Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = thermodynamic behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6717 KiB  
Article
Structure Design by Knitting: Combined Wicking and Drying Behaviour in Single Jersey Fabrics Made from Polyester Yarns
by Leon Pauly, Lukas Maier, Sibylle Schmied, Ulrich Nieken and Götz T. Gresser
Fibers 2025, 13(8), 103; https://doi.org/10.3390/fib13080103 - 31 Jul 2025
Abstract
The kinetics of liquid transport in textiles are determined by the thermodynamic boundary conditions and the substrate’s structure. The knitting process offers a wide range of possibilities for modifying the fabric structure, making it ideal for high-performance garments and technical applications. Given the [...] Read more.
The kinetics of liquid transport in textiles are determined by the thermodynamic boundary conditions and the substrate’s structure. The knitting process offers a wide range of possibilities for modifying the fabric structure, making it ideal for high-performance garments and technical applications. Given the highly complex nature of textiles’ interaction with liquids, this paper investigates how fabric structure affects combined wicking and drying behaviour. This facilitates comprehension of the underlying transport processes on the yarn and fabric scale, which is important for understanding the behaviour of the material as a whole. The presented experiment combines analysis of wicking through radial liquid spread using imaging techniques and analysis of the drying process through gravimetric measurement of evaporation. Eight samples of single jersey knitted fabrics were produced using polyester yarns of different texturization and fibre diameters on flat and circular knitting machines. The fabrics demonstrate significantly different wicking behaviours depending on their structure. The fabric’s drying time and rate are directly linked to the macroscopic spread of the liquid. Large inter-yarn pores hinder liquid spread. For the lowest liquid saturations, the yarn structure plays a critical role. Using fine, dense yarns can hinder convective drying within the yarn. Textured yarns tend to exhibit higher specific drying rates. The results offer a comprehensive insight into the interplay between the fabric’s structure and its wicking and drying behaviour, which is crucial for the development of functional fabrics in the knitting process. Full article
Show Figures

Figure 1

36 pages, 6346 KiB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 151
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

19 pages, 2806 KiB  
Article
Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock
by Mohamed Anwar Ismail, Ibrahim Dubdub, Suleiman Mousa, Zaid Abdulhamid Alhulaybi Albin Zaid and Majdi Ameen Alfaiad
Polymers 2025, 17(13), 1799; https://doi.org/10.3390/polym17131799 - 27 Jun 2025
Viewed by 327
Abstract
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted [...] Read more.
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted at heating rates of 20–80 K min−1, displayed three distinct stages. These stages correspond to dehydration (330–460 K), hemicellulose/cellulose oxidation (420–590 K), and cellulose/lignin oxidation (540–710 K). Kinetic analysis using six model-free methods (Friedman (FR), Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY)) yielded activation energies (Ea) of 52–197 kJ mol−1, increasing with conversion (mean Ea ≈ 111 kJ mol−1). Coats–Redfern (CR) fitting confirmed a three-dimensional diffusion mechanism (D3, R2 > 0.99). Thermodynamic analysis revealed that the formation of the activated complex is endothermic, with activation enthalpy (ΔH) values of 45–285 kJ mol−1. The process was found to be non-spontaneous under the studied conditions, with Gibbs free energy (ΔG) values ranging from 83 to 182 kJ mol−1. With a high heating value (HHV) of 21.9 MJ kg−1 and favourable combustion kinetics, MP is a promising supplementary fuel for industrial biomass boilers. However, its high potassium oxide (K2O) content requires dedicated ash management strategies to mitigate slagging risks, a key consideration for its practical, large-scale application. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Figure 1

