Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border
Abstract
1. Introduction
2. Geological Setting
3. CZK06 Drill Core Stratigraphy and Sampling
4. Analytical Methods
5. Results and Interpretation
5.1. Volcanic Petrography
5.2. Whole-Rock Major Elements
5.3. Whole-Rock Trace Elements
5.4. Whole-Rock Mg Isotopes
6. Discussion
6.1. Fractional Crystallization and Crustal Contamination
6.1.1. Fractional Crystallization
6.1.2. Crustal Contamination
6.2. Mantle Source Property and Origin of δ26Mg Values
6.2.1. Mantle Source Characteristics
6.2.2. Origin of δ26Mg Values
6.2.3. Implications for Carbonatization in the Mantle Source Region
6.3. Constraint on the Mantle Magma System
7. Conclusions
- (1)
- The tholeiitic basalts from the CZK06 drill core formed during the Pliocene-Early Pleistocene shield-forming stage, recording three phases of basaltic volcanism (Phases I to III). Geochemically classified as sodium-series volcanic rocks, these basalts exhibit clear affinities with EM1-type OIBs. Notably, their δ26Mg values (−0.420‰ to −0.150‰) span a substantially wider range relative to the N-MORB.
- (2)
- The compositions of these tholeiitic basalts are primarily controlled by source region characteristics and partial melting degree, with minor additional influences from fractional crystallization and crustal contamination. During magmatic differentiation, fractional crystallization of Ti-rich clinopyroxene, P-rich apatite, and plagioclase is notably prominent, showing a progressively intensifying trend from Phase I to III.
- (3)
- TCV tholeiitic basalts are primarily derived from the partial melting of pyroxenite with carbonatization. Integrated with Mg isotopic data, our results suggest that the pyroxenite originated from subducted ancient clay-rich AOC. The carbonate melts fueling the carbonatization were generated by low-pressure melting of recent oceanic sediments, which were transported by the deeply subducted carbonate-rich Pacific Plate within the MTZ. The tholeiitic magma formed in the LVZ at depths of 160–180 km beneath the lithospheric mantle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | Depleted Mantle |
EM | Enriched Mantle |
OIB | Ocean Island Basalt |
CAB | Continental Arc Basalt |
N-MORB | Normal Mid-Ocean Ridge Basalt |
PSSJ | Pacific Subducting Sediments along the Japan Trench |
TCV | Tianchi Volcano |
CMVF | Changbai Mountain Volcanic Field |
CMB | Changbai Mountain Basalt |
AOC | Altered Oceanic Crust |
MTZ | Mantle Transition Zone |
LVZ | Low Velocity Zone |
References
- Liu, J.; Han, J.; Fyfeb, W. Cenozic Episodic Volcanism and Continental Rifting in Northeast China and Possible Link Tojapan Sea Development as Revealed from K-ar Geochronology. Tectonophysics 2001, 339, 385–401. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Guo, Z.; Guo, W.; He, H.; You, H.; Kim, H.M.; Sung, G.; Him, H. Geological Background and Geodynamic Mechanism of Mt. Changbai Volcanoes on the China-korea Border. Lithos 2015, 236–237, 197–224. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y.; Lei, J.; Liu, L.; Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 2009, 173, 197–206. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Z.; Liu, J.; Liu, G.; Zhang, L.; Lei, M.; Zhao, W.; Ma, L.; Sepe, V.; Ventura, G. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Sci. Rev. 2018, 187, 19–52. [Google Scholar] [CrossRef]
- Guo, W.; Liu, J.; Guo, Z. Temporal variations and petrogenetic implications in Changbai basaltic rocks since the Pliocene. Acta Petrol. Sin. 2014, 30, 3595–3611. [Google Scholar]
