Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = thermal mechanical FE-modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6557 KB  
Article
Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules
by Giuseppe Mirone, Luca Corallo, Raffaele Barbagallo and Giuseppe Bua
Energies 2025, 18(20), 5364; https://doi.org/10.3390/en18205364 - 11 Oct 2025
Viewed by 361
Abstract
A critical aspect in the design of power electronics packages is the prediction of their mechanical response under severe thermomechanical loads and the consequent structural damage. For this purpose, finite element (FE) simulations are used to estimate the mechanical performance and reliability under [...] Read more.
A critical aspect in the design of power electronics packages is the prediction of their mechanical response under severe thermomechanical loads and the consequent structural damage. For this purpose, finite element (FE) simulations are used to estimate the mechanical performance and reliability under operational conditions, typically alternate high voltages/currents resulting in thermal gradients. When simulations are performed, it is common practice to consider the as-received package to be in a stress-free state. Namely, residual stresses and plastic deformation induced by the manufacturing processes are neglected. In this study, an advanced FE modeling approach is proposed to assess the structural consequences of the encapsulating resin curing, typical in the production of silicon carbide (SiC)-based power electronics modules for electric vehicles. This work offers a general modeling framework that can be further employed to simulate the effects of thermal gradients induced by the production process on the effective shape and residual stresses of the as-received package for other manufacturing stages, such as metal brazing, soldering processes joining copper and SiC, and, to lower extents, the application of polyimide on top of passivation layers. The obtained results have been indirectly validated with experimental data from literature. Full article
Show Figures

Figure 1

24 pages, 5892 KB  
Article
Reactive Transport Model of Steel/Bentonite Interactions in the FEBEX In Situ Test
by Javier Samper, Alba Mon and Luis Montenegro
Minerals 2025, 15(9), 940; https://doi.org/10.3390/min15090940 - 3 Sep 2025
Cited by 1 | Viewed by 595 | Correction
Abstract
Steel corrosion plays a major role in the geochemical evolution at the canister/bentonite interface of the engineered barrier systems of geological radioactive waste repositories. The interactions between corrosion products and bentonite can significantly affect bentonite properties and performance. These interactions have been investigated [...] Read more.
Steel corrosion plays a major role in the geochemical evolution at the canister/bentonite interface of the engineered barrier systems of geological radioactive waste repositories. The interactions between corrosion products and bentonite can significantly affect bentonite properties and performance. These interactions have been investigated by resorting to in situ tests conducted in underground laboratories, such as the FEBEX (Full-scale Engineered Barrier Experiment) test. The FEBEX in situ test, which was conducted at the Grimsel underground research laboratory in Switzerland from 1997 to 2015, demonstrated substantial corrosion of the steel liner in areas without a heater, primarily due to the presence of O2. Here we report a reactive transport model that simulates steel corrosion products and their interactions with bentonite. The model builds on a previously published conceptual geochemical model and addresses its limitations by integrating a more detailed representation of temperature and unsaturated flow conditions, leveraging prior thermo–hydrodynamic–mechanical–chemical (THMC) models. Given the prevailing uncertainties in O2 and redox conditions during the test and the limited data on liner corrosion and gas conditions at the liner–bentonite interface, liner corrosion was modeled by using a prescribed time-dependent function for the corrosion rate. Goethite, hematite, and magnetite were the Fe minerals allowed to precipitate in the model. The corrosion rate and the specific surface area of the hematite and magnetite were calibrated based on the profiles of goethite, hematite, and total Fe (including dissolved, exchanged and sorbed forms) observed at the post mortem analysis of the FEBEX in situ test. The model reproduces the observed goethite and hematite precipitation near the liner but underestimates the measured values at greater distances from the liner. The pattern of total calculated Fe concentrations reproduce the measured values except at a distance between 15 and 50 mm from the liner. Goethite is the predominant corrosion product in the model results, even under reducing conditions, owing to kinetic constraints on magnetite and hematite precipitation and to the enhanced stability of goethite driven by pH increase and thermal evolution. Full article
Show Figures

