Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (562)

Search Parameters:
Keywords = thermally healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2041 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 - 2 Aug 2025
Viewed by 468
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 247
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

22 pages, 13925 KiB  
Article
Strontium-Decorated Ag2O Nanoparticles Obtained via Green Synthesis/Polyvinyl Alcohol Films for Wound Dressing Applications
by Vanita Ghatti, Sharanappa Chapi, Yogesh Kumar Kumarswamy, Nagaraj Nandihalli and Deepak R. Kasai
Materials 2025, 18(15), 3568; https://doi.org/10.3390/ma18153568 - 30 Jul 2025
Viewed by 384
Abstract
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed [...] Read more.
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed the formation and uniform distribution of Sr-Ag2O nanoparticles in the PVA film, which are biocompatible nanocomposite films. The presence of hydroxyl groups leads to appreciable mixing and interaction between the Sr-Ag2O nanoparticles and the PVA polymer. Mechanical and thermal results suggest enhanced tensile strength and increased thermal stability. In addition, the sample of PVA/Sr-Ag2O (1.94/0.06 wt. ratio) nanocomposite film showed decreased hydrophilicity, lower hemolysis, non-toxicity, and appreciable cell migration activity, with nearly 19.95% cell migration compared to the standard drug, and the presence of Sr-Ag2O nanoparticles favored the adhesion and spreading of cells, which triggered the reduction in the gaps. These research findings suggest that PVA/Sr-Ag2O nanocomposite films with good mechanical, antimicrobial, non-toxic, and biocompatible properties could be applied in biological wound-healing applications. Full article
(This article belongs to the Special Issue Nanoparticle Assembly: Fundamentals and Applications)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 762
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

16 pages, 1930 KiB  
Article
A Microfluidic System for Real-Time Monitoring and In Situ Metabolite Detection of Plasma-Enhanced Wound Healing
by Zujie Gao, Jinlong Xu, Hengxin Zhao, Xiaobing Zheng, Zijian Lyu, Qiwei Liu, Hao Chen, Yu Zhang, He-Ping Li and Yongjian Li
Biomolecules 2025, 15(8), 1077; https://doi.org/10.3390/biom15081077 - 25 Jul 2025
Viewed by 303
Abstract
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a [...] Read more.
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a microfluidic experimental system that integrates a CAP treatment module with multiparametric in situ sensing capabilities, along with precise environmental control of temperature, humidity, and CO2 concentration. A stratified microfluidic chip was engineered to co-culture HaCaT keratinocytes and HSF fibroblasts. CAP treatment was applied within this platform, and the dynamic processes of cell migration, proliferation, and multiple metabolic markers were simultaneously monitored. The experimental results show that the system can not only achieve real-time observation in the healing process under plasma intervention, but also find that the healing process is closely related to the concentration of NO2. In addition, the study also found that keratin KRT14, which is thought to be closely related to wound healing, decreased significantly in the process of plasma-induced healing. The platform provides high-resolution experimental tools to elucidate the biological effects of CAP and has the potential for parameter optimization, material evaluation, and personalized therapeutic development to advance plasma research and clinical translational applications. Full article
(This article belongs to the Special Issue Advances in Plasma Bioscience and Medicine: 2nd Edition)
Show Figures

Figure 1

14 pages, 4097 KiB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Viewed by 332
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

22 pages, 4234 KiB  
Article
Furan–Urethane Monomers for Self-Healing Polyurethanes
by Polina Ponomareva, Zalina Lokiaeva, Daria Zakharova, Ilya Tretyakov, Elena Platonova, Aleksey Shapagin, Olga Alexeeva, Evgenia Antoshkina, Vitaliy Solodilov, Gleb Yurkov and Alexandr Berlin
Polymers 2025, 17(14), 1951; https://doi.org/10.3390/polym17141951 - 16 Jul 2025
Viewed by 256
Abstract
The repair efficiency of various self-healing materials often depends on the ability of the prepolymer and curing agent to form mixtures. This paper presents a synthesis and study of the properties of modified self-healing polyurethanes using the Diels–Alder reaction (DA reaction), obtained from [...] Read more.
The repair efficiency of various self-healing materials often depends on the ability of the prepolymer and curing agent to form mixtures. This paper presents a synthesis and study of the properties of modified self-healing polyurethanes using the Diels–Alder reaction (DA reaction), obtained from a maleimide-terminated preform and a series of furan–urethane curing agents. The most commonly used isocyanates (4,4′-methylene diphenyl diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI), and hexamethylene diisocyanate (HDI)) and furan derivatives (furfurylamine, difurfurylamine, and furfuryl alcohol) were used as initial reagents for the synthesis of curing agents. For comparative analysis, polyurethanes were also obtained using the well-known “traditional” approach—from furan-terminated prepolymers based on mono- and difurfurylamine, as well as furfuryl alcohol and the often-used bismaleimide curing agent 1,10-(methylenedi-1,4-phenylene)bismaleimide (BMI). The structure and composition of all polymers were studied using spectroscopic methods. Molecular mass was determined using gel permeation chromatography (GPC). Thermal properties were studied using TGA, DSC, and TMA methods. The mechanical and self-healing properties of the materials were investigated via a uniaxial tensile test. Visual assessment of the completeness of damage restoration after the self-healing cycle was carried out using a scanning electron microscope. It was shown that the proposed modified approach helps obtain more durable polyurethanes with a high degree of self-healing of mechanical properties after damage. Full article
(This article belongs to the Special Issue Advances in Fracture and Failure of Polymers)
Show Figures

