Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Experiment
2.3. Welding Thermal Cycle Parameters
3. Results
3.1. Prediction of Mathematical Model for Thermal Cycle Parameters
3.1.1. Analyses of Variance for Thermal Cycle Parameters
3.1.2. Taguchi Analyses for Thermal Cycle Parameters
3.1.3. Development of a Mathematical Model (Box–Hunter) for Thermal Cycle Parameters
3.2. Microstructure of the Deposited Metal
3.3. Grain Size of Deposited Metal
3.3.1. Analyses of Variance for Grain Size
3.3.2. Analyses Taguchi for Grain Size
3.3.3. Development of a Mathematical Model (Box–Hunter) for Grain Size
3.4. Non-Metallic Inclusions
3.4.1. Analyses of Variance for Non-Metallic Inclusions (NMIs)
3.4.2. Taguchi Analyses for Non-Metallic Inclusions
3.4.3. Development of a Mathematical Model (Box–Hunter) for Non-Metallic Inclusions NMI
3.5. Mechanical Properties
3.5.1. Analyses of Variance and Taguchi for Hardness
3.5.2. Development of a Mathematical Model (Box–Hunter) for Hardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulbrich, D.; Stachowiak, A.; Kowalczyk, J.; Wieczorek, D.; Matysiak, W. Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel. Materials 2022, 15, 3892. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, D.; Psuj, G.; Bartkowski, D.; Bartkowska, A. Assessment of Coating Properties in Car Body by Ultrasonic Method. Appl. Sci. 2024, 14, 8117. [Google Scholar] [CrossRef]
- Spišák, E.; Kaščák, Ľ.; Viňáš, J. Research into properties of joints of combined materials made by resistance spot welding. Chemickélisty 2011, 105, 488–490. [Google Scholar]
- Riabov, I.; Goolak, S.; Neduzha, L. An Estimation of the Energy Savings of a Mainline Diesel Locomotive Equipped with an Energy Storage Device. Vehicles 2024, 6, 611–631. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, K.; Zhu, Z.; Xu, L.; Chen, G.; Fang, N.; Kou, S. Effect of Cr and W on microstructure and wear resistance of arc additive manufactured flux-cored wire for railway wheels. J. Mater. Res. Technol. 2024, 30, 3438–3447. [Google Scholar] [CrossRef]
- Krbata, M.; Kohutiar, M.; Escherova, J.; Klučiar, P.; Studeny, Z.; Trembach, B.; Beronská, N.; Breznická, A.; Timárová, Ľ. Continuous Cooling Transformation of Tool Steels X153CrMoV12 and 100MnCrW4: Analysis of Microstructure and Hardness Changes. Appl. Mech. 2025, 6, 16. [Google Scholar] [CrossRef]
- Cunha, M.C.; Oliveira, H.R.; Oliveira, A.; Souza, M.C.C. Microstructural and wear investigation of FeCrC and FeCrC-NbBhardfacing alloys deposited with FCAW-S. Int. J. Adv. Manuf. Technol. 2024, 136, 1241–1251. [Google Scholar] [CrossRef]
- Chabak, Y.G.; Golinskyi, M.A.; Efremenko, V.G.; Halfa, H.; Zurnadzhy, V.I.; Efremenko, B.V.; Tsvetkova, E.V.; Dzherenova, A.V. Ti-rich carboborides in the multi-component high-boron alloy: Morphology and elemental distribution. Phys. Chem. Solid State 2023, 24, 707–713. [Google Scholar] [CrossRef]
- Sukhova, O.V.; Polonskyy, V.A. Structure and corrosion of quasicrystalline cast Al–Co–Ni and Al–Fe–Ni alloys in aqueous NaCl solution. East Eur. J. Phys. 2020, 3, 5–10. [Google Scholar] [CrossRef]
- Prysyazhnyuk, P.; Bembenek, M.; Drach, I.; Korzhov, A.; Romanyshyn, L.; Ropyak, L. Restoration of the Impact Crusher Rotor Using FCAW with High-Manganese Steel Reinforced by Complex Carbides. Manag. Syst. Prod. Eng. 2024, 32, 294–302. [Google Scholar] [CrossRef]
- Hlushkova, D.B.; Bagrov, V.A.; Saenko, V.A.; Volchuk, V.M.; Kalinin, A.V.; Kalinina, N.E. Study of wear of the building-up zone of martensite-austenitic and secondery hardening steels of the Cr-Mn-Ti system. Probl. At. Sci. Technol. 2023, 144, 105–109. [Google Scholar] [CrossRef]
