve a Recombinase Polymerase Amplification coupled with PCRD lateral flow detection (RPA-PCRD strip assay) kit for the rapid and specific identification of Magnaporthe oryzae pathotype Triticum (MoT) in field samples. The assay demonstrated exceptional sensitivity, detecting as low as 10 pg/µL of target DNA, and exhibited no cross-reactivity with M. oryzae Oryzae (MoO) isolates and other major fungal phytopathogens under the genera of Fusarium, Bipolaris, Colletotrichum, and Botrydiplodia. The method successfully detected MoT in wheat leaves as early as 4 days post-infection (DPI), and in infected spikes, seeds, and alternate hosts. Furthermore, by combining a simplified polyethylene glycol-NaOH method for extracting DNA from plant samples, the entire RPA-PCRD strip assay enabled the detection of MoT within 30 min with no specialized equipment and high technical skills at ambient temperature (37–39 °C). When applied to field samples, it successfully detected MoT in naturally infected diseased wheat plants from seven different fields in a wheat blast hotspot district, Meherpur, Bangladesh. Training 52 diverse stakeholders validated the kit’s field readiness, with 88% of trainees endorsing its user-friendly design. This method offers a practical, low-cost, and portable point-of-care diagnostic tool suitable for on-site genomic surveillance, integrated management, seed health testing, and quarantine screening of wheat blast in resource-limited settings. Furthermore, the RPA-PCRD platform serves as an early warning modular diagnostic template that can be readily adapted to detect a wide array of phytopathogens by integrating target-specific genomic primers. Full article
(This article belongs to the Special Issue Integrated Management of Plant Fungal Diseases—2nd Edition)
Show Figures

Figure 1

48 pages, 1116 KB  
Systematic Review
Cybersecurity and Resilience of Smart Grids: A Review of Threat Landscape, Incidents, and Emerging Solutions
by Bo Nørregaard Jørgensen and Zheng Grace Ma
Appl. Sci. 2026, 16(2), 981; https://doi.org/10.3390/app16020981 (registering DOI) - 18 Jan 2026
Abstract
The digital transformation of electric power systems into smart grids has significantly expanded the cybersecurity risk landscape of the energy sector. While advanced sensing, communication, automation, and data-driven control improve efficiency, flexibility, and renewable energy integration, they also introduce complex cyber–physical interdependencies and [...] Read more.
The digital transformation of electric power systems into smart grids has significantly expanded the cybersecurity risk landscape of the energy sector. While advanced sensing, communication, automation, and data-driven control improve efficiency, flexibility, and renewable energy integration, they also introduce complex cyber–physical interdependencies and new vulnerabilities across interconnected technical and organisational domains. This study adopts a scoping review methodology in accordance with PRISMA-ScR to systematically analyse smart grid cybersecurity from an architecture-aware and resilience-oriented perspective. Peer-reviewed scientific literature and authoritative institutional sources are synthesised to examine modern smart grid architectures, key security challenges, major cyberthreats, and documented real-world cyber incidents affecting energy infrastructure up to 2025. The review systematically links architectural characteristics such as field devices, communication networks, software platforms, data pipelines, and externally operated services to specific threat mechanisms and observed attack patterns, illustrating how cyber risk propagates across interconnected grid components. The findings show that cybersecurity challenges in smart grids arise not only from technical vulnerabilities but also from architectural dependencies, software supply chains, operational constraints, and cross-sector coupling. Based on the analysis of historical incidents and emerging research, the study identifies key defensive strategies, including zero-trust architectures, advanced monitoring and anomaly detection, secure software lifecycle management, digital twins for cyber–physical testing, and cyber-resilient grid design. The review concludes that cybersecurity in smart grids should be treated as a systemic and persistent condition, requiring resilience-oriented approaches that prioritise detection, containment, recovery, and safe operation under adverse conditions. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

21 pages, 3239 KB  
Review
Management of Surgical Complications in Pediatric Kidney Transplantation
by Maria P. Corzo, Sara K. Rasmussen and Jaimie D. Nathan
J. Clin. Med. 2026, 15(2), 779; https://doi.org/10.3390/jcm15020779 (registering DOI) - 18 Jan 2026
Abstract
Introduction: Graft and patient survival after kidney transplantation in children has increased in the past decade; however, post-transplant surgical complications occur in up to 15.4% of recipients and pose a significant threat to graft survival. Due to anatomic discrepancies in children, kidney transplantation [...] Read more.
Introduction: Graft and patient survival after kidney transplantation in children has increased in the past decade; however, post-transplant surgical complications occur in up to 15.4% of recipients and pose a significant threat to graft survival. Due to anatomic discrepancies in children, kidney transplantation in this population is nuanced and requires meticulous planning. This narrative review summarizes the most common postoperative surgical complications following kidney transplantation in children. Methods: PubMed and Google Scholar were queried for full-text articles that reported pediatric kidney transplantation surgical complications and their management following kidney transplantation. Results: Vascular complications can occur in approximately 1.3–13.8% of cases and are the leading cause of graft nephrectomy, with arterial stenosis and venous thrombosis being the most common. Urologic complications occur in 1.3–30% of patients and are more frequent in children due to pre-existing genitourinary abnormalities prior to transplantation. Vesicoureteral reflux is the most common urologic complication. Discussion: Surgical complications following kidney transplantation in children continue to significantly affect graft viability. Ultimately, meticulous surgical techniques and close postoperative surveillance are critical to mitigating the risk of allograft nephrectomy. Prospective studies focused on best surgical practice, techniques, prevention, and postoperative care in pediatric kidney transplant recipients are needed. Full article
Show Figures

Figure 1

25 pages, 14882 KB  
Article
Tracing the Origin of Groundwater Salinization in Multilayered Coastal Aquifers Using Geochemical Tracers
by Mariana La Pasta Cordeiro, Johanna Wallström and Maria Teresa Condesso de Melo
Water 2026, 18(2), 252; https://doi.org/10.3390/w18020252 - 17 Jan 2026
Viewed by 57
Abstract
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced [...] Read more.
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced by Na-Cl hydrochemical facies, high electrical conductivity, and Na+/Cl, Cl/Br and SO42−/Cl molar ratios consistent with marine signatures. In areas affected by diapiric dissolution, besides elevated electrical conductivity, groundwater is enriched in SO42− and Ca2+ and in minor elements like K+, Li+, B3+, Ba2+ and Sr2+, and high SO42−/Cl and Ca2+/HCO3 molar ratios, indicative of gypsum/anhydrite dissolution. The relationship between δ18O and electrical conductivity further supports the identification of distinct salinity sources. This study integrates hydrogeochemical tracers to investigate hydrochemical evolution in the aquifer with increasing residence time and influence of water–rock interaction, as well as the accurate characterization of salinization mechanisms in multilayer aquifers. A comprehensive understanding of these processes is essential for identifying vulnerable zones and developing effective management strategies to ensure the protection and sustainable use of groundwater resources. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 - 17 Jan 2026
Viewed by 115
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