Graphical abstract

13 pages, 1365 KB  
Article
Effect of Microstructural Changes on the Magnetization Dynamics Mechanisms in Ferrofluids Subjected to Alternating Magnetic Fields
by Cristian E. Botez and Zachary Musslewhite
Magnetochemistry 2025, 11(9), 74; https://doi.org/10.3390/magnetochemistry11090074 - 24 Aug 2025
Viewed by 665
Abstract
We investigated the effects of chemical and physical changes on the interplay between the Néel and Brown superspin relaxation mechanisms in ferrofluids containing 18 nm-diameter Co0.2Fe2.8O4 magnetic nanoparticles. We attempted to tune the ferrofluid’s magnetization dynamics via three [...] Read more.
We investigated the effects of chemical and physical changes on the interplay between the Néel and Brown superspin relaxation mechanisms in ferrofluids containing 18 nm-diameter Co0.2Fe2.8O4 magnetic nanoparticles. We attempted to tune the ferrofluid’s magnetization dynamics via three methods: (i) changing the carrier fluid from Isopar M to kerosene (ii) doubling the Co-doping level from x = 0.2 to x = 0.4, and (iii) diluting the Co0.2Fe2.8O4/Isopar M nanomagnetic fluid from δ = 1 mg/mL to δ = 0.1 mg/mL. We used temperature-resolved ac-susceptibility measurements at different frequencies, χ″ vs. T|f, to gain insight into the thermally driven superspin dynamics of the nanoparticles within the ferrofluid. Our data demonstrates that both increasing x and using a different carrier fluid quantitatively alter the temperature dependence of the Néel and Brown relaxation frequency (fN vs. T and fB vs. T) by changing the nanoparticles’ magnetic moments and the fluid’s viscosity. Yet, the two mechanisms remain decoupled, as indicated by the presence of two magnetic events (peaks in the χ″ vs. T|f datasets) one corresponding to the Néel and the other to Brown relaxation. On the other hand, diluting the ferrofluid leads to a qualitative change in the collective superspin dynamics behavior. Indeed, there is just one χ″-peak in the data from the δ = 0.1 mg/mL nanofluid, and its f vs. T dependence is well-described by a model that includes coupled contributions from both the Néel and Brown relaxation: fT=p·Tγ0·expEkBTT0+  (1 − p) f0expEBkBTT0. This is a remarkable behavior that demonstrates the ability to control a ferrofluids magnetization dynamics through simple chemical and physical changes. Full article
(This article belongs to the Special Issue Ferrofluids: Electromagnetic Properties and Applications)
Show Figures