- Sharma, L.; Chhibber, R.; Kumar, V.; Khan, W.N. Element transfer investigations on silica based Submerged Arc welding fluxes. Silicon 2022, 15, 301–319. [Google Scholar] [CrossRef]
- Trembach, B.; Balenko, O.; Davydov, V.; Brechko, V.; Trembach, I.; Kabatskyi, O. Prediction the Melting Characteristics of Self-Shielded Flux Cored arc Welding (FCAW-S) with Exothermic Addition (CuO-Al). In Proceedings of the IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 20–23 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Świerczyńska, A.; Varbai, B.; Pandey, C.; Fydrych, D. Exploring the trends in flux-cored arc welding: Scientometric analysis approach. Int. J. Adv. Manuf. Technol. 2024, 130, 87–110. [Google Scholar] [CrossRef]
- Liu, Q.; Mi, H.; Feng, L.; Guo, W.; He, B. A critical overview of welding and directed energy deposition with flux-cored wires. J. Manuf. Process. 2025, 142, 231–268. [Google Scholar] [CrossRef]
- Júnior, J.G.F.; Cardoso, A.H.C.; Bracarense, A.Q. Effects of TiC formation in situ by applying titanium chips and other ingredients as a flux of tubular wire. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 375. [Google Scholar] [CrossRef]
- Fagundes, J.G.; Moreno, A.M.; Ribeiro, P.H.; Arias, A.R.; Bracarense, A.Q. Formation of TiC by the application of Ti6Al4V machining chips as flux compounds of tubular wires. J. Phys. Conf. Ser. 2018, 1126, 012027. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Trembach, B.; Hossain, M.M.; Kabir, M.H.; Silchenko, Y.; Krbata, M.; Sadovyi, K.; Kolomiitse, O.; Ropyak, L. Prediction of phase composition and mechanical properties Fe–Cr–C–B–Ti–Cu hardfacing alloys: Modeling and experimental validations. Heliyon 2024, 10, e25199. [Google Scholar] [CrossRef] [PubMed]
- Bembenek, M.; Prysyazhnyuk, P.; Shihab, T.; Machnik, R.; Ivanov, O.; Ropyak, L. Microstructure and Wear Characterization of the Fe-Mo-B-C-Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022, 15, 5074. [Google Scholar] [CrossRef]
- Shihab, S.T.A.; Prysyazhnyuk, P.; Andrusyshyn, R.; Lutsak, L.; Ivanov, O.; Tsap, I. Forming the structure and the properties of electric arc coatings based on high manganese steel alloyed with titanium and niobium carbides. East.-Eur. J. Enterp. Technol. 2020, 1, 38–44. [Google Scholar] [CrossRef]
- Brykov, M.N.; Akrytova, T.O.; Osipov, M.J.; Petryshynets, I.; Puchy, V.; Efremenko, V.G.; Shimizu, K.; Kunert, M.; Hesse, O. Abrasive Wear of High-Carbon Low-Alloyed Austenite Steel: Microhardness, Microstructure and X-ray Characteristics of Worn Surface. Material 2021, 14, 6159. [Google Scholar] [CrossRef]
- Zurnadzhy, V.I.; Efremenko, V.G.; Brykov, M.N.; Petryshynets, I.; Pastukhova, T.V.; Kussa, R.A. The Metastability of Retained Austenite in Multiphase Steel during Abrasive Wear. J. Frict. Wear 2020, 41, 119–124. [Google Scholar] [CrossRef]
- Luo, Q.; Zhu, J. Wear property and wear mechanisms of High-manganese austenitic hadfield steel in dry reciprocal sliding. Lubricants 2022, 10, 37. [Google Scholar] [CrossRef]
- Trembach, B.; Grin, A.; Makarenko, N.; Zharikov, S.; Trembach, I.; Markov, O. Influence of the core filler composition on the recovery of alloying elements during the self-shielded flux-cored arc welding. J. Mater. Res. Technol. 2020, 9, 10520–10528. [Google Scholar] [CrossRef]
- Karimi, M.R.; Wang, S.H.; Jelovica, J. Characterization of cold metal transfer and conventional short-circuit gas metal arc welding processes for depositing tungsten carbide-reinforced metal matrix composite overlays. Int. J. Adv. Manuf. Technol. 2023, 128, 2551–2570. [Google Scholar] [CrossRef]