- Yan, D.; Li, M.; Xu, Z.; Sun, L.; Ma, F.; Hna, D. Genesis and lts Tectonic Significance of Heishigou Basaltic lava Dyke in Tianchi Volcanic Area, Changbai Mountain. J. Jilin Univ. (Earth Sci. Ed.) 2023, 53, 904–919. [Google Scholar] [CrossRef]
- Fan, Q.; Sui, J.; Li, N.; Sun, Q.; Xu, Y. The Magmatism and Interactive Eruption of the Two Magma Chambers in the Tianchi Volcano, Changbaishan. Bull. Mineral. Petrol. Geochem. 2007, 26, 315–318. [Google Scholar]
- Basu, A.R.; Wang, J.; Huang, W.; Xie, G.; Tatsumoto, M. Major element, REE, and lead, neodymium, and strontium isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth Planet. Sci. Lett. 1991, 105, 149–169. [Google Scholar] [CrossRef]
- Tang, Y.; Obayashi, M.; Niu, F.; Grand, S.P.; Chen, Y.J.; Kawakatsu, H.; Tanaka, S.; Ning, J.; Ni, J.F. Changbaishan Volcanism in Northeast China Linked to Subduction-induced Mantle Upwelling. Nat. Geosci. 2014, 7, 470–475. [Google Scholar] [CrossRef]
- Choi, H.O.; Choi, S.H.; Lee, Y.S.; Ryu, J.S.; Lee, D.C.; Lee, S.G.; Sohne, Y.K.; Liu, J. Petrogenesis and Mantle Source Characteristics of the Late Cenozoic Baekdusan (changbaishan) Basalts. Gondwana Res. 2020, 78, 156–171. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Q.; Sun, L.; He, J.; Gao, Z. Crustal and Lithospheric Structure of Northeast China from S-wave Receiver Functions. Earth Planet. Sci. Lett. 2014, 401, 196–205. [Google Scholar] [CrossRef]
- Kim, S.; Tkalčić, H.; Rhie, J. Seismic Constraints on Magma Evolution Beneath Mount Baekdu (changbai) Volcano from Transdimensional Bayesian Inversion of Ambient Noise Data. J. Geophys. Res. Solid Earth 2017, 122, 5452–5473. [Google Scholar] [CrossRef]
- Song, J.; Hetland, E.A.; Wu, F.T.; Zhang, X.; Liu, G.; Yang, Z. P-wave Velocity Structure Under the Changbaishan Volcanic Region, NE China. Tectonophysics 2007, 433, 127–139. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Jin, J.; Gao, L.; Yun, S.H.; Jin, B. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos 2007, 96, 315–324. [Google Scholar] [CrossRef]
- Tian, H.C.; Yang, W.; Li, S.G.; Ke, S.; Chu, Z.Y. Origin of Low δ26mg Basalts with Em-i Component: Evidence for Interaction Between Enriched Lithosphere and Carbonated Asthenosphere. Geochim. Cosmochim. Acta 2016, 188, 93–105. [Google Scholar] [CrossRef]
- Teng, F.Z.; Li, W.Y.; Ke, S.; Marty, B.; Pourmand, A. Magnesium isotopic composition of the earth and chondrites. Geochim. Cosmochim. Acta 2010, 74, 4150–4166. [Google Scholar] [CrossRef]
- Galy, A.; Yoffe, O.; Janney, P.E.; Williams, R.W.; Cloquet, C.; Alard, O. Magnesium isotope heterogeneity of the isotopic stardard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J. Anal. At. Spectrom. 2003, 18, 1352–1356. [Google Scholar] [CrossRef]
- An, Y.; Wu, F.; Xiang, Y.; Nan, X.; Yu, X.; Yang, J.; Yu, H.; Xie, L.; Huang, F. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chem. Geol. 2014, 390, 9–21. [Google Scholar] [CrossRef]
- Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974, 274, 321–355. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Niu, Y. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin. Sci. Bull. 2009, 55, 103–114. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Special Publications; Volume 42, pp. 314–353. [Google Scholar]
- Dong, Y.; Xiong, S.; Wang, F.; Ji, Z.; Li, Y.B.; Yamamoto, S.; Niida, K.; Xu, W.L. Triggering of episodic back-arc extensions in the northeast Asian continental margin by deep mantle flow. Geology 2023, 51, 193–198. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Z.; Cheng, Z.; Zhang, L.; Liu, J. Late Cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: Insights into deep subduction of the Pacific slab and intraplate volcanism. J. Geol. Soc. 2015, 172, 384–399. [Google Scholar] [CrossRef]