Figure 1

32 pages, 8380 KB  
Article
Numerical Simulation of Arc Welding in Large Flange Shafts Based on a Novel Combined Heat Source Model
by Zhiqiang Xu, Chaolong Yang, Wenzheng Liu, Ketong Liu, Feiting Shi, Zhifei Tan, Peng Cao and Di Wang
Materials 2025, 18(17), 3932; https://doi.org/10.3390/ma18173932 - 22 Aug 2025
Viewed by 794
Abstract
Welding, as a critical process for achieving permanent material joining through localized heating or pressure, is extensively applied in mechanical manufacturing and transportation industries, significantly enhancing the assembly efficiency of complex structures. However, the associated localized high temperatures and rapid cooling often induce [...] Read more.
Welding, as a critical process for achieving permanent material joining through localized heating or pressure, is extensively applied in mechanical manufacturing and transportation industries, significantly enhancing the assembly efficiency of complex structures. However, the associated localized high temperatures and rapid cooling often induce uneven thermal expansion and contraction, leading to complex stress evolution and residual stress distributions that compromise dimensional accuracy and structural integrity. In this study, we propose a combined heat source model based on the geometric characteristics of the weld pool to simulate the arc welding process of large flange shafts made of Fe-C-Mn-Cr low-alloy medium carbon steel. Simulations were performed under different welding durations and shaft diameters, and the model was validated through experimental welding tests. The results demonstrate that the proposed model accurately predicts weld pool geometry (depth error of only 2.2%) and temperature field evolution. Meanwhile, experimental and simulated deformations are presented with 95% confidence intervals (95% CI), showing good agreement. Residual stresses were primarily concentrated in the weld and heat-affected zones, exhibiting a typical “increase–steady peak–decrease” distribution along the welding direction. A welding duration of 90 s effectively reduced residual stress differentials perpendicular to the welding direction by 19%, making it more suitable for medium carbon steel components of this scale. The close agreement between simulation and experimental data verifies the model’s reliability and indicates its potential applicability to the welding simulation of other large-scale critical components, thereby providing theoretical support for process optimization. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 4040 KB  
Article
The Mechanism of Microcrack Initiation in Fe-C Alloy Under Tensile Deformation in Molecular Dynamics Simulation
by Yanan Zeng, Xiangkan Miao, Yajun Wang, Yukang Yuan, Bingbing Ge, Lanjie Li, Kanghua Wu, Junguo Li and Yitong Wang
Materials 2025, 18(16), 3865; https://doi.org/10.3390/ma18163865 - 18 Aug 2025
Viewed by 546
Abstract
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from [...] Read more.
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from 300 to 1100 K, aiming to elucidate the microscopic deformation mechanisms during crack evolution under varying thermal conditions. The results indicate that the yield strength of Fe-C alloy decreases with a rising temperature, accompanied by a 25.2% reduction in peak stress. Within the temperature range of 300–700 K, stress–strain curves exhibit a dual-peak trend: the first peak arises from stress-induced transformations in the internal crystal structure, while the second peak corresponds to void nucleation and growth. At 900–1100 K, stress curves display a single-peak pattern, followed by rapid stress decline due to accelerated void coalescence. Structural evolution analysis reveals sequential phase transitions: initial BCC-to-FCC and -HCP transformations occur during deformation, followed by reversion to BCC and unidentified structures post-crack formation. Elevated temperatures enhance atomic mobility, increasing the proportion of disordered/unknown structures and accelerating material failure. Higher temperatures promote faster potential energy equilibration, primarily through accelerated void growth, which drives rapid energy dissipation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 4093 KB  
Article
A Reduced Order Model of the Thermal Profile of the Rolls for the Real-Time Control System
by Dmytro Svyetlichnyy
Energies 2025, 18(15), 4005; https://doi.org/10.3390/en18154005 - 28 Jul 2025
Viewed by 595
Abstract
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape [...] Read more.
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape of the roll surface, its convexity, and, finally, the shape of the final product of the flat rolling, its convexity, and flatness. This paper presents accurate semi-analytical and finite element (FE) models, which serve to obtain an accurate solution of the joint thermal and mechanical problem, that is, heat transfer and thermal expansion. The results of the FE simulation are used for training the developed thermal model based on the neural network (NN) and for the creation of a dynamic reduced order model (ROM) of the roll surface profile. The pre-trained NN model gives accurate results and is faster than the FE model, but the model is not very useful for fast calculations in a real-time control system, mainly because the temperature distribution inside the rolls is not explicitly used in further calculations. In contrast, the ROM is fast and accurate and provides surface-shaped results that can be immediately used by other models of the real-time control system. The results of the simulation of the real process are also shown. Calculations of the roll campaign (more than 9 h) by the FEM model last several hours, while by the ROM less than 20 s. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

19 pages, 4000 KB  
Article
Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications
by Lorena Betancor-Cazorla, Genís Clavé, Camila Barreneche and Sergi Dosta
Coatings 2025, 15(8), 865; https://doi.org/10.3390/coatings15080865 - 23 Jul 2025
Viewed by 600
Abstract
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout [...] Read more.
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout the literature, and only a limited number of models accurately predict the properties. Therefore, a database of 415 HEA alloys (bulk) and coatings obtained using thermal spray (TS) techniques has been created, compiled from scientific studies over the past 20 years. This tool collects information on physical, mechanical, and chemical properties, with a particular emphasis on corrosion and wear resistance. This facilitates material comparison and selection according to the needs of a specific application. In particular, the database highlights how composition and deposition technique also affect performance, identifying CoCrFeNi (CGS and in bulk) as a promising candidate for simultaneous wear and corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Thermal Spray Coatings: Technologies and Applications)
Show Figures