- Kim, C.J.; Seo, B.W.; Son, H.J.; Kim, S.; Kim, D.; Cho, Y.T. Slag inclusion-free flux cored wire arc directed energy deposition process. Mater. Des. 2024, 238, 112669. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, K.; Liu, H.; Ma, G. Characteristics of short-circuit behaviour and its influencing factors in self-shielded flux-cored arc welding. Sci. Technol. Weld. Join. 2016, 21, 91–98. [Google Scholar] [CrossRef]
- Park, Y.D.; Kang, N.; Malene, S.H.; Olson, L. Effect of exothermic additions on heat generation and arc process efficiency in flux-cored arc welding. Met. Mater. Int. 2007, 13, 501–509. [Google Scholar] [CrossRef]
- Trembach, I.O.; Trembach, B.O.; Grin, A.G.; Luzhetskyy, R.Y.; Brechko, V.O.; Zakovorotniy, O.Y.; Balenko, O.I.; Molchanov, H.I.; Rebrova, O.M.; Kabatskyi, O.V. Application of a complete factorial experiment for optimization of the filling factor and charge density of self-shielding flux-cored powder wire. Mater. Sci. 2025, 60, 52–59. [Google Scholar] [CrossRef]
- Vlasov, A.F.; Makarenko, N.A. Special features of heating and melting electrodes with an exothermic mixture in the coating. Weld. Int. 2016, 30, 717–722. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Hu, J.; Han, K.; Wang, Z.; Yang, R.; Liu, D. Underwater wet welding of high-strength low-alloy steel using self-shielded flux-cored wire with highly exothermic Al/CuO mixture. J. Mater. Process. Technol. 2024, 328, 118404. [Google Scholar] [CrossRef]
- Li, H.L.; Liu, D.; Guo, N.; Chena, H.; Dua, Y.P.; Feng, J.C. The effect of alumino-thermic addition on underwater wet welding process stability. J. Mater. Process. Technol. 2017, 245, 149–156. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Trembach, B.; Katinas, E.; Sadovyi, K.; Krbata, M.; Balenko, O.; Krasnoshapka, I.; Rebrova, O.; Knyazev, S.; Kabatskyi, O.; et al. Effect of Exothermic Additions in Core Filler on Arc Stability and Microstructure during Self-Shielded, Flux-Cored Arc Welding. Crystals 2024, 14, 335. [Google Scholar] [CrossRef]
- Park, S.; Won, J.; Yoo, S.; Moon, B.; Kim, C.; Kang, N. Influence of welding position and dilution on mechanical properties and strengthening design of flux cored arc weld metal for high manganese steels. Int. J. Adv. Manuf. Technol. 2024, 130, 3509–3523. [Google Scholar] [CrossRef]
- Trembach, B.; Trembach, I.; Maliuha, V.; Knyazev, S.; Krbata, M.; Kabatskyi, O.; Balenko, O.; Zarichniak, Y.; Brechka, M.; Mykhailo, B.; et al. Study of self-shielded flux-cored wire with exothermic additions CuO-Al on weld bead morphology, microstructure, and mechanical properties. Int. J. Adv. Manuf. Technol. 2025, 137, 4685–4711. [Google Scholar] [CrossRef]
- Trembach, B.; Silchenko, Y.; Balenko, O.; Hlachev, D.; Kulahin, K.; Heiko, H.; Bellorin-Herrera, O.; Khabosha, S.; Zakovorotnyi, O.; Trembach, I. Study of the hardfacing process using self-shielding flux-cored wire with an exothermic addition with a combined oxidizer of the Al-(CuO/Fe2O3) system. Int. J. Adv. Manuf. Technol. 2024, 134, 309–335. [Google Scholar] [CrossRef]
- Passos, T.A.; Costa, H.; Luz, F.K.C.; Pintaude, G. The Effect of the Dilution Level on Microstructure and Wear Resistance of Fe-Cr-CV Hardfacing Coatings Deposited by PTA-P. Coatings 2022, 12, 1835. [Google Scholar] [CrossRef]
- DIN 1614-1:1990; Cold-Rolled Steel Sheet and Strip; Technical Delivery Conditions; General Quality Grade (St 12 to St 34). Deutsches Institut für Normung e.V. (DIN): Berlin, Germany, 1990.