26 pages, 855 KiB  
Article
Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State
by Bethan L. Harris and Rémi Tailleux
Atmosphere 2025, 16(6), 700; https://doi.org/10.3390/atmos16060700 - 10 Jun 2025
Viewed by 901
Abstract
The concept of thermodynamic efficiency is central to the theoretical understanding of tropical cyclone intensity and intensification, but the issue has remained controversial owing to the existence of distinct and incompatible definitions. Physically, thermodynamic efficiency relates to the fraction of the surface enthalpy [...] Read more.
The concept of thermodynamic efficiency is central to the theoretical understanding of tropical cyclone intensity and intensification, but the issue has remained controversial owing to the existence of distinct and incompatible definitions. Physically, thermodynamic efficiency relates to the fraction of the surface enthalpy fluxes and diabatic processes that contributes to the generation of the potential energy available (APE) for conversions into kinetic energy, so that the main difficulty is how best to define APE. In this study, we revisit the available energetics of axisymmetric vortex motions by redefining APE relative to a non-resting reference state in gradient wind balance instead of a resting state. Our approach, which accounts for both diabatic and frictional effects, reveals that the choice of reference state significantly impacts the prediction of APE generation and its conversion to kinetic energy. By using idealised numerical experiments of axisymmetric tropical cyclone intensification, we demonstrate that the APE production estimated from a non-resting reference state is a much more accurate predictor of APE to KE conversion than those based on other choices of reference states such as initial, mean, and sorted profiles. These findings suggest that incorporating the balanced dynamical structure of tropical cyclones into APE-based theories could lead to improved potential intensity models, with implications for forecasting and understanding cyclone behaviour. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

18 pages, 6982 KiB  
Article
Digital Twins: A Solution Under the Standard k-ε Model in Industrial CFD, to Predict Ideal Conditions in a Sugar Dryer
by Verónica Guerrero-Hernández, Guillermo Reyes-Morales, Violeta Alejandra Bastián Lima, Jorge Ortega-Moody, Quelbis Román Quintero Bertel, Gerardo Aguila Rodríguez, Blanca Estela González Sánchez, Claudia Ceballos-Díaz and Luis Carlos Sandoval Herazo
Fluids 2025, 10(6), 146; https://doi.org/10.3390/fluids10060146 - 1 Jun 2025
Viewed by 903
Abstract
Currently, emerging technologies such as digital twins, through the application of frontier techniques, have achieved physics-based simulations that reduce time and costs. Hence, its application is of the utmost importance in the industry, mainly in the sugar drying process of sugar mills for [...] Read more.
Currently, emerging technologies such as digital twins, through the application of frontier techniques, have achieved physics-based simulations that reduce time and costs. Hence, its application is of the utmost importance in the industry, mainly in the sugar drying process of sugar mills for an updated version of the process. Sugar mills lack process control, leading to unexpected issues. Sugar mills with poor process control cause operational problems. This article presents significant innovation in the field of industrial process optimisation through the integration of digital twins with the k-ε standard model in computational fluid dynamics (CFD). The primary objective of this publication is to predict the ideal conditions of a centrifugal sugar dryer using CFD through the k-ε standard model to analyse the aerodynamic behaviour of the ambient air by applying heat through heat exchangers to obtain a suitable mass flow. The mathematical model was carried out under an energy balance to the thermodynamic system to study the behaviour through a simulation in MATLAB R2017 and an air-fluid simulation of drying with software CFD 2015. The results proved that the model of the thermal system and frontier conditions, when applying CFD, carried our simulation and remained stable. The ideal operating conditions of the centrifugal sugar dryer can be predicted effectively, with an energy saving of 4.25%. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
Show Figures

Figure 1

18 pages, 583 KiB  
Article
An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines
by Carlos R. Payares Guevara, Alberto Patiño-Vanegas, Enrique Pereira-Batista, Oscar E. Coronado-Hernández and Vicente S. Fuertes-Miquel
Appl. Sci. 2025, 15(11), 6000; https://doi.org/10.3390/app15116000 - 26 May 2025
Viewed by 398
Abstract
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air [...] Read more.
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air pocket pressure, water column length, and water velocity during drainage operations in a pipeline with an entrapped air pocket and a closed upstream end. The existing system of three differential equations is reduced to two first-order nonlinear differential equations, enabling a rigorous analysis of the existence and uniqueness of solutions. The system is then further reduced to a single secondorder nonlinear ordinary differential equation (ODE), providing an intuitive framework for examining the physical behaviour of the hydraulic and thermodynamic variables. Furthermore, through a change of variables, the second-order ODE is transformed into a first-order linear ODE, facilitating the derivation of an analytical solution. The analytical solution is validated by comparing it with a numerical solution. Additionally, a practical application demonstrates the effectiveness of the developed tool in predicting the extreme pressure values in the air pocket during the water drainage process in a pipe, within a controlled environment. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