- Li, S. Tracing deep carbon recycling by Mg isotopes. Earth Sci. Front. 2015, 22, 143–159. [Google Scholar] [CrossRef]
- Young, E.; Galy, A. The Isotope Geochemistry and Cosmochemistry of Magnesium. Mineral. Soc. Am. 2004, 55, 197–230. [Google Scholar] [CrossRef]
- Teng, F. Magnesium Isotope Geochemistry. Rev. Mineral. Geochem. 2017, 82, 219–287. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, L.H.; Wang, X.J.; Zhang, G.L.; Xie, L.W.; Zeng, G. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet. Sci. 2017, 463, 127–135. [Google Scholar] [CrossRef]
- Treuil, M.; Joron, J.L. Utilisation des elements hygromagmatophiles pour la simplifications de la modelisation quantitative des precessus magmatiques. Soc. Ital. Mineral. Petrol. 1975, 31, 125–174. [Google Scholar]
- Allègre, C.J.; Minster, J.F. Quantitative models of trace element behavior in magmatic processes. Dev. Petrol. 1978, 5, 1–25. [Google Scholar] [CrossRef]
- Gao, S.; Luo, T.; Zhang, B.; Zhang, H.; Han, Y.; Zhao, Z.; Kem, H. Structure and composition of the continental crust in East China. Sci. China 1999, 42, 129–140. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Q.; Pan, X.; Wu, C.; Chen, C. Origin of Early Pleistocene basaltic lavas in the Erdaobaihe River basin, Changbaishan region. Acta Petrol. Sin. 2015, 31, 3484–3494. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Kuritani, T.; Ohtani, E.; Kimura, J. Intensive Hydration of the Mantle Transition Zone Beneath China Caused By Ancient Slab Stagnation. Nat. Geosci. 2011, 4, 713–716. [Google Scholar] [CrossRef]
- Cui, X.G.; Xu, J.D.; Yu, H.M.; Zhao, B.; Yang, W.J.; Wei, F.X. Contribution of Recycled Sediments to the Mantle Reservoir Beneath Hainan Island: Evidence from Sr, Nd, Pb, Hf, and Mg Isotopic Analyses of Late Cenozoic Basalts. Geochemistry 2022, 82, 125883. [Google Scholar] [CrossRef]
- Chung, S.L. Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China. J. Geol. 1999, 107, 301–312. [Google Scholar] [CrossRef]
- Yang, Z.F.; Zhou, J.H. Can we identify source lithology of basalt? Sci. Rep. 2013, 3, 1856. [Google Scholar] [CrossRef]
- Liu, S.A.; Teng, F.Z.; He, Y.; Ke, S.; Li, S. Investigation of Magnesium Isotope Fractionation During Granite Differentiation: Implication for Mg Isotopic Composition of the Continental Crust. Earth Planet. Sci. Lett. 2010, 297, 646–654. [Google Scholar] [CrossRef]
- Liu, X.M.; Teng, F.Z.; Rudnick, R.L.; McDonough, W.F.; Cummings, M.L. Massive Magnesium Depletion and Isotope Fractionation in Weathered Basalts. Geochim. Cosmochim. Acta 2014, 135, 336–349. [Google Scholar] [CrossRef]
- Teng, F.Z.; Hu, Y.; Chauvel, C. Magnesium Isotope Geochemistry in Arc Volcanism. Proc. Natl. Acad. Sci. USA 2016, 113, 7082–7087. [Google Scholar] [CrossRef]
- Sedaghatpour, F.; Teng, F.Z.; Liu, Y.; Sears, D.W.G.; Taylor, L.A. Magnesium Isotopic Composition of the Moon. Geochim. Cosmochim. Acta 2013, 120, 1–16. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef]
- Herzberg, C. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. J. Petrol. 2011, 52, 113–146. [Google Scholar] [CrossRef]
- Huang, J.; Li, S.G.; Xiao, Y.; Ke, S.; Li, W.Y.; Tian, Y. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim. Osmochimica Acta 2015, 164, 298–317. [Google Scholar] [CrossRef]
- Wang, X.J.; Chen, L.H.; Hofmann, A.W.; Mao, F.G.; Liu, J.Q.; Zhong, Y.; Xie, L.W.; Yang, Y.H. Mantle Transition Zone-derived EM1 Component Beneath NE China: Geochemical Evidence from Cenozoic Potassic Basalts. Earth Planet. Sci. Lett. 2017, 465, 16–28. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, L.H.; Hofmann, A.W.; Wang, X.J.; Liu, J.Q.; Yu, X.; Xie, L.W. Nephelinites in Eastern China Originating from the Mantle Transition Zone. Chem. Geol. 2021, 576, 120276. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zeng, G.; Chen, L.H.; Liu, J.Q.; Yu, J.H.; Xu, X.S. Evaluation of CO2 concentration in a carbonated eclogite mantle source: A new attempt based on the compositions of olivine phenocrysts. Lithos 2024, 482–483, 107669. [Google Scholar] [CrossRef]
- Thomson, A.R.; Walter, M.J.; Kohn, S.C.; Brooker, R.A. Slab melting as a barrier to deep carbon subduction. Nature 2016, 529, 76–79. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, L.H.; Xu, X.S.; Jiang, S.Y.; Hofmann, A.W. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem. Geol. 2010, 273, 35–45. [Google Scholar] [CrossRef]
- Daniele, G.; Schmidt, M.W. The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 2011, 52, 765–789. [Google Scholar] [CrossRef]
- Lei, J.S.; Zhao, D.P. The relationship between the origin of the intraplte changbai volcano and the subducting pacific slab. Adv. Earth Sci. 2004, 19, 364–367. [Google Scholar] [CrossRef]
- Kinzler, R.J. Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-ocean Ridge Basalt Petrogenesis. J. Geophys. Res. Solid Earth 1997, 102, 853–874. [Google Scholar] [CrossRef]
- Putirka, K. Melting Depths and Mantle Heterogeneity Beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and Rare Earth Element Ratios. J. Geophys. Res. Solid Earth 1999, 104, 2817–2829. [Google Scholar] [CrossRef]
- Xu, Y.G.; Ma, J.L.; Frey, F.A.; Feigenson, M.D.; Liu, J.F. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem. Geol. 2005, 224, 247–271. [Google Scholar] [CrossRef]
Sample | CZK06-16 | CZK06-18 | CZK06-21 | CZK06-24 | CZK06-26 | CZK06-27 | CZK06-32 | CZK06-35 | CZK06-38 | CZK06-39 |
---|---|---|---|---|---|---|---|---|---|---|
Phase | III | III | III | III | III | II | II | II | II | II |
Major elements (wt. %) | ||||||||||
SiO2 | 51.7 | 50.6 | 49.8 | 51.7 | 51.3 | 50.4 | 58.5 | 53.9 | 50.9 | 52.0 |
Al2O3 | 15.7 | 15.5 | 15.3 | 16.6 | 15.6 | 14.8 | 14.5 | 15.3 | 15.2 | 15.5 |
Fe2O3 | 3.5 | 3.2 | 2.9 | 3.0 | 4.6 | 8.1 | 1.6 | 3.1 | 2.0 | 2.8 |
FeO | 7.5 | 8.0 | 9.2 | 7.1 | 6.3 | 3.7 | 6.1 | 5.2 | 8.1 | 7.6 |
CaO | 7.9 | 8.2 | 8.3 | 8.1 | 7.7 | 7.7 | 5.7 | 6.9 | 8.0 | 7.5 |
MgO | 4.9 | 5.4 | 5.3 | 4.9 | 5.1 | 3.8 | 4.9 | 4.1 | 5.8 | 4.5 |
K2O | 1.5 | 1.3 | 1.2 | 1.3 | 1.5 | 1.4 | 2.1 | 1.8 | 0.9 | 1.6 |
Na2O | 3.5 | 3.5 | 3.5 | 3.9 | 3.7 | 3.5 | 3.5 | 3.6 | 3.5 | 3.7 |
TiO2 | 2.5 | 2.6 | 2.7 | 2.2 | 2.6 | 2.8 | 1.5 | 2.1 | 1.9 | 2.5 |
P2O5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.5 | 0.6 | 0.2 | 0.5 | 0.3 | 0.4 |
MnO | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 |
LOI | 0.3 | −0.2 | −0.4 | −0.4 | 0.5 | 2.2 | 1.1 | 2.9 | 2.0 | 0.9 |
SUM | 99.6 | 98.7 | 98.5 | 99 | 99.6 | 99.2 | 99.8 | 99.4 | 98.6 | 99.2 |
FeOT | 10.6 | 10.9 | 11.8 | 9.8 | 10.5 | 11.0 | 7.5 | 8.0 | 9.9 | 10.1 |
Mg# | 45.2 | 46.8 | 44.3 | 47.1 | 46.5 | 38.1 | 54.0 | 48.0 | 51.0 | 44.3 |
K2O/Na2O | 0.4 | 0.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.6 | 0.5 | 0.3 | 0.4 |
Na2O + K2O | 5.0 | 4.8 | 4.7 | 5.2 | 5.2 | 4.9 | 5.7 | 5.4 | 4.4 | 5.3 |
FeOT/MgO | 2.2 | 2.0 | 2.2 | 2.0 | 2.1 | 2.9 | 1.5 | 1.9 | 1.7 | 2.2 |
σ | 2.8 | 2.9 | 3.1 | 3.0 | 3.1 | 2.8 | 2.0 | 2.5 | 2.1 | 2.9 |
A.R. | 1.54 | 1.51 | 1.50 | 1.53 | 1.57 | 1.56 | 1.78 | 1.65 | 1.46 | 1.59 |
DI | 41.1 | 38.1 | 37.2 | 41.1 | 42.7 | 44.6 | 52.4 | 49.9 | 36.7 | 43.6 |
Ca/Al (mol) | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 |
FC3MS | 1.1 | 1.0 | 1.1 | 0.9 | 1.1 | 1.2 | 1.1 | 0.9 | 0.9 | 1.1 |
CIPW norm | ||||||||||