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar] [CrossRef]
- Trembach, B.; Grin, A.; Turchanin, M.; Makarenko, N.; Markov, O.; Trembach, I. Application of Taguchi method and ANOVA analysis for optimization of process parameters and exothermic addition (CuO–Al) introduction in the core filler during self-shielded flux-cored arc welding. Int. J. Adv. Manuf. Technol. 2021, 114, 1099–1118. [Google Scholar] [CrossRef]
- Alao, A.R.; Konneh, M. Application of Taguchi and Box-Behnken designs for surface roughness in precision grinding of silicon. Int. J. Precis. Technol. 2011, 2, 21–38. [Google Scholar] [CrossRef]
- Matsuoka, N.; Terano, M.; Ishiguro, T.; Abe, E.; Yukawa, N.; Ishikawa, T.; Ueshima, Y.; Yamamoto, K.; Isobe, K. Computer Simulation of Deformation Behavior of Non-metallic Inclusion in Hot-rolling. Procedia Eng. 2014, 81, 120–125. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Zhang, J.; Ren, Q.; Zhang, L.; Ge, Y. Properties of typical non-metallic inclusions in steel: First-principles calculations. Mater. Today Commun. 2023, 34, 105118. [Google Scholar] [CrossRef]
- Jafarian, H.R.; Sabzi, M.; Mousavi Anijdan, S.H.; Eivani, A.R.; Park, N. The Influence of Austenitization Temperature on Microstructural Developments, Mechanical Properties, Fracture Mode and Wear Mechanism of Hadfield High Manganese Steel. J. Mater. Res. Technol. 2021, 10, 819–831. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Hu, C.; Wang, Z.; Han, K.; Liu, D.; Wang, J.; Zhu, Q. The Efficiency of Thermite-Assisted Underwater Wet Flux-Cored Arc Welding Process: Electrical Dependence, Microstructural Changes, and Mechanical Properties. Metals 2023, 13, 831. [Google Scholar] [CrossRef]
The Name of the Component | Content of the Components in Core Filler of FCAW-S [wt.%] |
---|---|
Gas-slag-forming components | |
Fluorite concentrate GOST 4421-73 | 10 |
Rutile concentrate GOST 22938-78 | 6 |
Calcium carbonate GOST 8252-79 | 3 |
Zirconium dioxide GOST 21907-76 | 3 |
Components of exothermic addition | |
Oxide of manganese powder-like GOST 4470-79 | 21 |
Aluminum powder PA1 GOST 6058-73 | 9 |
Alloying and deoxidizers | |
Ferromanganese FMN-88A GOST 4755-91 | 20 |
Ferrosilicon FS-92 GOST 1415-78 | 2 |
Titanium powder PTM-3 TU 14-22-57-92 | 5 |
Metal Chrome X99 GOST 5905-79 | 6.2 |
Oxide of yttrium powder-like TU 48-4-524-80 | 1.6 |
Graphite | 7.6 |
Iron powder PZhR-1 GOST 9849-86 | 5.6 |
Code | Input Variable (Factor) | Unit | Notation | Level | ||
---|---|---|---|---|---|---|
Low (1) | Average (2) | High (3) | ||||