20 pages, 2596 KiB  
Article
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
by Major Melusi Mabuza and Mandlenkosi George Robert Mahlobo
Energies 2025, 18(10), 2646; https://doi.org/10.3390/en18102646 - 20 May 2025
Viewed by 655
Abstract
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption [...] Read more.
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption equilibria under in situ unmineable coal reservoir conditions. This paper presents novel findings on the study of the equilibrium adsorption of CO2 on two South African coals measured at four temperatures between 30 and 60 °C and pressures up to 9.0 MPa using the volumetric technique. Additionally, the sorption mechanism and thermodynamic nature of the process were studied by fitting the experimental data into Langmuir–Freundlich (Sips), Tóth, and Dubinin–Astakhov (DA) isotherm models, and the Clausius–Clapeyron equation. The findings indicate that the sorption process is highly exothermic, as presented by a negative temperature effect, with the maximum working capacity estimated to range between 3.46 and 4.16 mmol/g, which is also rank- and maceral composition-dependent, with high-rank vitrinite-rich coal yielding more sorption capacity than low-rank inertinite-rich coal. The experimental data fit well in Sips and Tóth models, confirming their applicability in describing the CO2 sorption behaviour of the coals under the considered conditions. The isosteric heat of adsorption varied from 7.518 to 37.408 kJ/mol for adsorbate loading ranging from 0.4 to 3.6 mmol/g. Overall, the coals studied demonstrate well-developed sorption properties that characteristically make them viable candidates for CO2 sequestration applications for environmental sustainability. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

33 pages, 5189 KiB  
Article
Modelling Geothermal Energy Extraction from Low-Enthalpy Oil and Gas Fields Using Pump-Assisted Production: A Case Study of the Waihapa Oilfield
by Rohit Duggal, John Burnell, Jim Hinkley, Simon Ward, Christoph Wieland, Tobias Massier and Ramesh Rayudu
Sustainability 2025, 17(10), 4669; https://doi.org/10.3390/su17104669 - 19 May 2025
Viewed by 648
Abstract
As the energy sector transitions toward decarbonisation, low-to-intermediate temperature geothermal resources in sedimentary basins—particularly repurposed oil and gas fields—have emerged as promising candidates for sustainable heat and power generation. Despite their widespread availability, the development of these systems is hindered by gaps in [...] Read more.
As the energy sector transitions toward decarbonisation, low-to-intermediate temperature geothermal resources in sedimentary basins—particularly repurposed oil and gas fields—have emerged as promising candidates for sustainable heat and power generation. Despite their widespread availability, the development of these systems is hindered by gaps in methodology, oversimplified modelling assumptions, and a lack of integrated analyses accounting for long-term reservoir and wellbore dynamics. This study presents a detailed, simulation-based framework to evaluate geothermal energy extraction from depleted petroleum reservoirs, with a focus on low-enthalpy resources (<150 °C). By examining coupling reservoir behaviour, wellbore heat loss, reinjection cooling, and surface energy conversion, the framework provides dynamic insights into system sustainability and net energy output. Through a series of parametric analyses—including production rate, doublet spacing, reservoir temperature, and field configuration—key performance indicators such as gross power, pumping requirements, and thermal breakthrough are quantified. The findings reveal that: (1) net energy output is maximised at optimal flow rate (~70 kg/s for a 90 °C reservoir), beyond which increased pumping offsets thermal gains; (2) doublet spacing has a non-linear impact on reinjection cooling, with larger distances reducing thermal interference and pumping energy; (3) reservoirs with higher temperatures (<120°C) offer significantly better thermodynamic and hydraulic performance, enabling pump-free or low-duty operations at higher flow rates; and (4) wellbore thermal losses and reinjection effects are critical in determining long-term viability, especially in low-permeability or shallow fields. This work demonstrates the importance of a coupled, site-specific modelling in assessing the geothermal viability of petroleum fields and provides a foundation for future techno-economic and sustainability assessments. The results inform optimal design strategies and highlight scenarios where the geothermal development of oil and gas fields can be both technically and energetically viable. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation
by Anastasiia L. Listova, Anastasiia S. Kuzenkova, Mikhail A. Gerasimov, Elizaveta S. Kulikova, Roman D. Svetogorov, Daniil A. Novichkov, Alexei A. Averin, Vasiliy O. Yapaskurt, Anna Yu. Romanchuk, Stepan N. Kalmykov and Tatiana V. Plakhova
Molecules 2025, 30(10), 2105; https://doi.org/10.3390/molecules30102105 - 9 May 2025
Viewed by 455
Abstract
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution [...] Read more.
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution data were obtained for both compounds over a wide pH range (1.5–10) under long-term equilibration. The crystalline phase undergoes pH-dependent transformation, including recrystallisation at a near-neutral pH and the formation of secondary CeO2 nanoparticles above pH 7. In contrast, the nanophase NaCe2(PO4)3 exhibits exceptional structural and chemical stability, showing no signs of recrystallisation, phase transformation, or CeO2 formation, even after extended ageing. The experimental results help refine the thermodynamic stability conditions for cerium phosphate and oxide phases, providing insights into the reversible transformation pathways between CeO2 and Ce(IV) phosphates as governed by pH. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 5677 KiB  
Article
Solidification Window in Al-Based Casting Alloys
by Simone Ferraro, Mauro Palumbo, Marcello Baricco and Alberto Castellero
Metals 2025, 15(5), 489; https://doi.org/10.3390/met15050489 - 26 Apr 2025
Viewed by 506
Abstract
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict [...] Read more.
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict the solidification window, ΔT. The CALPHAD method enables the calculation of the phases formed during solidification and the optimisation of alloy composition to meet specific industrial requirements. This study aims to assess how thermodynamic properties in both liquid and solid phases affect the ΔT. Initially, the influence of thermodynamic properties of pure components and interaction parameters was analysed in simplified regular binary systems. To compare these findings with real industrial systems, Al-based alloys were examined. Using available databases, the ΔT was estimated via the CALPHAD method adding alloying elements commonly found in secondary Al-alloys. Finally, the same minority alloying elements were added to Al-Si 8 and 11 wt.% alloys, and the corresponding ΔT were calculated. Cr, Fe, Mg, Mn, and Ti increase the ΔT, while Cu, Ni, and Zn decrease it. The obtained results may serve as a valuable tool for interpreting phenomenological observations and understanding the role of minority elements in the semi-solid processing of secondary Al-Si casting alloys. Full article
(This article belongs to the Special Issue Solidification and Phase Transformation of Light Alloys)
Show Figures

Figure 1

17 pages, 5697 KiB  
Article
Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion
by Guansen Zhao and Fernando Bresme
Entropy 2025, 27(2), 193; https://doi.org/10.3390/e27020193 - 13 Feb 2025
Cited by 1 | Viewed by 859
Abstract
Thermal gradients induce thermodiffusion in aqueous solutions, a non-equilibrium effect arising from the coupling of thermal and mass fluxes. While thermal transport processes have garnered significant attention under standard conditions, thermal transport at high pressures and temperatures, typical of the Earth’s crust, has [...] Read more.
Thermal gradients induce thermodiffusion in aqueous solutions, a non-equilibrium effect arising from the coupling of thermal and mass fluxes. While thermal transport processes have garnered significant attention under standard conditions, thermal transport at high pressures and temperatures, typical of the Earth’s crust, has escaped scrutiny. Non-equilibrium thermodynamics theory and non-equilibrium molecular dynamics simulations provide an excellent means to quantify thermal transport under extreme conditions and establish a connection between the behaviour of the solutions and their microscopic structure. Here, we investigate the thermal conductivity and thermal diffusion of NaCl and LiCl solutions in the GPa pressure regime, targeting temperatures between 300 K and 1000 K at 1 molal concentration. We employ non-equilibrium molecular dynamics simulations along with the Madrid-2019 and TIP4P/2005 force fields. The thermal conductivity of the solutions increases significantly with pressure, and following the behaviour observed at standard pressure, the thermal conductivity is lower than that of pure water. The reduction in thermal conductivity is significant in the GPa pressure regime, ∼3% for 1 molal NaCl and LiCl solutions. We demonstrate that under GPa pressure conditions, the solutions feature thermophobic behaviour, with ions migrating towards colder regions. The pronounced impact of pressure is more evident in LiCl solutions, which display a thermophilic to thermophobic “transition” at pressures above 0.25 GPa. We discuss a correlation between the solution’s thermophobicity and the disruption of the water hydrogen bond structure at high pressure, where the water structure resembles that observed in simple liquids. Full article
Show Figures