Figure 1

21 pages, 4948 KB  
Article
Kinetics Study of the Hydrogen Reduction of Limonite Ore Using an Unreacted Core Model for Flat-Plate Particles
by Jindi Huang, Tao Yi, Jing Li, Mingzhou Li, Fupeng Liu and Jinliang Wang
Metals 2025, 15(6), 678; https://doi.org/10.3390/met15060678 - 19 Jun 2025
Viewed by 757
Abstract
The iron and steel industry is a major emitter of carbon. In the context of China’s dual-carbon goals, hydrogen-based reduction ironmaking technology has garnered unprecedented attention. It is considered a crucial approach to reducing carbon dioxide emissions in the steel sector and facilitating [...] Read more.
The iron and steel industry is a major emitter of carbon. In the context of China’s dual-carbon goals, hydrogen-based reduction ironmaking technology has garnered unprecedented attention. It is considered a crucial approach to reducing carbon dioxide emissions in the steel sector and facilitating the realization of carbon neutrality. This work conducted isothermal thermogravimetric analysis on limonite ore in a N2/H2 atmosphere. The influences of reduction temperature, particle size, and hydrogen partial pressure on the hydrogen reduction reaction process of limonite were investigated. Based on the principles of isothermal thermal analysis kinetics and the unreacted core model for flat-plate particles, the mechanism function and kinetic parameters for the reduction of limonite particles were determined. The research results show that the hydrogen reduction process of limonite ore is influenced by multiple factors, including temperature, hydrogen partial pressure, and particle size. Increasing the reduction temperature and hydrogen partial pressure can significantly speed up the reduction reaction rate and enhance the degree of reduction. The kinetic parameters for the hydrogen reduction of limonite particles were obtained as follows: the reaction activation energy was 44.738 kJ·mol−1, the pre-exponential factor was 31.438 m·s−1, and the rate constant for the hydrogen reduction of limonite was k=31.438×e44.738×1000RTms1. In addition, contour maps were plotted to predict the reaction time and reaction temperature required for a complete reduction of limonite particles of different sizes to iron (Fe) particles under varying hydrogen partial pressures. The research findings can serve as a scientific basis for optimizing hydrogen-based reduction ironmaking technology in the iron and steel industry and achieving carbon neutrality goals. Full article
(This article belongs to the Special Issue Recent Developments in Ironmaking)
Show Figures

Graphical abstract

23 pages, 6061 KB  
Article
Monitoring and Prediction of the Real-Time Transient Thermal Mechanical Behaviors of a Motorized Spindle Tool
by Tria Mariz Arief, Wei-Zhu Lin, Jui-Pin Hung, Muhamad Aditya Royandi and Yu-Jhang Chen
Lubricants 2025, 13(6), 269; https://doi.org/10.3390/lubricants13060269 - 16 Jun 2025
Cited by 1 | Viewed by 779
Abstract
The spindle is a critical component that significantly influences the performance of machine tools. In motorized spindles, heat generation from both the bearings and built-in motor leads to thermal deformation of structural components, which, in turn, affects machining accuracy. This study investigates the [...] Read more.
The spindle is a critical component that significantly influences the performance of machine tools. In motorized spindles, heat generation from both the bearings and built-in motor leads to thermal deformation of structural components, which, in turn, affects machining accuracy. This study investigates the thermo-mechanical behavior of motorized spindles under various operational conditions, with the aim of accurately predicting thermally induced axial deformation and determining optimal temperature sensor placement. To achieve this, temperature rise and deformation data were simultaneously collected using appropriate data acquisition systems across varying spindle speeds. A correlation analysis confirmed a strong positive relationship exceeding 97.5% between temperature rise at all sensor locations and axial thermal deformation. Multivariate regression analysis was then applied to identify optimal combinations of sensor data for accurate deformation prediction. Additionally, a finite element (FE) thermal–mechanical model was developed to simulate spindle behavior, with the results validated against experimental measurements and regression model predictions. The four-variable regression model and FE simulation achieved Root Mean Square Errors (RMSEs) of 0.84 µm and 0.82 µm, respectively, both demonstrating close agreement with experimental data and effectively capturing the trend of thermal deformation over time under different operating conditions. Finally, an optimal sensor configuration was identified that minimizes pre-diction error while reducing the number of required sensors. Overall, the proposed methodology offers valuable insights for optimizing spindle design to enhance thermal–mechanical performance. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

21 pages, 4609 KB  
Article
A Microstructure-Integrated Ductile Fracture Criterion and FE-Based Framework for Predicting Warm Formability of AA7075 Sheets
by Wan-Ling Chen and Rong-Shean Lee
Metals 2025, 15(6), 655; https://doi.org/10.3390/met15060655 - 12 Jun 2025
Viewed by 961
Abstract
Variations in the warm formability of AA7075 sheets are primarily attributed to differences in precipitate morphology resulting from distinct thermal histories. To better understand this relationship, this study systematically investigates the influence of precipitate characteristics—quantified by the product of precipitate volume fraction and [...] Read more.
Variations in the warm formability of AA7075 sheets are primarily attributed to differences in precipitate morphology resulting from distinct thermal histories. To better understand this relationship, this study systematically investigates the influence of precipitate characteristics—quantified by the product of precipitate volume fraction and average radius—on forming limits across various thermal routes in warm forming processes. A modified Cockcroft–Latham ductile fracture model incorporating this microstructural parameter was developed, calibrated against experimental data from warm isothermal Nakajima tests, and implemented within a finite element framework. The proposed model enables the accurate prediction of forming limit curves with minimal experimental effort, thereby significantly reducing the reliance on extensive mechanical testing. Building upon the validated FE model, a practical methodology for rapid R-value estimation under warm forming conditions was established, involving the design of specimen geometries optimised for isothermal Nakajima testing. This approach achieved R-value predictions within 5% deviation from conventional uniaxial tensile test results. Furthermore, experimental results indicated that AA7075 sheets exhibited nearly isotropic deformation behaviour under retrogression warm forming conditions. Overall, the methodology proposed in this study bridges the gap between formability prediction and process simulation, offering a robust and scalable framework for the industrial optimisation of warm forming processes for high-strength aluminium alloys. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

25 pages, 15207 KB  
Article
Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties
by Bohdan Trembach, Illia Trembach, Aleksandr Grin, Nataliia Makarenko, Olha Babych, Sergey Knyazev, Yuliia Musairova, Michal Krbata, Oleksii Balenko, Oleh Vorobiov and Anatoliy Panchenko
Eng 2025, 6(6), 125; https://doi.org/10.3390/eng6060125 - 10 Jun 2025
Cited by 1 | Viewed by 1516
Abstract
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal [...] Read more.
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal experimental design with nine experiments and three levels. At the first stage, it is proposed to use the Taguchi plan (L9) method to find the most significant variables. At the second stage, for the development of a mathematical model and optimization, a factorial design is recommended. The studied parameters of the hardfacing mode were travel speed (TS), set voltage on the power source (Uset), contact tip to work distance (CTWD), and wire feed speed (WFS). The following parameters were studied: welding thermal cycle parameters, microstructure, grain size, non-metallic inclusions, and mechanical properties. The results of the analysis showed that the listed parameters of the hardfacing modes have a different effect on the characteristics of the hardfacing process with self-shielded flux-cored wires with an exothermic addition in the filler. It was determined that for flux-cored wires with an exothermic addition, the size of the deposited metal grain size is most affected by the contact tip to work distance (CTWD). The research results showed that the travel speed (TS) had the main influence on the thermal cycle parameters (heat input, cooling time) and hardness. The analysis of the deposited metal samples showed that an increase in the travel speed had a negative impact on the number of non-metallic inclusions (NMIs) in the deposited metal. While the size of NMIs was influenced by the wire feed speed and the set voltage on the power source. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

13 pages, 2488 KB  
Article
Silicon and Manganese Effect on the Phase Composition of an Al-Fe Alloy and the Use of the ThermoCalc Software Complex for Thermodynamic Analysis
by Bakhtiyar Suleyev, Aristotel Issagulov, Ardak Dostayeva, Dastan Aubakirov and Togzhan Sultanbek
Alloys 2025, 4(2), 10; https://doi.org/10.3390/alloys4020010 - 30 May 2025
Cited by 1 | Viewed by 1012
Abstract
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for [...] Read more.
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for developing conductive aluminum alloys with enhanced performance characteristics. It was found that when silicon and manganese are added in amounts up to 0.6%, the formation of intermetallic phases such as Al8Fe2Si and Al15Mn3Si2 occurs. These phases significantly influence the electrical conductivity and mechanical stability of the alloy. Thermodynamic modeling proved effective in predicting phase formation, guiding the selection of alloy compositions, and optimizing heat treatment parameters. The optimal composition for a conductive aluminum alloy includes up to 0.8% Fe, 0.5% Si, and 0.6% Mn. Heat treatment in the range of 500–550 °C resulted in a favorable combination of strength, electrical conductivity, and thermal resistance. The findings support the use of Al–Fe–Si–Mn alloys in electrical and structural applications and demonstrate the value of combining computational and experimental approaches in alloy design. Full article
Show Figures

Figure 1

22 pages, 3601 KB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 584
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

15 pages, 15318 KB  
Article
Breaking the Hardness-Wear Trade-Off: Quantitative Correlation in Nano-Al2O3-Reinforced Al10Cr17Fe20NiV4 High-Entropy Alloys
by Cong Feng, Huan Wang and Yaping Wang
Nanomaterials 2025, 15(10), 775; https://doi.org/10.3390/nano15100775 - 21 May 2025
Viewed by 726
Abstract
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion [...] Read more.
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion behavior of multi-component alloys remains limited. While the hardness of MPEAs generally correlates positively with wear resistance, with higher hardness typically associated with improved wear resistance and reduced wear rates, quantitative relationships between these properties are not well established. In this study, the Al10Cr17Fe20NiV4 alloy was selected as a model system. A homogeneous Al10Cr17Fe20NiV4 alloy was successfully synthesized via mechanical alloying followed by spark plasma sintering (SPS). To further investigate the correlation between hardness and wear rate, varying concentrations of alumina nanoparticles were incorporated into the alloy matrix as a reinforcing phase. The results revealed that the Al10Cr17Fe20NiV4 alloy exhibited a single-phase face-centered cubic (FCC) structure, which was maintained with the addition of alumina nanoparticles. The hardness of the Al10Cr17Fe20NiV4 alloy without nano-alumina was 727 HV, with a corresponding wear rate of 2.9 × 10−4 mm3·N−1·m−1. The incorporation of nano-alumina increased the hardness to 823 HV, and significantly reduced the wear rate to 1.6 × 10−4 mm3·N−1·m−1, representing a 45% reduction. The Al2O3 nanoparticles effectively mitigated alloy wear through crack passivation and matrix strengthening; however, excessive addition reversed this effect due to the agglomeration-induced brittleness and thermal mismatch. The quantitative relationship between hardness (HV) and wear rate (W) was determined as W = 2348 e(−0.006HV). Such carefully bounded empirical relationships, as demonstrated in studies of cold-formed materials and dental enamel, remain valuable tools in applied research when accompanied by explicit scope limitations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

23 pages, 10421 KB  
Article
Multi-Scale Modeling and Damage Mechanisms of Asphalt Pavements Under Coupled Salt–Thermal–Mechanical Effects
by Jin Ma, Jiaqi Chen, Mingfeng Tang and Yu Liu
Materials 2025, 18(10), 2337; https://doi.org/10.3390/ma18102337 - 17 May 2025
Cited by 1 | Viewed by 808
Abstract
Salts can have detrimental effects on asphalt pavements, leading to permanent damage that compromises their durability and sustainability. This study investigates the damage mechanisms of asphalt pavements under coupled salt–thermal–mechanical effects using multi-scale modeling. Pull-off and semicircular bending (SCB) tests were conducted to [...] Read more.
Salts can have detrimental effects on asphalt pavements, leading to permanent damage that compromises their durability and sustainability. This study investigates the damage mechanisms of asphalt pavements under coupled salt–thermal–mechanical effects using multi-scale modeling. Pull-off and semicircular bending (SCB) tests were conducted to determine material parameters and validate numerical models. Experimental data demonstrated that after 48 h of salt treatment at −10 °C, specimens exhibited reductions in cohesive strength ranging from 23.5% to 26% and adhesive strength decreasing by 25% to 44% compared to untreated controls. More severe degradation was observed at 0 °C, with cohesive strength diminishing by up to 63.8% and adhesive strength declining by up to 71.6%. A multi-scale finite element (FE) pavement model incorporating cohesive zone modeling (CZM) was developed to simulate damage behavior within asphalt concrete. Salt diffusion analysis revealed limited penetration depth within short exposure periods, and results showed that salt penetration reached only about 10 mm into the pavement layers after 48 h. Results indicated significant reductions in adhesive and cohesive strengths due to salt exposure, with damage susceptibility increasing under combined thermal fluctuations and mechanical loading. Additionally, the effects of moving load magnitude and speed on pavement damage were examined, showing higher damage accumulation at lower speeds and heavier loads. This research provides insights into pavement deterioration mechanisms, contributing to improved durability and maintenance strategies for asphalt pavements in salt environments. Full article
Show Figures

Figure 1

Back to TopTop