A | Travel speed | [m·min−1] | TS | 0.27 | 0.47 | 0.69 |
B | Arc welding voltage | [V] | Uset | 26.0 | 29.2 | 32.5 |
C | Contact tip to work distance | [mm] | CTWD | 30 | 40 | 50 |
D | Wire feed speed | [m·min−1] | WFS | 1.50 | 2.07 | 2.73 |
№ | Code Mean | Fact Mean | ||||||
---|---|---|---|---|---|---|---|---|
Factor A | Factor B | Factor C | Factor D | TS [m·min−1] | Uset [V] | CTWD [mm] | WFS [m·min−1] | |
1 | 1 | 1 | 1 | 1 | 0.27 | 26.0 | 30 | 1.50 |
2 | 1 | 2 | 2 | 2 | 0.27 | 29.2 | 40 | 2.07 |
3 | 1 | 3 | 3 | 3 | 0.27 | 32.5 | 50 | 2.73 |
4 | 2 | 1 | 2 | 3 | 0.47 | 26.0 | 40 | 2.73 |
5 | 2 | 2 | 3 | 1 | 0.47 | 29.2 | 50 | 1.50 |
6 | 2 | 3 | 1 | 2 | 0.47 | 32.5 | 30 | 2.07 |
7 | 3 | 1 | 3 | 2 | 0.69 | 26.0 | 50 | 2.07 |
8 | 3 | 2 | 1 | 3 | 0.69 | 29.2 | 30 | 2.73 |
9 | 3 | 3 | 2 | 1 | 0.69 | 32.5 | 40 | 1.50 |
№ | Average Welding Current Iaw [A] | Average Arc Voltage Uaw [V] | Heat Input | ||||||||
HI (e) [kJ·mm−1] | HI (c) [kJ·mm−1] | Diff. [kJ·mm−1] | Dev. [%] | ||||||||
1 | 240.4 | 22.30 | 0.905 | 0.894708 | 0.009947 | 1.14% | |||||
2 | 302.6 | 21.20 | 1.083 | 1.169728 | −0.087176 | −8.01% | |||||
3 | 358.5 | 25.30 | 1.531 | 1.453342 | 0.077229 | 5.07% | |||||
4 | 47.8 | 16.00 | 0.675 | 0.549353 | 0.126109 | 18.61% | |||||
5 | 213.6 | 28.00 | 0.577 | 0.697459 | −0.120739 | −20.88% | |||||
6 | 322.1 | 27.20 | 0.845 | 0.850193 | −0.005370 | −0.61% | |||||
7 | 325.0 | 19.60 | 0.414 | 0.481392 | −0.066958 | −16.28% | |||||
8 | 393.8 | 21.80 | 0.559 | 0.486719 | 0.071813 | 12.93% | |||||
9 | 259.2 | 28.90 | 0.487 | 0.492213 | −0.004855 | −1.07% | |||||
№ | Cooling time | Cooling rate | |||||||||
Δ t8/5 (e) [] | Δt8/5 (e) [s] | Diff. [s] | Dev. [%] | CR (e) [°C·s−1] | CR (c) [°C·s−1] | Diff. [°C·s−1] | Dev. | ||||
1 | 4.207 | 4.160439 | 0.046254 | 1.11% | 71.3 | 71.2216 | 0.0934 | 0.11% | |||
2 | 5.034 | 5.439294 | −0.405374 | −8.05% | 59.6 | 56.2343 | 3.3614 | 5.65% | |||
3 | 7.117 | 6.758112 | 0.359120 | 5.04% | 42.2 | 45.2460 | −3.0948 | −7.22% | |||
4 | 3.141 | 2.554521 | 0.586415 | 18.67% | 95.5 | 108.9094 | −13.3965 | −14.04% | |||
5 | 2.682 | 3.243220 | −0.561442 | −20.93% | 111.9 | 92.1757 | 19.6905 | 17.63% | |||
6 | 3.928 | 3.953440 | −0.024973 | −0.65% | 76.4 | 83.3396 | −6.9739 | −9.08% | |||
7 | 1.927 | 2.238496 | −0.311359 | −16.16% | 155.7 | 146.6686 | 9.0026 | 5.80% | |||
8 | 2.597 | 2.263269 | 0.333932 | 12.85% | 115.5 | 130.0900 | −14.5811 | −12.63% | |||
9 | 2.266 | 2.288815 | −0.022574 | −1.01% | 132.4 | 126.4793 | 5.8984 | 4.47% |