Figure 1

21 pages, 1366 KiB  
Review
Formation Damage in SAGD: A Review of Experimental Modelling Techniques
by Fernando Rengifo Barbosa, Rahman Miri and Alireza Nouri
Energies 2025, 18(4), 871; https://doi.org/10.3390/en18040871 - 12 Feb 2025
Cited by 1 | Viewed by 1094
Abstract
Bitumen extraction using Steam-Assisted Gravity Drainage (SAGD) in northern Alberta oilsands has been crucial for recovery; however, the thermal effects on formation damage still require significant attention. This thermal recovery method causes substantial changes in temperature and pressure, which are critical thermodynamic factors [...] Read more.
Bitumen extraction using Steam-Assisted Gravity Drainage (SAGD) in northern Alberta oilsands has been crucial for recovery; however, the thermal effects on formation damage still require significant attention. This thermal recovery method causes substantial changes in temperature and pressure, which are critical thermodynamic factors in the rock-fluid system of a reservoir. Those changes, both directly and indirectly, impact the flow of oil and water within the porous medium, changing fluid properties and physicochemical interactions that affect rock and fluid behaviour. Coreflooding experiments confirm the accumulation of in situ migratory particles within the pore spaces can lead to pore throat plugging and fines accumulation on the sand control screen. This disturbance within the near-wellbore region triggers permeability reduction and, subsequently, skin buildup. At the same time, changes in pressure drop may trigger the precipitation of organic and inorganic scaling and, finally, wettability alterations. This paper combines field observations and experimental tests to assess the formation damage mechanisms. While the literature has identified factors influencing the formation damage mechanisms, the interaction between these mechanisms, as well as the interplay between the wellbore completion and the surrounding sand from the perspective of formation damage, has not been thoroughly investigated. Current laboratory tests do not adequately account for the effects of high pressure and high temperature on formation damage mechanisms and their interaction in the near-wellbore region. Following the introduction of current experimental and theoretical methods related to formation damage mechanisms around SAGD wellbores, this paper introduces a comprehensive and integrated methodology for designing, testing, and evaluating formation damage mechanisms in SAGD producer wells, addressing the gaps identified in this review. This approach aims to bridge identified gaps from the literature review, advance formation damage assessment, and support the reduction of induced formation damage in thermal recovery operations. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 9240 KiB  
Article
In Silico Analysis of Temperature-Induced Structural, Stability, and Flexibility Modulations in Camel Cytochrome c
by Heba A. Alkhatabi, Mohammad Alhashmi, Hind Ali Alkhatabi and Hisham N. Altayb
Animals 2025, 15(3), 381; https://doi.org/10.3390/ani15030381 - 28 Jan 2025
Cited by 1 | Viewed by 1046
Abstract
Cytochrome c is a critical protein in energy metabolism, and its structural adaptations to different temperatures play a key role in enabling species like the wild Bactrian camel (Camelus ferus) and the Arabian camel (Camelus dromedarius) to thrive in [...] Read more.
Cytochrome c is a critical protein in energy metabolism, and its structural adaptations to different temperatures play a key role in enabling species like the wild Bactrian camel (Camelus ferus) and the Arabian camel (Camelus dromedarius) to thrive in their respective cold and hot environments. This study investigates the structural, thermodynamic, and dynamic properties of cytochrome c at different temperatures. Thermal Titration Molecular Dynamics (TTMD) simulations, which involve analyzing protein behaviour across a range of temperatures, were carried out using GROMACS, with each simulation running for 100 nanoseconds, at 245 K, 280 K, 303 K, 308 K, and 320 K, to evaluate stability and flexibility. Structural alterations were indicated by an increase in root mean square deviations (RMSDs) to 0.4 nm at 320 K, as opposed to lower RMSD values (0.1–0.2 nm) at 245 K and 280 K. Root mean square fluctuation (RMSF) analyses revealed modest flexibility at 245 K and 280 K (0.1–0.2 nm) but considerable flexibility (0.3–0.4 nm) at 303 K and 320 K. Principal component analysis (PCA) found that the formational space was constrained at lower temperatures but expanded at higher temperatures. Entropy peaked at 280 K (13,816 J/mol) and then fell substantially at 320 K (451.765 J/mol), indicating diminished stability. These findings highlight cytochrome c adaptations for cold stability in Camelus ferus and thermal resilience in Camelus dromedarius, showing evolutionary strategies for harsh conditions. Full article
(This article belongs to the Special Issue Genomics for Camelid Biodiversity Management and Conservation)
Show Figures