Graphical abstract

23 pages, 12860 KiB  
Article
Antimicrobial Composite Films Based on Alginate–Chitosan with Honey, Propolis, Royal Jelly and Green-Synthesized Silver Nanoparticles
by Corina Dana Dumitru, Cornelia-Ioana Ilie, Ionela Andreea Neacsu, Ludmila Motelica, Ovidiu Cristian Oprea, Alexandra Ripszky, Silviu Mirel Pițuru, Bianca Voicu Bălașea, Florica Marinescu and Ecaterina Andronescu
Int. J. Mol. Sci. 2025, 26(14), 6809; https://doi.org/10.3390/ijms26146809 - 16 Jul 2025
Viewed by 370
Abstract
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal [...] Read more.
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal jelly with silver nanoparticles in a biopolymer matrix offers a synergistic strategy to combat antibiotic-resistant bacterial infections. This approach supports progress in wound healing, soft tissue engineering and other domains where elimination of the microorganisms is needed like food packaging. In this study we have obtained antimicrobial films based on bee products and silver nanoparticles (AgNPs) incorporated in an alginate–chitosan blend. The novel biomaterials were analyzed by UV-Vis, fluorescence and FTIR spectroscopy or microscopy, SEM and thermal analysis. Antibacterial tests were conducted against both Gram-positive and Gram-negative bacteria, while the antifungal properties were tested against Candida albicans. The diameters for growth inhibition zones were up to 10 mm for bacterial strains and 8 mm for the fungal strain. Additionally, cytotoxicity assays were performed to evaluate the biocompatibility of the materials, the results indicating that the combination of honey, propolis, royal jelly and AgNPs does not produce synergistic toxicity. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 6926 KiB  
Article
Effect of Cerium Nitrate Content on the Performance of Ce(III)/CF/BN/EPN Heat Exchanger Coatings
by Yongbo Yan, Jirong Wu, Mingxing Liu, Qinghua Meng, Jing Zhou, Danyang Feng, Yi Li, Zhijie Xie, Jinyang Li, Xinhui Jiang, Jun Tang, Xuezhi Shi and Jianfeng Zhang
Coatings 2025, 15(7), 818; https://doi.org/10.3390/coatings15070818 - 13 Jul 2025
Viewed by 250
Abstract
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of [...] Read more.
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of Ce(NO3)3·6H2O. The results of SEM and EDS show that the dissolution of cerium nitrate in acetone due to the particulate form causes it to be distributed in a diffuse state in the coating. This diffuse distribution does not significantly alter the porosity or structural morphology of the coating. With the increase in cerium nitrate content, both the EIS test results and mechanical damage tests indicate a progressive improvement in the corrosion resistance and self-healing properties of the coatings, while the thermal conductivity (TC) remains largely unaffected. The Ce in the coating reacts with the water molecules penetrating into the coating to generate Ce2O3 and CeO2 with protective properties to fill the permeable pores inside the coating or to form a passivation film at the damaged metal–coating interface, which enhances the anticorrosive and self-repairing properties of the coating. However, the incorporation of Ce(NO3)3·6H2O does not change the distribution structure of the filler inside the coating. As a result, the phonon propagation path, rate, and distance remain unchanged, leading to negligible variation in the thermal conductivity. Therefore, at a cerium nitrate content of 2.5 wt%, the coating exhibits the best overall performance, characterised by a |Z|0.1Hz value of 6.08 × 109 Ω·cm2 and a thermal conductivity of approximately 1.4 W/(m·K). Full article
Show Figures

Figure 1

37 pages, 6555 KiB  
Review
Biomimetic Lattice Structures Design and Manufacturing for High Stress, Deformation, and Energy Absorption Performance
by Víctor Tuninetti, Sunny Narayan, Ignacio Ríos, Brahim Menacer, Rodrigo Valle, Moaz Al-lehaibi, Muhammad Usman Kaisan, Joseph Samuel, Angelo Oñate, Gonzalo Pincheira, Anne Mertens, Laurent Duchêne and César Garrido
Biomimetics 2025, 10(7), 458; https://doi.org/10.3390/biomimetics10070458 - 12 Jul 2025
Viewed by 1034
Abstract
Lattice structures emerged as a revolutionary class of materials with significant applications in aerospace, biomedical engineering, and mechanical design due to their exceptional strength-to-weight ratio, energy absorption properties, and structural efficiency. This review systematically examines recent advancements in lattice structures, with a focus [...] Read more.
Lattice structures emerged as a revolutionary class of materials with significant applications in aerospace, biomedical engineering, and mechanical design due to their exceptional strength-to-weight ratio, energy absorption properties, and structural efficiency. This review systematically examines recent advancements in lattice structures, with a focus on their classification, mechanical behavior, and optimization methodologies. Stress distribution, deformation capacity, energy absorption, and computational modeling challenges are critically analyzed, highlighting the impact of manufacturing defects on structural integrity. The review explores the latest progress in hybrid additive manufacturing, hierarchical lattice structures, modeling and simulation, and smart adaptive materials, emphasizing their potential for self-healing and real-time monitoring applications. Furthermore, key research gaps are identified, including the need for improved predictive computational models using artificial intelligence, scalable manufacturing techniques, and multi-functional lattice systems integrating thermal, acoustic, and impact resistance properties. Future directions emphasize cost-effective material development, sustainability considerations, and enhanced experimental validation across multiple length scales. This work provides a comprehensive foundation for future research aimed at optimizing biomimetic lattice structures for enhanced mechanical performance, scalability, and industrial applicability. Full article
Show Figures

Figure 1

26 pages, 10116 KiB  
Article
Intelligent Automated Monitoring and Curing System for Cracks in Concrete Elements Using Integrated Sensors and Embedded Controllers
by Papa Pio Ascona García, Guido Elar Ordoñez Carpio, Wilmer Moisés Zelada Zamora, Marco Antonio Aguirre Camacho, Wilmer Rojas Pintado, Emerson Julio Cuadros Rojas, Hipatia Merlita Mundaca Ramos and Nilthon Arce Fernández
Technologies 2025, 13(7), 284; https://doi.org/10.3390/technologies13070284 - 3 Jul 2025
Viewed by 407
Abstract
This study addresses the formation, detection, and repair of cracks in concrete elements exposed to temperatures above 25 °C, where accelerated evaporation compromises their structural strength. An automated intelligent curing system with embedded sensors (DS18B20, HD-38) and Arduino controllers was developed and applied [...] Read more.
This study addresses the formation, detection, and repair of cracks in concrete elements exposed to temperatures above 25 °C, where accelerated evaporation compromises their structural strength. An automated intelligent curing system with embedded sensors (DS18B20, HD-38) and Arduino controllers was developed and applied to solid slabs, columns, and concrete test specimens (1:2:3.5 mix ratio). The electronic design was simulated in Proteus and validated experimentally under tropical conditions. Data with normal distribution (p > 0.05) showed a significant correlation between internal and ambient temperature (r = 0.587; p = 0.001) and a low correlation in humidity (r = 0.143; p = 0.468), indicating hygrometric independence. The system healed cracks of 0.01 mm observed two hours after pouring the mixture, associated with an evaporation rate of 1.097 mL/s in 4 m2. For 28 days, automated irrigation cycles were applied every 30 to 60 min, with a total of 1680 L, achieving a 20% reduction in water consumption compared to traditional methods. The system maintained stable thermal conditions in the concrete despite ambient temperatures of up to 33.85 °C. A critical evaporation range was identified between 11:00 and 16:00 (UTC-5). The results demonstrate the effectiveness of the embedded system in optimizing curing, water efficiency, and concrete durability. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

15 pages, 7146 KiB  
Article
Topical Application of SVF/PRF in Thermal Injuries—A Retrospective Analysis
by Lukas Naef, Mauro Vasella, Jennifer Watson, Gregory Reid, Tabea Breckwoldt, Matthias Waldner, Luzie Hofmann, Michael-Alexander Pais, Philipp Buehler, Jan Alexander Plock and Bong-Sung Kim
J. Clin. Med. 2025, 14(13), 4710; https://doi.org/10.3390/jcm14134710 - 3 Jul 2025
Viewed by 307
Abstract
Background: The traditional management of acute burn wounds using eschar debridement followed by split-thickness skin grafting has notable drawbacks. Stromal vascular fraction (SVF), derived from autologous adipose tissue, promotes epithelialization and angiogenesis, while platelet-rich fibrin (PRF), obtained via centrifugation of patient blood, [...] Read more.
Background: The traditional management of acute burn wounds using eschar debridement followed by split-thickness skin grafting has notable drawbacks. Stromal vascular fraction (SVF), derived from autologous adipose tissue, promotes epithelialization and angiogenesis, while platelet-rich fibrin (PRF), obtained via centrifugation of patient blood, enhances wound healing. This study retrospectively analyzes the outcomes of patients with thermal injuries treated with a combination of topical SVF and PRF at the University Hospital Zurich Burn Center. Methods: From 2018 to 2020, 13 patients with deep partial-thickness burns (DPTBs) or mixed-pattern burns (MPBs) received combined topical SVF and PRF treatment. Eschar removal was performed enzymatically or surgically following hydrotherapy. SVF was collected via liposuction, and PRF from centrifuged blood. Healing progress, additional surgeries, and scar outcomes (assessed by the Manchester Scar Scale, MSS) were evaluated retrospectively. Results: The mean total body surface area burned was 29.6%, with 6.3% treated using SVF and PRF. Five patients required further surgical intervention for residual defects. Complete healing occurred within 20 days in patients without residual defects and within 51 days in those with defects. Higher MSS scores were observed in patients requiring additional surgery. No adverse effects were noted. Conclusions: Topical SVF and PRF offer a potentially less-invasive treatment for MPB and DPTB. However, due to frequent residual defects and regulatory concerns around SVF use, this approach cannot yet be considered a standard treatment. Full article
(This article belongs to the Special Issue Comprehensive Approaches in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

26 pages, 2010 KiB  
Review
Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance
by Donghwan Yun, Youngchae Cho, Hyeseon Shin and Gi-Hwan Kim
Energies 2025, 18(13), 3378; https://doi.org/10.3390/en18133378 - 27 Jun 2025
Viewed by 896
Abstract
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation [...] Read more.
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation space power systems. However, exposure to extreme thermal cycling, high-energy radiation, vacuum, and ultraviolet light in space leads to severe degradation. This study addresses these challenges by introducing three key design strategies: self-healing perovskite compositions that recover from radiation-induced damage, gradient buffer layers that mitigate mechanical stress caused by thermal expansion mismatch, and advanced encapsulation that serves as a multifunctional barrier against space environmental stressors. These approaches enhance device resilience and operational stability in space. The design strategies discussed in this review are expected to support long-term power generation for low-cost satellites, high-altitude platforms, and deep-space missions. Additionally, insights gained from this research are applicable to terrestrial environments with high radiation or temperature extremes. Perovskite solar cells represent a transformative solution for space photovoltaics, offering a pathway toward scalable, flexible, and radiation-tolerant energy systems. Full article
(This article belongs to the Special Issue New Advances in Material, Performance and Design of Solar Cells)
Show Figures

Figure 1

31 pages, 939 KiB  
Systematic Review
Histological and Histomorphometric Insights into Implant Bed Preparation: A Systematic Review
by Piotr Kosior, Sylwia Kiryk, Agnieszka Kotela, Jan Kiryk, Julia Kensy, Marzena Laszczyńska, Mateusz Michalak, Jacek Matys and Maciej Dobrzyński
J. Clin. Med. 2025, 14(13), 4538; https://doi.org/10.3390/jcm14134538 - 26 Jun 2025
Viewed by 473
Abstract
Objective: To assess the bone histological changes and histomorphometric parameters when using different implant site preparation methods. Methods: A systematic search was conducted in March 2025 across the PubMed, Scopus, and Web of Science (WoS) databases following the PRISMA guidelines. An initial search [...] Read more.
Objective: To assess the bone histological changes and histomorphometric parameters when using different implant site preparation methods. Methods: A systematic search was conducted in March 2025 across the PubMed, Scopus, and Web of Science (WoS) databases following the PRISMA guidelines. An initial search of the databases yielded 338 potentially relevant articles. Ultimately, a total of 29 articles were included in the qualitative synthesis in this review. The considerable heterogeneity among the included studies precluded a meta-analysis. Results: This systematic review showed that, among all the assessed implant site preparation methods, which were drilling, laser, piezoelectric surgery, osteotomy and osteodensification, the classical drilling method was more likely to cause adverse changes at the drill site, such as microcracks, uneven bone margins, osteocyte damage and thermal injury. In contrast, alternative methods resulted in fewer microcracks, minimal inflammation, a reduced risk of thermal tissue damage and denser, more regular bone formation. When using these methods, the %BIC parameter was higher than when using the drilling method. Conclusions: Using alternative techniques to prepare the implant bed creates favourable conditions for proper healing and osseointegration by eliminating defects resulting from the drilling method. However, it should be noted that satisfactory results can be achieved using the classical method if the correct parameters of the drill rotation, cooling and load are employed. Further studies based on a uniform methodology are necessary to determine the most efficient and safest parameters for each method. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

Back to TopTop