Parameter | Coefficient of Determination R-Sqr | Adjusted Sum of Squares (SS) | Model Quality | MS Residual |
---|---|---|---|---|
Heat input (HI) | 0.94589 | 0.89177 | Good | 0.0134593 |
Cooling rate (CR) | 0.99986 | 0.99946 | Very good | 0.7312838 |
Cooling time (Δt8/5) | 0.94589 | 0.89177 | Good | 0.2910308 |
No. | Number of Grains | Grain Size [μm] | ||
---|---|---|---|---|
Average | Minimum | Maximum | ||
1 | 1291 | 5.1 | 0.9 | 86.1 |
2 | 30 | 35.3 | 7.9 | 133.8 |
3 | 765 | 0.9 | 63.5 | 5.2 |
4 | 31 | 27.1 | 7.1 | 79.9 |
5 | 30 | 24.4 | 8.2 | 57.4 |
6 | 31 | 16.8 | 7.0 | 31.9 |
7 | 1009 | 3.5 | 0.9 | 31.3 |
8 | 1421 | 3.5 | 0.9 | 26.6 |
9 | 31 | 22.5 | 8.1 | 51.1 |
№ | Grain Size | |||
---|---|---|---|---|
GS (e) [μm] | GS (c) [μm] | Diff. [μm] | Dev. [%] | |
1 | 5.10 | 4.92 | 0.18 | 0.04 |
2 | 35.30 | 24.24 | 11.06 | 0.31 |
3 | 0.90 | 5.57 | −4.67 | −5.19 |
4 | 27.10 | 23.01 | 4.09 | 0.15 |
5 | 24.40 | 27.71 | −3.31 | −0.14 |
6 | 16.80 | 27.85 | −11.05 | −0.66 |
7 | 3.50 | 3.52 | −0.02 | −0.01 |
8 | 3.50 | 2.92 | 0.58 | 0.17 |
9 | 22.50 | 19.37 | 3.13 | 0.14 |
No. | Number of NMIs | Average Area, µm2 | Average Perimeter, µm | Length, µm | ||
---|---|---|---|---|---|---|
Average | Min | Max | ||||
1 | 2816 | 8.9 | 11.6 | 4.3 | 81.2 | 115.9 |
2 | 1971 | 12.2 | 13.4 | 4.5 | 0.9 | 110.8 |
3 | 1483 | 25.8 | 77.9 | 17.9 | 1.1 | 555.0 |
4 | 617 | 17.6 | 19.9 | 6.8 | 1.2 | 67.2 |
5 | 214 | 9.3 | 12.3 | 4.5 | 1.1 | 21.1 |
6 | 229 | 19.0 | 18.5 | 6.2 | 1.2 | 118.7 |
7 | 589 | 9.5 | 12.9 | 4.9 | 1.2 | 109.4 |
8 | 128 | 14.9 | 14.1 | 5.3 | 1.2 | 39.4 |
9 | 429 | 15.9 | 14.1 | 5.0 | 1.2 | 59.0 |
№ | Number of Nonmetal Inclusions | Average Area | ||||||
NNMI (e) [pcs] | NNMI (c) [pcs] | Diff. [pcs] | Dev. | SNMI (e) [µm2] | SNMI (c) [µm2] | Diff. [µm2] | Dev. | |
1 | 2816 | 2840.45 | −24.45 | −0.01 | 12.2 | 13.48 | −1.28 | −0.11 |
2 | 1971 | 1922.85 | 48.15 | 0.02 | 25.8 | 26.21 | −0.41 | −0.02 |
3 | 1483 | 1506.71 | −23.71 | −0.02 | 17.6 | 17.19 | 0.41 | 0.02 |
4 | 617 | 633.59 | −16.59 | −0.03 | 9.3 | 10.17 | −0.87 | −0.09 |
5 | 214 | 181.33 | 32.67 | 0.15 | 19.0 | 17.07 | 1.93 | 0.10 |
6 | 229 | 245.08 | −16.08 | −0.07 | 9.5 | 10.41 | −0.91 | −0.10 |
7 | 589 | 547.97 | 41.03 | 0.07 | 14.9 | 13.48 | 1.42 | 0.10 |
8 | 128 | 208.82 | −80.82 | −0.63 | 15.9 | 17.06 | −1.17 | −0.07 |
9 | 429 | 389.21 | 39.79 | 0.09 | 8.9 | 8.03 | 0.87 | 0.10 |
№ | Maximum length | Average length | ||||||
LLNMI (e) [µm] | LLNMI (c) [µm] | Diff. [µm] | Dev. | LNMI (e) [µm] | LNMI (c) [µm] | Diff. | Dev. | |
1 | 115.9 | 112.71 | 3.19 | 0.03 | 4.30 | 4.81 | −0.51 | −0.20 |
2 | 110.8 | 111.26 | −0.46 | −0.00 | 4.50 | 5.40 | −0.90 | 0.01 |
3 | 555.0 | 555.19 | −0.19 | 0.00 | 17.90 | 17.74 | 0.16 | −0.02 |
4 | 67.2 | 67.01 | 0.19 | 0.00 | 6.80 | 6.96 | −0.16 | 0.11 |
5 | 21.1 | 24.29 | −3.19 | −0.15 | 4.50 | 3.99 | 0.51 | 0.10 |
6 | 118.7 | 119.68 | −0.98 | −0.01 | 6.20 | 5.56 | 0.64 | 0.19 |
7 | 109.4 | 95.86 | 13.54 | 0.12 | 4.90 | 3.98 | 0.92 | −0.02 |
8 | 39.4 | 69.07 | −29.67 | −0.75 | 5.30 | 5.40 | −0.10 | −0.11 |
9 | 59.0 | 41.44 | 17.56 | 0.30 | 5.00 | 5.56 | −0.56 | −0.12 |
Parameter | Coefficient of Determination R-Sqr | Adjusted Sum of Squares (SS) | Model Quality |
---|---|---|---|
Number of nonmetal inclusions (NNMI) | 0.99789 | 0.99157 | Very good |
Average area (SNMI) | 0.9649 | 0.92981 | Good |
Maximum length (LLNMI) | 0.99337 | 0.9735 | Very good |
Average length (LNMI) | 0.99298 | 0.98127 | Very good |
№ | N Specimen | Hardness | |||
---|---|---|---|---|---|
HRA (e) | HRA (c) | Diff. | Dev. | ||
1 | P5-E1-1 | 62.00 | 60.04 | 1.96 | 0.03 |
2 | P5-E1-2 | 61.00 | 63.25 | −2.25 | −0.04 |
3 | P5-E1-3 | 58.00 | 57.72 | 0.28 | 0.01 |
4 | P5-E1-4 | 69.00 | 67.55 | 1.45 | 0.02 |
5 | P5-E1-5 | 69.00 | 69.56 | −0.56 | −0.01 |
6 | P5-E1-6 | 72.00 | 72.89 | −0.89 | −0.01 |
7 | P5-E1-7 | 79.00 | 75.86 | 3.14 | 0.04 |
8 | P5-E1-8 | 69.00 | 70.73 | −1.73 | −0.03 |
9 | P5-E1-9 | 71.00 | 72.40 | −1.40 | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trembach, B.; Trembach, I.; Grin, A.; Makarenko, N.; Babych, O.; Knyazev, S.; Musairova, Y.; Krbata, M.; Balenko, O.; Vorobiov, O.; et al. Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties. Eng 2025, 6, 125. https://doi.org/10.3390/eng6060125
Trembach B, Trembach I, Grin A, Makarenko N, Babych O, Knyazev S, Musairova Y, Krbata M, Balenko O, Vorobiov O, et al. Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties. Eng. 2025; 6(6):125. https://doi.org/10.3390/eng6060125
Chicago/Turabian StyleTrembach, Bohdan, Illia Trembach, Aleksandr Grin, Nataliia Makarenko, Olha Babych, Sergey Knyazev, Yuliia Musairova, Michal Krbata, Oleksii Balenko, Oleh Vorobiov, and et al. 2025. "Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties" Eng 6, no. 6: 125. https://doi.org/10.3390/eng6060125
APA StyleTrembach, B., Trembach, I., Grin, A., Makarenko, N., Babych, O., Knyazev, S., Musairova, Y., Krbata, M., Balenko, O., Vorobiov, O., & Panchenko, A. (2025). Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties. Eng, 6(6), 125. https://doi.org/10.3390/eng6060125