Figure 1

40 pages, 1738 KiB  
Article
A Metric for the Entropic Purpose of a System
by Michael C. Parker, Chris Jeynes and Stuart D. Walker
Entropy 2025, 27(2), 131; https://doi.org/10.3390/e27020131 - 26 Jan 2025
Cited by 1 | Viewed by 1376
Abstract
Purpose in systems is considered to be beyond the purview of science since it is thought to be intrinsically personal. However, just as Claude Shannon was able to define an impersonal measure of information, so we formally define the (impersonal) ‘entropic purpose [...] Read more.
Purpose in systems is considered to be beyond the purview of science since it is thought to be intrinsically personal. However, just as Claude Shannon was able to define an impersonal measure of information, so we formally define the (impersonal) ‘entropic purpose’ of an information system (using the theoretical apparatus of Quantitative Geometrical Thermodynamics) as the line integral of an entropic “purposive” Lagrangian defined in hyperbolic space across the complex temporal plane. We verify that this Lagrangian is well-formed: it has the appropriate variational (Euler-Lagrange) behaviour. We also discuss the teleological characteristics of such variational behaviour (featuring both thermodynamically reversible and irreversible temporal measures), so that a “Principle of Least (entropic) Purpose” can be adduced for any information-producing system. We show that entropic purpose is (approximately) identified with the information created by the system: an empirically measurable quantity. Exploiting the relationship between the entropy production of a system and its energy Hamiltonian, we also show how Landauer’s principle also applies to the creation of information; any purposive system that creates information will also dissipate energy. Finally, we discuss how ‘entropic purpose’ might be applied in artificial intelligence contexts (where degrees of system ‘aliveness’ need to be assessed), and in cybersecurity (where this metric for ‘entropic purpose’ might be exploited to help distinguish between people and bots). Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Graphical abstract

23 pages, 5323 KiB  
Article
Entropies in Electric Circuits
by Angel Cuadras, Victoria J. Ovejas and Herminio Martínez-García
Entropy 2025, 27(1), 73; https://doi.org/10.3390/e27010073 - 15 Jan 2025
Viewed by 963
Abstract
The present study examines the relationship between thermal and configurational entropy in two resistors in parallel and in series. The objective is to introduce entropy in electric circuit analysis by considering the impact of system geometry on energy conversion in the circuit. Thermal [...] Read more.
The present study examines the relationship between thermal and configurational entropy in two resistors in parallel and in series. The objective is to introduce entropy in electric circuit analysis by considering the impact of system geometry on energy conversion in the circuit. Thermal entropy is derived from thermodynamics, whereas configurational entropy is derived from network modelling. It is observed that the relationship between thermal entropy and configurational entropy varies depending on the configuration of the resistors. In parallel resistors, thermal entropy decreases with configurational entropy, while in series resistors, the opposite is true. The implications of the maximum power transfer theorem and constructal law are discussed. The entropy generation for resistors at different temperatures was evaluated, and it was found that the consideration of resistor configurational entropy change was necessary for consistency. Furthermore, for the sake of generalization, a similar behaviour was observed in time-dependent circuits, either for resistor–capacitor circuits or circuits involving degradation. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop