Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = tholeiite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 13959 KB  
Article
Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border
by Cheng Qian, Jintao Ge, Bo Pan, Zhen Tang, Bin Jiang, Tianri Cui and Lu Lu
Minerals 2025, 15(9), 949; https://doi.org/10.3390/min15090949 - 5 Sep 2025
Viewed by 383
Abstract
To constrain Tianchi Volcano basalt petrogenesis, this study focuses on tholeiitic basalts from the CZK06 drill core on the northern slope. Using elemental geochemistry and Mg isotope analyses, we investigate magma evolution, petrogenesis, and mantle source properties. The tholeiitic basalts formed during the [...] Read more.
To constrain Tianchi Volcano basalt petrogenesis, this study focuses on tholeiitic basalts from the CZK06 drill core on the northern slope. Using elemental geochemistry and Mg isotope analyses, we investigate magma evolution, petrogenesis, and mantle source properties. The tholeiitic basalts formed during the Pliocene-Early Pleistocene shield-forming stage, recording three stages of basaltic volcanism (Phases I to III). Classified as sodium-series basalts, they exhibit geochemical affinities with EM1-type OIB. Their δ26Mg values (−0.420‰ to −0.150‰) show a substantially wider range than N-MORB. Their geochemical compositions are primarily controlled by source region characteristics and partial melting degree, with minor additional influences from fractional crystallization and crustal contamination. Fractional crystallization intensity shows a progressive increase from Phase I to III. Integrated with geochemical tracing studies of Changbaishan basalts, we propose that the tholeiitic basalts are derived predominantly from the partial melting of carbonatized pyroxenite, which originated from subducted ancient clay-rich altered oceanic crust. The carbonate melts driving the carbonatization were generated by low-pressure melting of recent oceanic sediments, transported by the deeply subducted carbonate-rich Pacific Plate within the Mantle Transition Zone. The tholeiitic magma formed in the Low-Velocity Zone at depths of 160–180 km beneath the lithospheric mantle. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

30 pages, 8388 KB  
Article
ASTER and Hyperion Satellite Remote Sensing Data for Lithological Mapping and Mineral Exploration in Ophiolitic Zones: A Case Study from Lasbela, Baluchistan, Pakistan
by Saima Khurram, Zahid Khalil Rao, Amin Beiranvand Pour, Khurram Riaz, Arshia Fatima and Amna Ahmed
Mining 2025, 5(3), 53; https://doi.org/10.3390/mining5030053 - 2 Sep 2025
Viewed by 636
Abstract
This study evaluates the capabilities of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion remote sensing sensors for mapping ophiolitic sequences and identifying manganese mineralization in the Bela Ophiolite region, located along the axial fold–thrust belt northwest of Karachi, Pakistan. [...] Read more.
This study evaluates the capabilities of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion remote sensing sensors for mapping ophiolitic sequences and identifying manganese mineralization in the Bela Ophiolite region, located along the axial fold–thrust belt northwest of Karachi, Pakistan. The study area comprises tholeiitic basalts, gabbros, mafic and ultramafic rocks, and sedimentary formations where manganese occurrences are associated with jasperitic chert and shale. To delineate lithological units and Mn mineralization, advanced image processing techniques were applied, including band ratio (BR), Principal Component Analysis (PCA), and Spectral Angle Mapper (SAM) on visible and near-infrared (VNIR) and shortwave infrared (SWIR) bands of ASTER. Using these methods, gabbros, basalts, and mafic-ultramafic rocks were effectively mapped, and previously unrecognized basaltic outcrops and gabbroic outcrops were also discovered. The ENVI Spectral Hourglass Wizard was used to analyze the hyperspectral data, integrating the Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and N-Dimensional Visualizer to extract the spectra of end-members associated with Mn-bearing host rocks. In addition, the Hyperspectral Material Identification (HMI) tool was tested to recognize Mn minerals. The remote sensing results were validated by petrographic analysis and ground-truth data, confirming the effectiveness of these techniques in ophiolite mapping and mineral exploration. This study shows that ASTER band combinations (3-6-7, 3-7-9) and band ratios (1/4, 4/9, 9/1 and 3/4, 4/9, 9/1) provide optimal results for lithological discrimination. The results show that remote sensing-based image processing is a powerful tool for mapping ophiolites on a regional scale and can help geologists identify potential mineralization zones in ophiolitic sequences. Full article
Show Figures