29 pages, 6513 KB  
Article
Hydrochemical Evolution of Groundwater Under Landfill Leachate Influence: Case of the Tangier Municipal Site
by Mohamed-Amine Lahkim-Bennani, Abdelghani Afailal Tribak, Brunella Bonaccorso, Haitam Afilal and Abdelhamid Rossi
Sustainability 2026, 18(2), 965; https://doi.org/10.3390/su18020965 (registering DOI) - 17 Jan 2026
Viewed by 57
Abstract
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean [...] Read more.
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean settings. This study assesses the hydrogeochemical impact of the newly operational Tangier Landfill and Recovery Center on local groundwater resources to inform sustainable remediation strategies. A combined approach was applied to samples collected in dry and wet seasons, using Piper and Stiff diagrams to trace facies evolution together with a dual-index assessment based on the Canadian (CCME-WQI) and Weighted Arithmetic (WAWQI) Water Quality Indices. Results show that upgradient waters remain of Good–Excellent quality and are dominated by Ca–HCO3 facies, whereas downgradient wells display extreme mineralization, with EC up to 15,480 µS/cm and Cl and SO42− exceeding 1834 and 2114 mg/L, respectively. At hotspot sites P4 and P8, As reaches 0.065 mg/L and Cd 0.006 mg/L, far above the WHO drinking-water guidelines. While the CCME-WQI captures the general salinity-driven degradation pattern, the WAWQI pinpoints these acute toxicity zones as Very poor–Unsuitable. The study demonstrates that rainfall intensifies toxicity through a seasonal “Piston Effect” that mobilizes stored contaminants rather than diluting them, underscoring the need for seasonally adaptive monitoring to ensure the environmental sustainability of landfill-adjacent aquifers. Full article
(This article belongs to the Section Sustainable Water Management)
18 pages, 1383 KB  
Article
Development of Low-Power Forest Fire Water Bucket Liquid Level and Fire Situation Monitoring Device
by Xiongwei Lou, Shihong Chen, Linhao Sun, Xinyu Zheng, Siqi Huang, Chen Dong, Dashen Wu, Hao Liang and Guangyu Jiang
Forests 2026, 17(1), 126; https://doi.org/10.3390/f17010126 - 16 Jan 2026
Viewed by 43
Abstract
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented [...] Read more.
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented experiments conducted under semi-controlled conditions. Water-level measurements were collected over a three-month period under simulated forest conditions and benchmarked against conventional steel-ruler readings. Early-stage fire monitoring experiments were carried out using dry wood and leaf litter under varying wind speeds, wind directions, and representative extreme weather conditions. The device achieved a mean water-level bias of −0.60%, a root-mean-square error of 0.64%, and an overall accuracy of 99.36%. Fire monitoring reached a maximum detection distance of 7.30 m under calm conditions and extended to 16.50 m under strong downwind conditions, with performance decreasing toward crosswind directions. Stable operation was observed during periods of strong winds associated with typhoon events, as well as prolonged high-temperature exposure. The primary novelty of this work lies in the conceptualization of a Collaborative Forest Resource–Hazard Monitoring Architecture. Unlike traditional isolated sensors, our proposed framework utilizes a dual-domain decision-making model that simultaneously assesses water-bucket storage stability and micro-scale fire threats. By implementing a robust ‘sensing–logic–alert’ framework tailored for rugged environments, this study offers a new methodological reference for the intelligent management of forest firefighting resources. Full article
32 pages, 1479 KB  
Review
Joining Forces Against Antibiotic Resistance in Aquaculture: The Synergism Between Natural Compounds and Antibiotics
by María Melissa Gutiérrez-Pacheco, Martina Hilda Gracia-Valenzuela, Luis Alberto Ortega-Ramirez, Francisco Javier Vázquez-Armenta, Juan Manuel Leyva, Jesús Fernando Ayala-Zavala and Andrés Francisco Chávez-Almanza
Antibiotics 2026, 15(1), 95; https://doi.org/10.3390/antibiotics15010095 - 16 Jan 2026
Viewed by 96
Abstract
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of [...] Read more.
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of antibiotic-resistant bacteria within aquaculture systems, posing a serious threat to animal health, environmental sustainability, and public health. In this regard, research efforts have focused on developing alternative strategies to reduce antibiotic use. Natural compounds have gained particular attention due to their well-documented antimicrobial and antibiofilm activities. In this context, the combined application of antibiotics and natural compounds has emerged as a promising approach to enhance antimicrobial efficacy while potentially mitigating the development of resistance. This review synthesizes the current knowledge on antibiotic resistance in aquaculture, highlights the role of biofilm formation as a key resistance mechanism, and critically examines the potential of antibiotic–natural compound combinations against major aquaculture pathogens, with particular emphasis on bacterial growth inhibition, biofilm disruption, and virulence attenuation. Collectively, the evidence discussed underscores the potential of synergistic strategies as a sustainable tool for improving disease management in aquaculture while supporting efforts to limit antibiotic resistance. Full article
(This article belongs to the Special Issue Challenges of Antibiotic Resistance: Biofilms and Anti-Biofilm Agents)
Show Figures

Graphical abstract

37 pages, 19894 KB  
Article
Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru, 2025
by Doris Esenarro, Miller Garcia, Yerika Calampa, Patricia Vasquez, Duilio Aguilar Vizcarra, Carlos Vargas, Vicenta Irene Tafur Anzualdo, Jesica Vilchez Cairo and Pablo Cobeñas
Urban Sci. 2026, 10(1), 57; https://doi.org/10.3390/urbansci10010057 - 16 Jan 2026
Viewed by 76
Abstract
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and [...] Read more.
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and educational infrastructures capable of supporting conservation efforts while engaging local communities. In response, this research proposes a Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru. The methodology includes climate data analysis, identification of local flora and fauna, and site topography characterization, supported by digital tools such as Google Earth, AutoCAD 2025, Revit 2025, and 3D Sun Path. The results are reflected in an architectural proposal that incorporates sustainable materials compatible with sensitive ecosystems, including eco-friendly structural solutions based on algarrobo timber, together with resilient strategies addressing climatic variability, such as lightweight structures, elevated platforms, and passive environmental solutions that minimize impact on the mangrove. Furthermore, the proposal integrates a photovoltaic energy system consisting of 12 solar panels with a unit capacity of 450 W, providing a total installed capacity of 5.4 kWp, complemented by a 48 V LiFePO4 battery storage system designed to ensure energy autonomy during periods of low solar availability. In conclusion, the proposal adheres to principles of sustainability and energy efficiency and aligns with the Sustainable Development Goals (SDGs) 7, 8, 12, 14, and 15, reinforcing the use of clean energy, responsible tourism, sustainable resource management, and the conservation of marine and terrestrial ecosystems. Full article
31 pages, 1076 KB  
Systematic Review
Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review
by Lorenzo Gagliardi, Lorenzo Gabriele Tramacere, Daniele Antichi, Christian Frasconi, Massimo Sbrana, Gabriele Sileoni, Edoardo Monacci, Luciano Pagano, Nicoleta Darra, Olga Kriezi, Borja Espejo Garcia, Aikaterini Kasimati, Alexandros Tataridas, Nikolaos Antonopoulos, Ioannis Gazoulis, Erato Lazarou, Kevin Godfrey, Lynn Tatnell, Camille Guilbert, Fanny Prezman, Thomas Börjesson, Francisco Javier Rodríguez-Rigueiro, María Rosa Mosquera-Losada, Maksims Filipovics, Viktorija Zagorska and Spyros Fountasadd Show full author list remove Hide full author list
Agronomy 2026, 16(2), 220; https://doi.org/10.3390/agronomy16020220 - 16 Jan 2026
Viewed by 84
Abstract
Weeds pose a significant threat to crop yields, both in quantitative and qualitative terms. Modern agriculture relies heavily on herbicides; however, their excessive use can lead to negative environmental impacts. As a result, recent research has increasingly focused on Integrated Weed Management (IWM), [...] Read more.
Weeds pose a significant threat to crop yields, both in quantitative and qualitative terms. Modern agriculture relies heavily on herbicides; however, their excessive use can lead to negative environmental impacts. As a result, recent research has increasingly focused on Integrated Weed Management (IWM), which employs multiple complementary strategies to control weeds in a holistic manner. Nevertheless, large-scale adoption of this approach requires a solid understanding of the underlying tactics. This systematic review analyses recent studies (2013–2022) on herbicide alternatives for weed control across major cropping systems in the EU-27 and the UK, providing an overview of current knowledge, the extent to which IWM tactics have been investigated, and the main gaps that help define future research priorities. The review relied on the IWMPRAISE framework, which classifies weed control tactics into five pillars (direct control, field and soil management, cultivar choice and crop establishment, diverse cropping systems, and monitoring and evaluation) and used Scopus as a scientific database. The search yielded a total of 666 entries, and the most represented pillars were Direct Control (193), Diverse Cropping System (183), and Field and Soil Management (172). The type of crop most frequently studied was arable crops (450), and the macro-area where the studies were mostly conducted was Southern Europe (268). The tactics with the highest number of entries were Tillage Type and Cultivation Depth (110), Cover Crops (82), and Biological Control (72), while those with the lowest numbers were Seed Vigor (2) and Sowing Depth (2). Overall, this review identifies research gaps and sets priorities to boost IWM adoption, leading policy and funding to expand sustainable weed management across Europe. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

36 pages, 2621 KB  
Article
The Integration of ISO 27005 and NIST SP 800-30 for Security Operation Center (SOC) Framework Effectiveness in the Non-Bank Financial Industry
by Muharman Lubis, Muhammad Irfan Luthfi, Rd. Rohmat Saedudin, Alif Noorachmad Muttaqin and Arif Ridho Lubis
Computers 2026, 15(1), 60; https://doi.org/10.3390/computers15010060 - 15 Jan 2026
Viewed by 94
Abstract
A Security Operation Center (SOC) is a security control center for monitoring, detecting, analyzing, and responding to cybersecurity threats. PT (Perseroan Terbatas) Non-Bank Financial Company (NBFC) has implemented an SOC to secure its information systems, but challenges remain to be solved. [...] Read more.
A Security Operation Center (SOC) is a security control center for monitoring, detecting, analyzing, and responding to cybersecurity threats. PT (Perseroan Terbatas) Non-Bank Financial Company (NBFC) has implemented an SOC to secure its information systems, but challenges remain to be solved. These include the absence of impact analysis on financial and regulatory requirements, cost, and effort estimation for recovery; established Key Performance Indicators (KPIs) and Key Risk Indicators (KRIs) for monitoring security controls; and an official program for insider threats. This study evaluates SOC effectiveness at PT NBFC using the ISO 27005:2018 and NIST SP 800-30 frameworks. The research results in a proposed SOC assessment framework, integrating risk assessment, risk treatment, risk acceptance, and monitoring. Additionally, a maturity level assessment was conducted for ISO 27005:2018, NIST SP 800-30, and the proposed framework. The proposed framework achieves good maturity, with two domains meeting the target maturity value and one domain reaching level 4 (Managed and Measurable). By incorporating domains from both ISO 27005:2018 and NIST SP 800-30, the new framework offers a more comprehensive risk management approach, covering strategic, managerial, and technical aspects. Full article
Show Figures

Figure 1

19 pages, 1546 KB  
Systematic Review
Antimicrobial Resistance in Selected Foodborne Pathogens in Sub-Saharan Africa: A Systematic Review and Meta-Analysis
by Kedir A. Hassen, Jose Fafetine, Laurinda Augusto, Inacio Mandomando, Marcelino Garrine and Gudeta W. Sileshi
Antibiotics 2026, 15(1), 87; https://doi.org/10.3390/antibiotics15010087 - 15 Jan 2026
Viewed by 201
Abstract
Background/Objectives: The increasing trend of foodborne zoonotic pathogens exhibiting antimicrobial resistance (AMR) represents a growing threat to food safety and public health in sub-Saharan Africa (SSA). Resistant strains of foodborne zoonotic pathogens compromise treatment efficacy, raise illness, and threaten sustainable food systems in [...] Read more.
Background/Objectives: The increasing trend of foodborne zoonotic pathogens exhibiting antimicrobial resistance (AMR) represents a growing threat to food safety and public health in sub-Saharan Africa (SSA). Resistant strains of foodborne zoonotic pathogens compromise treatment efficacy, raise illness, and threaten sustainable food systems in human and animal health. However, regional understanding and policy response are limited due to the fragmentation of data and the inadequacy of surveillance. This systematic review and meta-analysis aimed to achieve the following: (1) estimate the pooled prevalence of AMR, including multidrug resistance (MDR) in selected foodborne pathogens; (2) compare subgroup variations across countries, pathogen species, and antibiotic classes; and (3) evaluate temporal trends. Methods: Following PRISMA 2020 guidelines, studies published between 2010 and June 2025 reporting AMR and MDR in Salmonella, Campylobacter, or E. coli from food or animal sources in SSA were systematically reviewed. Data on pathogen prevalence, AMR profile, and MDR were extracted. Random-effects meta-analysis using R software was implemented to estimate the pooled prevalence and the 95% confidence intervals (95% CI). Subgroup analyses were performed to explore heterogeneity across countries, antibiotic class, and bacterial species. Results: Ninety studies from 16 sub-Saharan African countries were included, encompassing 104,086 positive isolates. The pooled foodborne pathogen prevalence was 53.1% (95% CI: 51.5–54.7), AMR prevalence was 61.6% (95% CI: 59.4–63.9), and MDR prevalence was 9.1% (95% CI: 8.3–10.0). The highest resistance was reported in Campylobacter spp. (43.6%), followed by Salmonella spp. (29.1%) and E. coli (22.8%). High heterogeneity was observed across studies (I2 = 95–99%, p < 0.001). Conclusions: It is concluded that substantial AMR burden exists in food systems, highlighting an urgent need for integrated One Health surveillance, antimicrobial stewardship, and policy harmonization in SSA. Strengthening laboratory capacity, enforcing prudent antimicrobial use, and promoting regional data sharing are critical for the management of antimicrobial resistance in sub-Saharan Africa. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

Back to TopTop