Qz | 2.4 | 0.3 | 0 | 0.3 | 2.6 | 5.2 | 9.4 | 7.2 | 0.9 | 2.4 |
An | 22.8 | 22.8 | 22.7 | 24.2 | 21.9 | 21.1 | 17.7 | 20.8 | 24 | 21.5 |
Ab | 29.7 | 30.1 | 30 | 32.8 | 31.4 | 31 | 30.2 | 31.8 | 30.3 | 31.8 |
Or | 9 | 7.8 | 7.2 | 8 | 8.9 | 8.4 | 12.8 | 11 | 5.4 | 9.4 |
Af | 13.9 | 12.2 | 11.4 | 12.6 | 14.3 | 13.6 | 20.8 | 17.6 | 8.5 | 15.2 |
Pl | 47.6 | 48.6 | 48.5 | 52.4 | 47.9 | 46.9 | 39.9 | 45.9 | 51.3 | 47.6 |
Nph | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Di | 11.3 | 13 | 13 | 11 | 9.6 | 11.5 | 8.2 | 9.2 | 12.4 | 11 |
Hy | 14 | 15.4 | 14.4 | 14.1 | 12.7 | 9.1 | 16.2 | 10.3 | 19.4 | 14 |
Ol | 0 | 0 | 2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Il | 4.8 | 5.1 | 5.2 | 4.2 | 4.9 | 5.6 | 2.8 | 4 | 3.8 | 4.9 |
Mt | 5 | 4.7 | 4.2 | 4.4 | 6.4 | 6.7 | 2.3 | 4.6 | 3 | 4.1 |
Ap | 1 | 0.9 | 1.2 | 1 | 0.6 | 1.5 | 0.4 | 1.2 | 0.8 | 1.1 |
Sample | CZK06-40 | CZK06-44 | CZK06-46 | CZK06-49 | CZK06-50 | CZK06-53 | CZK06-55 | CZK06-56 | CZK06-60 | |
Phase | II | II | II | I | I | I | I | I | I | |
Major elements (wt. %) | ||||||||||
SiO2 | 52.5 | 48.9 | 51.1 | 54.5 | 54.7 | 55.8 | 55.7 | 50.5 | 50.4 | |
Al2O3 | 15.2 | 14.6 | 14.3 | 14.7 | 14.8 | 14.7 | 14.5 | 14.5 | 14.7 | |
Fe2O3 | 2.5 | 2.6 | 4.2 | 2.4 | 1.9 | 3.6 | 3.6 | 4.0 | 4.0 | |
FeO | 8.0 | 8.6 | 7.8 | 6.7 | 7.1 | 6.2 | 6.6 | 7.7 | 7.5 | |
CaO | 7.3 | 8.7 | 7.3 | 6.3 | 6.0 | 6.6 | 6.4 | 7.7 | 7.8 | |
MgO | 4.4 | 4.9 | 3.9 | 4.3 | 4.1 | 3.9 | 4.3 | 5.8 | 5.7 | |
K2O | 1.7 | 1.6 | 1.7 | 2.0 | 1.9 | 1.6 | 1.6 | 1.0 | 1.0 | |
Na2O | 3.7 | 3.3 | 3.5 | 3.5 | 3.8 | 3.5 | 3.6 | 3.3 | 3.4 | |
TiO2 | 2.6 | 2.6 | 3.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.3 | 2.3 | |
P2O5 | 0.5 | 0.6 | 0.7 | 0.5 | 0.5 | 0.5 | 0.5 | 0.9 | 0.9 | |
MnO | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | |
LOI | 0.6 | 3.0 | 1.6 | 1.7 | 2.0 | 0.7 | 0.3 | 1.3 | 1.3 | |
SUM | 99.2 | 99.4 | 99.2 | 98.9 | 99 | 99.2 | 99.2 | 99.2 | 99.2 | |
FeOT | 10.2 | 10.9 | 11.6 | 8.9 | 8.9 | 9.5 | 9.9 | 11.3 | 11.1 | |
Mg# | 43.5 | 44.5 | 37.3 | 46.1 | 45.3 | 42.6 | 43.7 | 47.7 | 47.6 | |
K2O/Na2O | 0.5 | 0.5 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.3 | 0.3 | |
Na2O + K2O | 5.5 | 4.9 | 5.2 | 5.5 | 5.7 | 5.1 | 5.2 | 4.4 | 4.4 | |
FeOT/MgO | 2.3 | 2.2 | 3.0 | 2.1 | 2.1 | 2.4 | 2.3 | 2.0 | 2.0 | |
σ | 3.0 | 3.3 | 3.1 | 2.5 | 2.6 | 1.9 | 2.1 | 2.3 | 2.4 | |
A.R. | 1.64 | 1.53 | 1.64 | 1.71 | 1.75 | 1.62 | 1.66 | 1.49 | 1.48 | |
DI | 44.7 | 38.7 | 45.7 | 49.6 | 50.6 | 50.1 | 49.7 | 38.7 | 38.7 | |
Ca/Al (mol) | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | |
FC3MS | 1.1 | 1.0 | 1.4 | 1.2 | 1.2 | 1.2 | 1.3 | 1.1 | 1.1 | |
CIPW norm | ||||||||||
Qz | 2.3 | 0 | 4.8 | 6.7 | 6 | 10.8 | 9.3 | 3.8 | 3.4 | |
An | 20 | 20.9 | 18.6 | 18.9 | 18.3 | 20.1 | 18.8 | 21.9 | 22.5 | |
Ab | 32 | 29 | 30.5 | 30.7 | 32.8 | 29.9 | 31.1 | 28.7 | 29.1 | |
Or | 10.3 | 9.7 | 10.4 | 12.2 | 11.8 | 9.4 | 9.3 | 6.2 | 6.2 | |
Af | 16.9 | 15.2 | 17 | 19.6 | 19.7 | 15.1 | 15.5 | 9.8 | 9.8 | |
Pl | 45.5 | 44.4 | 42.4 | 42.1 | 43.1 | 44.3 | 43.7 | 47.1 | 48 | |
Nph | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Di | 11.2 | 16.3 | 11.6 | 8.3 | 7.7 | 8.1 | 8.4 | 9 | 9.2 | |
Hy | 14.3 | 11.1 | 10.6 | 14.4 | 15.4 | 11.3 | 12.8 | 17.8 | 17.1 | |
Ol | 0 | 2.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Il | 5 | 5.1 | 5.8 | 4.1 | 4 | 4.1 | 4 | 4.5 | 4.5 | |
Mt | 3.7 | 3.9 | 6.3 | 3.6 | 2.9 | 5.4 | 5.3 | 6 | 6 | |
Ap | 1.1 | 1.4 | 1.7 | 1.2 | 1.2 | 1.1 | 1.1 | 2.2 | 2.2 |
Sample | CZK06-16 | CZK06-18 | CZK06-21 | CZK06-24 | CZK06-26 | CZK06-27 | CZK06-32 | CZK06-35 | CZK06-38 | CZK06-39 |
---|---|---|---|---|---|---|---|---|---|---|
Phase | III | III | III | III | III | II | II | II | II | II |
Y | 24.8 | 22.9 | 23.4 | 22.3 | 19 | 22.2 | 18 | 21.8 | 19.2 | 28.3 |
La | 24 | 20.5 | 18.5 | 20.6 | 18.1 | 29.5 | 21.2 | 22.8 | 13.2 | 21.9 |
Ce | 49.5 | 43.2 | 40.8 | 43.2 | 38.7 | 62.2 | 42.9 | 49.2 | 28.5 | 47.6 |
Pr | 6.4 | 5.5 | 5.5 | 5.6 | 4.8 | 8 | 5.3 | 6.5 | 3.9 | 6.2 |
Nd | 28.1 | 23.8 | 24.1 | 23.8 | 19 | 35.1 | 21.4 | 27.9 | 16.9 | 26.7 |
Sm | 7.6 | 6.6 | 6.8 | 6.7 | 5.3 | 9.1 | 5.9 | 7.3 | 4.9 | 7.2 |
Eu | 2.5 | 2.4 | 2.6 | 2.4 | 1.9 | 2.7 | 1.5 | 2.9 | 1.7 | 2.4 |
Gd | 6.9 | 6.2 | 6.6 | 6.1 | 5 | 7.4 | 5.1 | 6.7 | 4.9 | 7 |
Tb | 1 | 0.9 | 1 | 0.9 | 0.7 | 1.1 | 0.8 | 1 | 0.8 | 1.1 |
Dy | 5.4 | 4.8 | 5.2 | 4.7 | 4 | 5.8 | 4.3 | 5.2 | 4.1 | 5.9 |
Ho | 1 | 0.9 | 0.9 | 0.9 | 0.7 | 1.1 | 0.8 | 0.9 | 0.8 | 1.1 |
Er | 2.4 | 2.2 | 2.3 | 2.1 | 1.8 | 2.8 | 2.1 | 2.3 | 1.9 | 2.8 |
Tm | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 |
Yb | 2 | 1.8 | 1.9 | 1.8 | 1.8 | 2.7 | 2.3 | 2 | 1.7 | 2.6 |
Lu | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 |
Be | 1.2 | 1.1 | 1 | 1.1 | 1.2 | 1.1 | 1.3 | 1.1 | 1 | 1.9 |
Cr | 112 | 146 | 75 | 116 | 96 | 26 | 116 | 80 | 98 | 35 |
Rb | 34 | 30 | 25 | 29 | 33 | 25 | 48 | 26 | 21 | 49 |
Sr | 525 | 539 | 523 | 591 | 504 | 404 | 243 | 409 | 429 | 496 |
Zr | 193 | 169 | 159 | 173 | 281 | 194 | 209 | 193 | 114 | 182 |
Nb | 25 | 23 | 19 | 22 | 47 | 26 | 12 | 18 | 15 | 28 |
Ba | 569 | 505 | 518 | 558 | 683 | 663 | 467 | 886 | 327 | 524 |
Hf | 5.9 | 5.1 | 4.9 | 5.1 | 9.1 | 6.1 | 6.8 | 5.7 | 3.7 | 5.9 |
Ta | 1.7 | 1.5 | 1.3 | 1.4 | 2.8 | 2 | 1 | 1.2 | 0.9 | 1.9 |
Th | 3.3 | 2.6 | 2.3 | 2.4 | 2.4 | 4 | 5.7 | 2.8 | 1.9 | 4.5 |
U | 0.6 | 0.5 | 0.4 | 0.5 | 0.7 | 0.7 | 1.2 | 0.5 | 0.4 | 0.9 |
Pb | 5 | 2.6 | 3.8 | 2.4 | 5.8 | 4.2 | 5.9 | 3.5 | 2.2 | 4.6 |
Cs | 0.5 | 0.4 | 0.3 | 0.2 | 1.4 | 0.8 | 1 | 0.4 | 0.3 | 0.9 |
Sn | 17.7 | 1.8 | 1.5 | 1.5 | 9.2 | 2.4 | 2 | 2.8 | 1.2 | 2.3 |
ΣREE | 138 | 119 | 117 | 120 | 103 | 168 | 114 | 135 | 84 | 133 |
ΣLREE | 118 | 102 | 98 | 102 | 88 | 146 | 98 | 117 | 69 | 112 |
ΣHREE | 19 | 17 | 19 | 17 | 15 | 22 | 16 | 19 | 15 | 21 |
L/H | 6.1 | 5.9 | 5.3 | 6 | 6 | 6.8 | 6.1 | 6.2 | 4.7 | 5.3 |
LaN/YbN | 8.4 | 8.3 | 6.8 | 8.3 | 7.1 | 7.8 | 6.7 | 8.2 | 5.5 | 6.2 |
LaN/SmN | 2 | 2 | 1.8 | 2 | 2.2 | 2.1 | 2.3 | 2 | 1.7 | 2 |
TbN/YbN | 2.3 | 2.4 | 2.3 | 2.3 | 1.9 | 1.8 | 1.6 | 2.3 | 2 | 1.9 |
δEu | 1.1 | 1.1 | 1.2 | 1.1 | 1.1 | 1 | 0.8 | 1.2 | 1.1 | 1 |
δCe | 0.96 | 0.98 | 0.98 | 0.97 | 1.00 | 0.98 | 0.97 | 0.98 | 0.97 | 0.99 |
Hf/Hf* | 1 | 1 | 1 | 1 | 2.3 | 0.9 | 1.5 | 1 | 1 | 1.1 |
Ti/Ti* | 0.9 | 1.1 | 1 | 0.9 | 1.3 | 0.9 | 0.7 | 0.8 | 1 | 0.9 |
Sample | CZK06-40 | CZK06-44 | CZK06-46 | CZK06-49 | CZK06-50 | CZK06-53 | CZK06-55 | CZK06-56 | CZK06-60 | |
Phase | II | II | II | I | I | I | I | I | I | |
Y | 30.4 | 23.7 | 28.1 | 29.2 | 30.7 | 29.5 | 26.9 | 21.4 | 24 | |
La | 23 | 21.4 | 23.8 | 25.3 | 25.2 | 21.2 | 22.2 | 23.6 | 23.3 | |
Ce | 49.7 | 47.8 | 52.9 | 55.6 | 56.3 | 47.8 | 49.3 | 52.2 | 51.2 | |
Pr | 6.5 | 6.3 | 7.1 | 7.5 | 7.5 | 6.6 | 6.7 | 7.2 | 7 | |
Nd | 28.5 | 26.7 | 28.3 | 30.8 | 32.1 | 29.7 | 30.3 | 30.9 | 32.4 | |
Sm | 7.5 | 6.9 | 8.5 | 8.8 | 8.8 | 8.5 | 8.7 | 8.9 | 9 | |
Eu | 2.5 | 2.7 | 3.5 | 2.8 | 2.8 | 2.7 | 2.6 | 3.8 | 3.9 | |
Gd | 7.4 | 6.7 | 8.2 | 8.2 | 8.3 | 8.1 | 7.7 | 7.5 | 7.8 | |
Tb | 1.2 | 1 | 1.2 | 1.2 | 1.3 | 1.2 | 1.2 | 1.1 | 1.1 | |
Dy | 6.3 | 5.1 | 6.3 | 6.4 | 6.5 | 6.6 | 6.4 | 5.5 | 5.6 | |
Ho | 1.2 | 1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1 | 1 | |
Er | 3 | 2.4 | 2.9 | 3 | 3 | 3 | 3 | 2.4 | 2.4 | |
Tm | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | |
Yb | 2.7 | 2.1 | 2.6 | 2.7 | 2.8 | 2.8 | 3 | 2.3 | 2.2 | |
Lu | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | |
Be | 2.2 | 1 | 1.1 | 1.7 | 1.7 | 1.4 | 1.5 | 0.9 | 0.9 | |
Cr | 44 | 45 | 43 | 110 | 119 | 77 | 71 | 77 | 99 | |
Rb | 61 | 28 | 29 | 42 | 42 | 35 | 32 | 15 | 18 | |
Sr | 498 | 546 | 446 | 419 | 427 | 334 | 287 | 422 | 485 | |
Zr | 190 | 197 | 214 | 269 | 272 | 239 | 235 | 150 | 153 | |
Nb | 31 | 21 | 20 | 23 | 23 | 19 | 19 | 20 | 19 | |
Ba | 535 | 683 | 932 | 683 | 682 | 550 | 543 | 859 | 851 | |
Hf | 6.2 | 5.7 | 6.6 | 7.9 | 8.1 | 7.3 | 7.2 | 4.6 | 4.7 | |
Ta | 2.1 | 1.3 | 1.2 | 1.6 | 1.4 | 1.2 | 1.4 | 1.3 | 1.2 | |
Th | 5.4 | 2.1 | 2.6 | 3.3 | 3.4 | 2.7 | 2.9 | 2.6 | 2.5 | |
U | 1.1 | 0.4 | 0.5 | 0.7 | 0.7 | 0.5 | 0.6 | 0.4 | 0.4 | |
Pb | 5.3 | 2.5 | 4.8 | 4.7 | 5.3 | 3.6 | 4.3 | 2.4 | 2.9 | |
Cs | 1.2 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | |
Sn | 2.8 | 1.3 | 1 | 2.8 | 2.9 | 2.5 | 4.3 | 1.5 | 26.4 | |
ΣREE | 140 | 131 | 147 | 154 | 156 | 140 | 143 | 147 | 148 | |
ΣLREE | 118 | 112 | 124 | 131 | 133 | 117 | 120 | 127 | 127 | |
ΣHREE | 23 | 19 | 23 | 23 | 24 | 24 | 23 | 20 | 21 | |
L/H | 5.2 | 5.9 | 5.4 | 5.6 | 5.6 | 4.9 | 5.1 | 6.2 | 6.1 | |
LaN/YbN | 6.1 | 7.4 | 6.6 | 6.7 | 6.6 | 5.4 | 5.3 | 7.5 | 7.7 | |
LaN/SmN | 2 | 2 | 1.8 | 1.9 | 1.9 | 1.6 | 1.6 | 1.7 | 1.7 | |
TbN/YbN | 2 | 2.1 | 2.2 | 2.1 | 2.1 | 2 | 1.8 | 2.2 | 2.3 | |
δEu | 1 | 1.2 | 1.3 | 1 | 1 | 1 | 0.9 | 1.4 | 1.4 | |
δCe | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.97 | 0.97 | |
Hf/Hf* | 1.1 | 1 | 1.1 | 1.2 | 1.2 | 1.2 | 1.1 | 0.7 | 0.7 | |
Ti/Ti* | 0.9 | 1 | 0.9 | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | 0.7 |
Sample No. | Phase | δ26Mg | ±2σ | δ25Mg | ±2σ |
---|---|---|---|---|---|
CZK06-16 | III | −0.267 | 0.046 | −0.138 | 0.037 |
CZK06-26 | III | −0.150 | 0.025 | −0.078 | 0.029 |
CZK06-32 | II | −0.243 | 0.038 | −0.127 | 0.036 |
CZK06-38 | II | −0.420 | 0.012 | −0.216 | 0.019 |
CZK06-46 | II | −0.344 | 0.010 | −0.175 | 0.039 |
CZK06-55 | I | −0.223 | 0.034 | −0.116 | 0.047 |
CZK06-60 | I | −0.212 | 0.003 | −0.110 | 0.009 |
Replicate | I | −0.173 | 0.017 | −0.091 | 0.050 |
BCR-2 | USGS standard materials | −0.154 | 0.019 | −0.080 | 0.030 |
BHVO-2 | −0.230 | 0.019 | −0.118 | 0.010 | |
BS Mg | Quality control sample during testing | δ25MgDSM3‰ = −1.069 ± 0.027 (2SD, n = 10) | |||
δ26MgDSM3‰ = −2.074 ± 0.057 (2SD, n = 10) |
Sample | Texture and Structure | Matrix | Phenocryst | Episode |
---|---|---|---|---|
CZK06-16 | porphyritic, vesicular (8%–10%) | intersertal, Pl (0.1–0.35 mm, major) + Px (microcrystal, few) + Ol (microcrystal, few) + Vit (few) | Pl (0.4–0.6 mm, 10%), Ol (0.3–1.2 mm, 3%–4%), Cpx (0.4–0.8 mm, 2%) | Phase III |
CZK06-18 | porphyritic, vesicular (6%–8%) | pilotaxitic-intergranular, Pl (0.3–0.7 mm, An = 43, major) + Cpx (0.03–0.45 mm, 30%–35%) + Ol (0.05–0.12 mm, 2%–3%) + Mm | Pl (0.5–6.0 mm, 10%), Ol (0.4–1.0 mm, 3%–4%) | |
CZK06-21 | porphyritic, massive | intergranular, Pl (0.3–0.7 mm, major) + Cpx (0.3–1.0 mm, 25%–30%) + Ol (0.03–0.1 mm, 5%) | Pl (1.0–5.0 mm, 20%), Ol (0.6–1.2 mm, 2%–3%) | |
CZK06-24 | porphyritic, vesicular (2%–3%) | intergranular, Pl (0.3–0.8 mm, major) + Cpx (0.5–1.8 mm, 20%) + Ol (0.1–0.35 mm, 7%–8%) + Mm (few) | Pl (1.0–4.6 mm, 10%–15%), Ol (<1%) | |
CZK06-26 | porphyritic, massive | intergranular, Pl (0.4–1.2 mm, major) + Cpx (0.3–0.6 mm, 10%) + Ol (0.1–0.3 mm, 5%) + Mm (0.1–0.3 mm, 3%–4%) | Pl (1.0–4.0 mm, An = 62, 10%–12%), Ol (<1%) | |
CZK06-27 | porphyritic, vesicular and amygdaloidal (2%–3%) | intergranular, Pl (0.08–0.15 mm, major) + Dm + Cry + Vit | Pl (0.6–3.6 mm, 7%–8%), Cpx (<1%) | Phase II |
CZK06-32 | few-porphyritic, vesicular and amygdaloidal (3%–4%) | intersertal, Pl (0.04–0.18 mm, major) + Px (microcrystal, 15%) + Vit | Pl (<1%), Cpx (0.4–2.0 mm, 2%–3%) | |
CZK06-35 | porphyritic, vesicular and amygdaloidal (5%–6%) | intersertal, Pl (0.1–0.3 mm, major) + Px (microcrystal, 15%) + Vit | Pl (0.6–0.8 mm, 3%–5%), Cpx (<1%) | |
CZK06-38 | porphyritic, vesicular and amygdaloidal (3%–4%) | intergranular, Pl (0.08–0.35 mm, major) + Px (<0.15 mm, 15%) + Ol (0.08–0.15 mm, 2%) | Pl (0.4–1.2 mm, 4%–5%), Cpx (0.5–1.2 mm, 1%–2%) | |
CZK06-39 | porphyritic, amygdaloidal (3%–4%) | intergranular, Pl (0.1–0.45 mm, major) + Px (<0.1 mm, 4%) + Ol (<0.1 mm, 6%) + Mm (few) | Pl (0.4–4.4 mm, 8%–10%) | |
CZK06-40 | porphyritic, massive | pilotaxitic-intergranular Pl (0.1–0.2 mm, major) + Px (<0.1 mm, 8%) + Ol (few) + Mm (few) | Pl (0.4–10.0 mm, 10%), Cpx (0.4–3.0 mm, 2%) | |
CZK06-44 | porphyritic, vesicular and amygdaloidal (4%–5%) | pilotaxitic-intergranular, Pl (0.1–0.5 mm, major) + Ol (0.05–0.2 mm, 2%–3%) + Vit | Pl (0.6–1.4 mm, 3%–4%), Cpx (1.0–1.2 mm, 2%) | |
CZK06-46 | few-porphyritic, vesicular (2%–3%) | intersertal, Pl (0.05–0.15 mm, major) +Dm + Mm + Vit | Pl (0.6–1.6 mm, 2%–3%) | |
CZK06-49 | few-porphyritic, amygdaloidal (4%–5%) | intersertal, Pl (0.05–0.12 mm, major) + Px (microcrystal) + Mm + Vit | Pl (0.6–1.0 mm, 2%–3%), Cpx (0.6–1.4 mm, 2%–3%) | Phase I |
CZK06-50 | few-porphyritic, massive | intersertal, Pl (0.05–0.25 mm, major) + Dm + Mm + Vit | Pl (0.6–1.8 mm, 3%), Cpx (0.3–0.8 mm, 2%–3%) | |
CZK06-53 | porphyritic, vesicular (3%–4%) | intersertal, Pl (0.1–0.3 mm, major) + Px (microcrystal) + Mm + Vit | Pl (0.6–3.8 mm, 10%–15%), Cpx (0.4–1.2 mm, 3%) | |
CZK06-55 | porphyritic, massive | intersertal, Pl (0.08–0.35 mm, major) + Cpx (0.1–0.3 mm, 10%) + Mm + Vit (few) | Pl (0.6–3.2 mm, 8%–10%) | |
CZK06-56 | few-porphyritic, vesicular (8%–10%) | intersertal, Pl (0.1–0.4 mm, major) + Cpx (0.1–0.3 mm, 10%) + Ol (0.1–0.3 mm, 5%) + Mm (ilmenite, 0.05–0.45 mm, 2%–3%) + Vit | Pl (0.6–1.8 mm, 5%) | |
CZK06-60 | few-porphyritic, massive | intersertal, Pl (0.15–0.65 mm, major) + Cpx (0.05–0.2 mm, 10%) + Ol (0.1–0.2 mm, 3%–4%) + Mm (ilmenite, 0.1–0.35 mm, 2%–3%) + Vit | Pl (0.8–3.2 mm, 5%) |
Episode | (Nb/Th)N | (Ta/U)N | (Ce/Pb)N | (P/Nd)N | (Ti/Sm)N |
Phase III | 0.89–1.09 CZK06-26 is 2.36 | 1.40–1.59 CZK06-26 is 1.93 | 0.40–0.72 CZK06-26 is 0.27 | 0.93–1.26 CZK06-26 is 1.57 | 0.66–0.82 CZK06-26 is 0.99 |
Phase II | 0.68–1.18 CZK06-32 is 0.26 | 0.95–1.56 CZK06-32 is 0.45 | 0.37–0.77 CZK06-32 is 0.29 | 0.98–1.47 CZK06-32 is 0.46 | 0.58–0.80 CZK06-32 is 0.51 |
Phase I | 0.80–0.93 | 1.06–1.59 | 0.42–0.88 | 0.93–1.77 | 0.48–0.54 |
Total crust | 0.17 | 0.28 | 0.16 | 0.40 | 0.38 |
N-MORB | 2.31 | 1.44 | 1.00 | 1.00 | 0.99 |
E-MORB | 1.65 | 1.34 | 1.00 | 0.98 | 0.79 |
OIB | 1.43 | 1.36 | 1.00 | 1.00 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Ge, J.; Pan, B.; Tang, Z.; Jiang, B.; Cui, T.; Lu, L. Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border. Minerals 2025, 15, 949. https://doi.org/10.3390/min15090949
Qian C, Ge J, Pan B, Tang Z, Jiang B, Cui T, Lu L. Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border. Minerals. 2025; 15(9):949. https://doi.org/10.3390/min15090949
Chicago/Turabian StyleQian, Cheng, Jintao Ge, Bo Pan, Zhen Tang, Bin Jiang, Tianri Cui, and Lu Lu. 2025. "Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border" Minerals 15, no. 9: 949. https://doi.org/10.3390/min15090949
APA StyleQian, C., Ge, J., Pan, B., Tang, Z., Jiang, B., Cui, T., & Lu, L. (2025). Petrogenesis of Tholeiitic Basalts from CZK06 Drill Core on the Tianchi Volcano, China–North Korea Border. Minerals, 15(9), 949. https://doi.org/10.3390/min15090949