Figure 1

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 771
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

43 pages, 20293 KB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 1069
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

25 pages, 9142 KB  
Article
Petrogenesis and Tectonic Significance of Middle Jurassic Mafic–Ultramafic Cumulate Rocks in Weiyuanpu, Northern Liaoning, China: Insights from Zircon Geochronology and Isotope Geochemistry
by Yifan Zhang, Xu Ma, Jiafu Chen, Yuqi Liu, Yi Zhang and Yongwei Ma
Minerals 2025, 15(6), 651; https://doi.org/10.3390/min15060651 - 17 Jun 2025
Viewed by 583
Abstract
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment [...] Read more.
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment of the northern margin of the NCC to discuss their petrogenesis and tectonic implications. The Weiyuanpu mafic–ultramafic intrusions consist of troctolite, hornblendite, hornblende gabbro, gabbro, and minor diorite, anorthosite, characterized by cumulate structure. The main crystallization sequence of minerals is olivine → pyroxene → magnetite → hornblende. The zircon U-Pb ages of hornblendite, hornblende grabbro, and diorite are ~170Ma. Geochemical characteristics exhibit low-K tholeiitic to calc-alkaline series, enriched in light rare-earth elements (LREE) and significant large-ion lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). Sr-Nd isotopic compositions are ISr = 0.7043–0.7055, εNd(t) = −0.7 to +0.9, and zircon εHf (t) values range from +3.4 to +8.7. These results suggest that the source region was a phlogopite-bearing garnet lherzolite mantle metasomatized by subduction fluids. The study reveals that the northeastern margin of the NCC was in a back-arc extensional setting due to the subduction of the Paleo-Pacific Ocean during the Middle Jurassic, which caused lithosphere thinning and mantle melting in this region. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

37 pages, 17692 KB  
Article
Geological, Mineralogical, Geochemical, and Petrogenetic Characteristics of Plutonic Rocks in Çiftehan (Ulukışla-Niğde) Area, South-Central Türkiye: Implication for Genetic Link with Fe-Zn Skarn Mineralization
by Emmanuel Daanoba Sunkari and Abdurrahman Lermi
Minerals 2025, 15(6), 578; https://doi.org/10.3390/min15060578 - 29 May 2025
Viewed by 786
Abstract
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn [...] Read more.
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn skarn deposits in the Esendemirtepe-Koçak and Horoz areas of south-central Türkiye. Despite the regional significance, previous studies have not adequately addressed the petrogenetic evolution of these intrusions and the geochemical characteristics of the related skarns. In particular, the fluid-aided mobility of elements at the contact between the causative plutons and the volcano-sedimentary country rocks remains poorly understood. Therefore, in this study, field studies, petrographic and mineralogical analysis, and whole-rock geochemical analysis were conducted to investigate the genetic link between the plutonic rocks and the skarn deposits. Field studies reveal that the skarn zones are within volcano-sedimentary sequences and marble-schist units intruded by four distinct plutonic bodies: (1) Esendemirtepe diorite, (2) Koçak diorite, (3) Horoz granodiorite, and (4) Çifteköy monzogabbro. These rocks exhibit calc-alkaline, I-type, and metaluminous signatures, except for the Çifteköy monzogabbro, which shows I-type, tholeiitic, and alkaline characteristics. All the plutonic rocks associated with the skarn formation display steep LREE-enriched REE patterns with minor positive Eu anomalies (Eu/Eu* = 0.98–1.35), suggesting a subduction-related volcanic arc setting similar to other granitoids in the Ulukışla Basin. The Horoz skarn exhibits both endoskarn and exoskarn features, while the Esendemirtepe-Koçak deposit is characterized by typical exoskarn features. Dominant ore minerals in both skarn deposits include magnetite, hematite, sphalerite, chalcopyrite, and pyrite, with minor arsenopyrite, galena, and cobaltite. The mineral composition of the skarn also shows the dominance of Na-rich and Mg-rich minerals in both locations. The geochemical compositions of the I-type, metaluminous Esendemirtepe-Koçak, and Horoz plutonic rocks are compatible with Fe-Zn skarn type deposits based on the moderate MgO (0.36–4.44 wt.%) and K2O (1.38–7.99 wt.%), and Rb/Zr and Sr/Zr ratios. They also show typical volcanic arc features, and the variation in various trace element concentrations shows similarity with Fe-Zn skarn type granitoids. These findings support a strong genetic relationship between the mineralization and the geochemical and mineralogical characteristics of the associated plutonic rocks. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

24 pages, 13891 KB  
Article
Fertility of Gabbroic Intrusions in the Paleoproterozoic Lynn Lake Greenstone Belt, Manitoba, Canada: Insights from Field Relationships, Geochemical and Metallogenic Characteristics
by Xue-Ming Yang
Minerals 2025, 15(5), 448; https://doi.org/10.3390/min15050448 - 26 Apr 2025
Viewed by 810
Abstract
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen [...] Read more.
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen to identify the key factors, in the original gabbros, that control the formation of magmatic Ni-Cu-PGE deposits in volcanic arc systems. By examining the field relationships, geochemical and sulfur and oxygen stable isotope compositions, mineralogy, and structural fabrics, this study aims to explain why some intrusions host mineralization (e.g., Lynn Lake and Fraser Lake intrusions), whereas others remain barren (e.g., Ralph Lake, Cartwright Lake, and Snake Lake intrusions). Although both the fertile and barren gabbroic, likewise original, intrusions exhibit metaluminous, tholeiitic to calc-alkaline affinity with volcanic arc geochemical signatures, they differ significantly in shape, ranging from vertical and tube-like to tabular forms, reflecting distinct geological settings and magma dynamics. The gabbroic rocks of fertile intrusions exhibit erratic trace element profiles, lower (Nb/Th)N and higher (Cu/Zr)N ratios, as well as a larger range of δ34S values than those in barren intrusions. Key factors influencing Ni-Cu-PGE mineralization include the degree of partial melting of the mantle, early sulfide segregation, and crustal contamination, particularly from volcanogenic massive sulfide deposits. These processes likely triggered sulfide saturation in the mafic magmas. Geochemical proxies, such as PGE concentrations and sulfur and oxygen stable isotopes, provide critical insights into these controlling factors. The results of this study enhance our understanding of the metallogenic processes responsible for the formation of magmatic Ni-Cu-PGE deposits in the gabbroic intrusions emplaced in an extensional setting due to slab rollback, during the geological evolution of the Lynn Lake greenstone belt, offering valuable guidance for mineral exploration efforts. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

28 pages, 17232 KB  
Article
Mafic VMS Mineralization in the Mesozoic Metavolcanic Rocks of the Evros Ophiolite, Xylagani Area, Greece
by Vasilios Melfos, Panagiotis Voudouris, Grigorios-Aarne Sakellaris, Christos L. Stergiou, Margarita Melfou, Eftychia Peristeridou, Lambrini Papadopoulou, Jaroslav Pršek and Anestis Filippidis
Minerals 2025, 15(4), 420; https://doi.org/10.3390/min15040420 - 17 Apr 2025
Viewed by 940
Abstract
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. [...] Read more.
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. The protolith of the host rock is basalt that has a boninitic-to-low-Ti tholeiitic composition and was formed in an intra-oceanic supra-subduction zone within a juvenile forearc-to-volcanic arc setting. The volcanic rocks were subjected to ocean-floor metamorphism at very low-grade prehnite–pumpellyite facies and low-grade greenschist facies at temperatures of up to 360 °C and pressures between 1 and 4 kbar. The mineralization shows typical features of a stratabound–stratiform deposit and occurs as silicified lenses and layers with disseminated and massive sulfides and gold. Based on host rock composition, geotectonic setting, and base metal content, the mineralization at Xylagani is classified as a Cu-rich mafic volcanic-associated deposit, i.e., Cyprus-type VMS (volcanogenic massive sulfide). The mineralization consists of pyrite, chalcopyrite, gold, pyrrhotite, sphalerite, galena, and tennantite-(Zn). It was formed at a subseafloor setting where hydrothermal fluids circulated through the host volcanic rocks, resulting in a pervasive alteration (silicification and chloritization) and the development of a replacement VMS deposit. The very low-to-low-grade orogenic metamorphism and related deformation during the Alpine collision in the Middle Jurassic to Early Cretaceous periods remobilized the mineralization and formed milky quartz veins with rare sulfides, crosscutting the metavolcanic rocks. Full article
(This article belongs to the Special Issue Ore Deposits Related to Metamorphism)
Show Figures

Figure 1

14 pages, 2688 KB  
Article
Carbonaceous Shale Deposits as Potential Unconventional Sources for Rare Earth Elements at the Witbank Coalfield, Permian Vryheid Formation, South Africa
by George Oluwole Akintola
Minerals 2025, 15(4), 388; https://doi.org/10.3390/min15040388 - 6 Apr 2025
Viewed by 992
Abstract
Carbonaceous shale has garnered significant interest as a viable alternative source of rare earth elements (REEs) besides conventional REE-bearing ores. This study characterized rare earth element + Yttrium+ Scandium (REYs) enrichment in the 11 core samples of carbonaceous shale (7) and coal (4) [...] Read more.
Carbonaceous shale has garnered significant interest as a viable alternative source of rare earth elements (REEs) besides conventional REE-bearing ores. This study characterized rare earth element + Yttrium+ Scandium (REYs) enrichment in the 11 core samples of carbonaceous shale (7) and coal (4) collected from Arnot Mine. Major elements of the studied carbonaceous shale (CS) and coal showed high amounts of SiO2, Al2O3, and Fe2O3, indicating a high content of aluminosilicate and iron-rich minerals. The plots Na2O + K2O against SiO2 suggested alkali granite, granite, and granodiorite provenance sources for the studied shale and coal. The samples showed enrichment in low and heavy rare elements crystallized from a low potassium tholeiitic and medium calc-alkaline magma based on the plots of LaN/YbN and K2O vs. SiO2. The mineralogical and maceral analysis revealed the dominant presence of kaolinite (15%–45%), and it was suggested as the cation exchange site resulting from the isomorphous substitution of Al3+ for Si4+. Additionally, siderite was suggested as one of the REY hosts due to the Fe3+ site forming a complex with the REE3+ ions. Furthermore, the samples were classified as lignite to sub-bituminous coal category with dominant minerals including kaolinite, quartz, and siderite. The outlook coefficient (Coutl) of REY in CS revealed a promising area for economically viable, having two enrichment types, including low (La, Ce, Pr, Nd, and Sm) and heavy (Ho, Er, Tm, Yb, and Lu). The EuN/EuN* and CeN/CeN* ratio for the current studied samples exhibited a weak negative to no anomaly, and most of the studied samples were characterized by distinctive positive Gd anomalies derived from sediment source regions weathered from alkali granite, granite, and granodiorite provenance formed from a low potassium tholeiitic and medium calc-alkaline magma. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 85884 KB  
Article
Petrogenesis and Geological Implications of the Qiaoqi Intrusion in Western Margin of the Yangtze Block, SW China: Evidence from Geochronology, Geochemistry, and Hf Isotopes
by Yingtao Chen, Jianting Zhu, Shaoni Wei, Xiaochen Zhao, Delu Li, Xufeng Yang and Yuhang Wang
Minerals 2025, 15(2), 190; https://doi.org/10.3390/min15020190 - 19 Feb 2025
Viewed by 548
Abstract
Late Permian–Early Triassic basic rocks, which are widespread in the western margin of the Yangtze block (SW China), provide critical information for regional tectonic evolution. The Qiaoqi intrusion, distributed in the western margin of the Yangtze block, is selected as a representative for [...] Read more.
Late Permian–Early Triassic basic rocks, which are widespread in the western margin of the Yangtze block (SW China), provide critical information for regional tectonic evolution. The Qiaoqi intrusion, distributed in the western margin of the Yangtze block, is selected as a representative for discussion in this paper. LA-ICP-MS zircon U-Pb dating results show that the Qiaoqi intrusion was formed at 245 ± 1 Ma. It belongs to the medium-K calc-alkaline and tholeiitic basalt series. It is characterized by high concentrations of Fe2O3T (11.53 wt. % to 15.50 wt. %), TiO2 (1.81 wt. % to 3.20 wt. %), Al2O3 (11.80 wt. % to 15.60 wt. %), and low concentrations of MgO (4.51 wt. % to 8.93 wt. %). The LREE and LILE (such as Cs, Rb, Ba and Th) are enriched, with insignificant Eu anomalies (Eu/Eu* = 0.92 to 1.13). The chondrite-normalized REE distribution diagram shows a right-leaning pattern, similar to ocean island basalts (OIB), displaying the geochemical characteristics of enriched mantle sources. The zircon εHf(t) values are relatively high (+12.7 to +15.5) and the single-stage Hf model ages are relatively young (tDM = 272 to 386 Ma). Modeling further reveals that the parent magma was derived from 13% to 19% partial melting of garnet peridotite. Comprehensive analysis shows that the geochemical characteristics of the Qiaoqi intrusion bear resemblance to those of the Emeishan basalts, which are attributed to volumetrically minor melting of the fossil Emeishan plume head beneath the Yangtze crust following the eruption of the Emeishan Large Igneous Province (ELIP). This understanding further constrains the duration of the Emeishan Large Igneous Province and provides new support for understanding the formation, evolution and distribution of the Emeishan Large Igneous Province. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

40 pages, 14218 KB  
Article
Geochemistry and Petrogenesis of Permo–Triassic Silicic Volcanic Rocks from the Circum-Rhodope Belt in the Vardar/Axios Zone, Northern Greece: An Example of a Post-Collision Extensional Tectonic Setting in the Tethyan Realm
by Argyro Asvesta
Geosciences 2025, 15(2), 48; https://doi.org/10.3390/geosciences15020048 - 2 Feb 2025
Viewed by 1202
Abstract
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic [...] Read more.
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic rocks from the CRB are mainly rhyolitic to rhyodacitic lavas with aphyric and porphyritic textures as well as pyroclastic deposits. In this study, geochemical data obtained with X-ray fluorescence (XRF) for the CRB silicic volcanic rocks are reported and discussed to constrain their petrogenesis and tectonic setting. The rocks are peraluminous and show enrichment in K, Rb, Th, Zr, Y, and Pb while being depleted in Ba, Sr, Nb, P, and Ti, and they have Zr + Nb + Y + Ce > 350 ppm, which are characteristic features of anorogenic A-type granites. They have a Y/Nb ratio > 1.2 and belong to A2-subtype granitoids, implying crust-derived magma in a post-collisional tectonic setting. The high Rb/Sr ratio (3.45–39.14), the low molar CaO/(MgO + FeOt) ratio, and the CaO/Na2O ratio (<0.5), which they display, indicate that metapelites are the magma sources. Their low Al2O3/TiO2 ratio (<100), consistent with their high zircon saturation temperatures (average TZr = 886 °C), and their low Pb/Ba ratio (average 0.06) reveal that they were generated by biotite dehydration melting. The increased Rb/Sr ratio relative to that of presumable parental metapelites of the Vertiskos Unit, coupled with their low Sr/Y ratio (0.12–1.08), reflects plagioclase and little or no garnet in the source residue, indicating magma derivation at low pressures of 0.4–0.8 GPa that correspond to a depth of ~15–30 km. The nearby tholeiitic basalts and dolerites, interstratified with the Triassic pelagic sediments, indicate bimodal volcanism in the region. They also support a model involving an upwelling asthenosphere that underplated the Vertiskos Unit basement, supplying the heat required for crustal melting at low pressures. The Permo–Triassic magmatism marks the transition from an orogenic to an anorogenic environment during the initial stage of continental breakup of the Variscan basement in a post-collision extensional tectonic framework, leading to the formation of the nascent Mesozoic Neo-Tethyan Maliac–Vardar Ocean. This apparently reveals that the Variscan continental collision between the Gondwana-derived Vertiskos and Pelagonian terranes must have been completed by at least the earliest Late Permian. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

39 pages, 48972 KB  
Article
Volcanic Response to Post-Pan-African Orogeny Delamination: Insights from Volcanology, Precise U-Pb Geochronology, Geochemistry, and Petrology of the Ediacaran Ouarzazate Group of the Anti-Atlas, Morocco
by Mohamed Achraf Mediany, Nasrrddine Youbi, Mohamed Ben Chra, Oussama Moutbir, Ismail Hadimi, João Mata, Jörn-Frederik Wotzlaw, José Madeira, Miguel Doblas, Ezz El Din Abdel Hakim Khalaf, Rachid Oukhro, Warda El Moume, Jihane Ounar, Abdelhak Ait Lahna, Moulay Ahmed Boumehdi and Andrey Bekker
Minerals 2025, 15(2), 142; https://doi.org/10.3390/min15020142 - 31 Jan 2025
Cited by 1 | Viewed by 2390
Abstract
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. [...] Read more.
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. Two eruptive cycles are identified based on volcanological and geochemical signatures. The first cycle comprises a diverse volcanic succession of basalts, basaltic andesites, andesites, dacites, and rhyolitic crystal-rich tuffs and ignimbrites, exhibiting arc calc-alkaline affinities. These mafic magmas were derived from a lithospheric mantle metasomatized by subduction-related fluids and are associated with the gravitational collapse of the Pan-African Orogen. The second cycle is marked by bimodal volcanism, featuring tholeiitic basalts sourced from the asthenospheric mantle and felsic intraplate magmas. These units display volcanological characteristics typical of facies models for continental basaltsuccessions and continental felsic volcanoes. Precise CA-ID-TIMS U-Pb zircon dating constrains the volcanic activity to 575–557 Ma, reflecting an 18-million-year period of lithospheric thinning, delamination, and asthenospheric upwelling. This progression marks the transition from orogen collapse to continental rifting, culminating in the breakup of the Rodinia supercontinent and the opening of the Iapetus Ocean. The TVF exemplifies the dynamic interplay between lithospheric and asthenospheric processes during post-collisional tectonic evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 14163 KB  
Article
Petrogenesis of Permian Granodiorite and Diorite in Eastern Jilin Province and Its Constraints on the Late-Stage Evolution of the Paleo-Asian Ocean
by Yao Tang, Deyou Sun, Changzhou Deng, Jun Gou, Changliang Fu and Dongguang Yang
Minerals 2024, 14(12), 1223; https://doi.org/10.3390/min14121223 - 30 Nov 2024
Cited by 2 | Viewed by 962
Abstract
The Solonker-Xar Moron-Changchun-Yanji Suture Zone is the result of the final closure of the Paleo-Asian Ocean (PAO). However, the closure time of the PAO in Northeast China remains controversial. The Hunchun area is located in the easternmost part of the Solonker-Xar Moron-Changchun-Yanji Suture [...] Read more.
The Solonker-Xar Moron-Changchun-Yanji Suture Zone is the result of the final closure of the Paleo-Asian Ocean (PAO). However, the closure time of the PAO in Northeast China remains controversial. The Hunchun area is located in the easternmost part of the Solonker-Xar Moron-Changchun-Yanji Suture Zone. Tectonism and magmatism in the Hunchun area can provide important information for understanding the late-stage evolution of the PAO. In this study, our zircon U-Pb ages show that the granodiorites and diorites in the Hunchun were formed at 282.3–251.4 Ma. This geochronological evidence suggests prolonged Permian magmatism in the Hunchun area. Whole-rock geochemistry, zircon trace, and Lu-Hf isotope data show that all the intrusive rocks are mainly calc-alkaline series to arc tholeiite series. Granodiorites are I-type granites formed by the partial melting of juvenile lower crust derived from the mantle. Diorites show similar characteristics to the sanukitic high-Mg diorite and are formed by the partial melting of the depleted mantle metasomatized by subduction sediments and/or slab-derived fluids. These results indicate that the Permian diorites and granodiorites in the Hunchun area formed in an active continental margin setting related to the subduction of the PAO plate. Significantly, sudden changes in the whole-rock Sr/Y and (La/Yb)N ratios and zircon εHf(t) values are observed in the Late Permian-Early Triassic igneous rocks in the eastern Central Asian Orogenic Belt (CAOB). This indicates that the final closure of the PAO in Northeast China likely occurred in the Late Permian-Early Triassic. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 25703 KB  
Article
The Subduction-Related Metavolcanic Rocks of Maroua, Northern Cameroon: New Insights into a Neoproterozoic Continental Arc Along the Northern Margin of the Central African Fold Belt
by Pierre Christel Biakan à Nyotok, Merlin Gountié Dedzo, Diddi Hamadjoda Djamilatou, Nils Lenhardt, Moussa Ngarena Klamadji, Periclex Martial Fosso Tchunte and Pierre Kamgang
Geosciences 2024, 14(11), 298; https://doi.org/10.3390/geosciences14110298 - 5 Nov 2024
Viewed by 1687
Abstract
The metavolcanic rocks around Maroua in the Far North Region of Cameroon are located at the northern margin of the Central African Fold Belt (CAFB) and have not been studied to date. The petrographic and whole-rock geochemical data presented in this paper highlight [...] Read more.
The metavolcanic rocks around Maroua in the Far North Region of Cameroon are located at the northern margin of the Central African Fold Belt (CAFB) and have not been studied to date. The petrographic and whole-rock geochemical data presented in this paper highlight their magma genesis and geodynamic evolution. The lavas are characterized by basaltic, andesitic, and dacitic compositions and belong to the calc-alkaline medium-K and low-K tholeiite series. The mafic samples are essentially magnesian, while the felsic samples are ferroan. On a chondrite-normalized REE diagram, mafic and felsic rocks display fractionated patterns, with light REE enrichment and heavy REE depletion (LaN/YbN = 1.41–5.38). The felsic samples display a negative Eu anomaly (Eu/Eu* = 0.59–0.87), while the mafic lavas are characterized by a positive Eu anomaly (Eu/Eu* = 1.03–1.35) or an absence thereof. On a primitive mantle-normalized trace element diagram, the majority of the samples exhibit negative Ti and Nb–Ta anomalies (0.08–0.9 and 0.54–0.74, respectively). These characteristic features exhibited by the metavolcanic rocks of Maroua are similar to those of subduction-zone melts. This subduction would have taken place after the convergence between the Congo craton (Adamawa-Yadé domain) and the Saharan craton (Western Cameroonian domain). Petrological modelling using major and trace elements suggests a derivation of the Maroua volcanics from primitive parental melts generated by the 5–10% partial melting of a source containing garnet peridotite, probably generated during the interaction between the subducted continental crust and the lithospheric mantle and evolved chemically through fractional crystallization and assimilation. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

21 pages, 4439 KB  
Article
The Indosinian Granitoids of the Songpan–Garze–West Kunlun Orogenic Belt, China: Distribution, Petrochemistry, and Tectonic Insights
by Shiqi Deng and Yang Wang
Minerals 2024, 14(11), 1060; https://doi.org/10.3390/min14111060 - 22 Oct 2024
Cited by 1 | Viewed by 996
Abstract
During the Indosinian orogeny, the Songpan–Garze–West Kunlun orogenic belt experienced significant tectonic and magmatic activity, leading to the widespread emplacement of granitoid bodies. This study provides a detailed petrochemical and geochemical analysis of these granitoids, offering new insights into their tectonic settings and [...] Read more.
During the Indosinian orogeny, the Songpan–Garze–West Kunlun orogenic belt experienced significant tectonic and magmatic activity, leading to the widespread emplacement of granitoid bodies. This study provides a detailed petrochemical and geochemical analysis of these granitoids, offering new insights into their tectonic settings and magmatic evolution. The granitoids of this belt are systematically categorized into arc calc-alkaline and arc tholeiitic granitoids (ACG and ATG), cordierite peraluminous and muscovite peraluminous granitoids (CPG and MPG), potassium calc-alkaline granitoids (KCG), and peralkaline granitoids (PAG) suites. ACG and ATG types dominate early magmatism (230–190 Ma), reflecting a convergent tectonic setting, while KCG and MPG types magmatism, respectively, emerged 10–20 Myr and 15–25 Myr later, during post-collisional extensional phases. Geochemical analyses show that ACG and ATG granitoids follow calcic and calc-alkalic trends, while KCG and MPG display alkalic characteristics. These findings align with the region’s tectonic transition from the closure of the Paleo–Tethys Ocean to Late Triassic transpressional deformation. This study enhances the understanding of granitoid petrogenesis and provides valuable implications for regional tectonic evolution and mineral exploration. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop