Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,509)

Search Parameters:
Keywords = thermal inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4945 KB  
Article
Divergent Urban Canopy Heat Island Responses to Heatwave Type over the Tibetan Plateau: A Case Study of Xining
by Guoxin Chen, Xiaofan Lu, Qiong Li, Siqi Zhang and Suonam Kealdrup Tysa
Land 2025, 14(10), 2033; https://doi.org/10.3390/land14102033 (registering DOI) - 12 Oct 2025
Abstract
The escalating heatwave risks over the Tibetan Plateau (TP) highlight unresolved gaps in understanding multitype mechanisms and diurnal urban canopy heat island (UCHI) responses. Using Xining’s high-density observational network (2018–2023) and by employing comparative analysis (urban–rural, heatwave versus non-heatwave days) and composite analysis, [...] Read more.
The escalating heatwave risks over the Tibetan Plateau (TP) highlight unresolved gaps in understanding multitype mechanisms and diurnal urban canopy heat island (UCHI) responses. Using Xining’s high-density observational network (2018–2023) and by employing comparative analysis (urban–rural, heatwave versus non-heatwave days) and composite analysis, we found: During the record-breaking July 2022 heatwave across the TP, Xining reached an extreme UCHI peak (z-score: 3.0). Critically asymmetric UCHI responses as daytime heatwaves amplify mean intensity by 0.35 °C via extreme value shifts, whereas nighttime events suppress it by 0.31 °C. Crucially, heatwaves induce negligible daytime UCHI modulation but drive comparable magnitude nighttime UCHI intensification (during daytime events) and reduction (during nighttime events), demonstrating type-dependent and diurnally asymmetric urban thermal sensitivities. Heatwaves driven by distinct synoptic patterns; daytime events are controlled by an anomaly anticyclone (cloudless, dry conditions), while nighttime events occur under plateau-north anticyclones (cloudy, humid conditions). These patterns fundamentally reshape heatwave–UCHI interactions through divergent mechanisms: Daytime/nighttime heatwaves amplify/suppress nocturnal UCHI through enhanced/reduced urban heat storage and accelerated/inhibited rural radiative cooling. Our case study demonstrates that although heatwaves generally amplify nocturnal UCHI, in dry regions, their synoptic drivers significantly modify this nighttime synergy. The nocturnal UCHI during heatwave is not only driven by humidity effects but also modulated by cloud cover-regulated rural radiative cooling and urban thermal storage. These findings establish a mechanistic framework for heatwaves–UCHI interactions and provide actionable insights for heat-resilient planning in high-altitude arid cities. Full article
Show Figures

Figure 1

29 pages, 51386 KB  
Article
Aspirin Eugenol Ester Alleviates Vascular Endothelial Ferroptosis by Enhancing Antioxidant Ability and Inhibiting the JNK/c-Jun/NCOA4/FTH Signaling Pathway
by Ji Feng, Qi Tao, Zhi-Jie Zhang, Qin-Fang Yu, Ya-Jun Yang and Jian-Yong Li
Antioxidants 2025, 14(10), 1220; https://doi.org/10.3390/antiox14101220 - 10 Oct 2025
Abstract
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering [...] Read more.
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering ferroptosis. Aspirin eugenol ester (AEE) showed pharmacological activity against oxidative stress-induced vascular endothelial damage. However, whether it could alleviate vascular endothelial damage by inhibiting ferroptosis remains unclear. This study aimed to evaluate the effects of AEE on vascular endothelial ferroptosis and elucidate its underlying molecular mechanisms. This study established vascular endothelial damage models in vitro and in vivo to explore the ability of AEE to inhibit ferroptosis and oxidative stress by measuring ferroptosis- and oxidative stress-related biomarkers. Transcriptomic and network pharmacology analyses were performed to identify AEE-regulated pathways and key targets. Validation of the pathways were conducted using molecular docking, cellular thermal shift assay, and specific protein agonists/inhibitors. AEE inhibited oxidative stress and ferroptosis in bovine aortic endothelial cells induced by hydrogen peroxide (H2O2) or RSL3 via suppressing the upregulation of ferroptosis-related genes and enhancing the expression of antioxidant genes. Transcriptomic and network pharmacology analyses identified JNK as a core target of AEE in regulating ferroptosis. JNK agonists enhanced H2O2-induced ferritinophagy; on the contrary, JNK inhibitors alleviated it. AEE suppressed H2O2-induced phosphorylation of JNK/c-Jun and ferritinophagy. In a carrageenan-induced rat aortic vascular endothelial damage model, AEE alleviated vascular endothelial damage and ferroptosis-related gene changes, promoted antioxidant gene expression, and inhibited JNK/c-Jun phosphorylation and ferritinophagy. AEE inhibited vascular endothelial ferroptosis by enhancing antioxidant ability, blocking downstream ferritinophagy, and reducing ferrous ion release. Full article
(This article belongs to the Section Aberrant Oxidation of Biomolecules)
Show Figures

Graphical abstract

29 pages, 3501 KB  
Article
Natural SilibininLinoleate: A Protective Antioxidant in Edible Vegetable Oils
by Cristina Adriana Dehelean, Sergio Liga, Mariana-Atena Poiana, Ileana Cocan, Dorina Coricovac, Liliana Cseh, Mariana Suba and Ersilia Alexa
Foods 2025, 14(19), 3430; https://doi.org/10.3390/foods14193430 - 6 Oct 2025
Viewed by 352
Abstract
This study evaluated the potential of silibinin linoleate (SL), a natural derivative of silibinin, as an antioxidant to improve the thermal stability of sunflower oil (SF). SL was synthesized through green technology by enzymatic esterification, using mild reaction conditions. SL was added to [...] Read more.
This study evaluated the potential of silibinin linoleate (SL), a natural derivative of silibinin, as an antioxidant to improve the thermal stability of sunflower oil (SF). SL was synthesized through green technology by enzymatic esterification, using mild reaction conditions. SL was added to high-oleic SF samples at three concentrations (200, 400, and 600 ppm), and the oils were subjected to heating at 180 °C for 4 and 8 h. Oxidative stability, fatty acid composition, and nutritional indices were analyzed. The results showed that 600 ppm SL provided the strongest antioxidant effect, significantly reducing oxidation parameters after 8 h of heating, in addition to the following values: peroxide value (PV) 14.22 ± 0.31 meq O2/kg, p-anisidine value (p-AV) 22.85 ± 0.34, inhibition of oxidation (IO) 56.41 ± 0.31%, and total oxidation value (TOTOX) 51.30 ± 0.39. FTIR spectroscopy confirmed that SL effectively protected the triglyceride structure and limited the formation of oxidation by-products. SL demonstrated a protective effect against thermal oxidation in sunflower oil, with its efficacy being clearly dose-dependent. At 600 ppm, SL showed comparable or superior activity to BHT. However, this effect was specific to the highest tested concentration and does not indicate superiority across all concentrations. These findings suggest that SL has potential as a natural antioxidant for improving oil stability, but further studies are needed to validate SL as a practical and scalable alternative to synthetic antioxidants in the food industry. Full article
Show Figures

Figure 1

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Viewed by 808
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

16 pages, 8778 KB  
Article
Herbicidal Control Potential of the Endophytic Bacterium B. pseudorignonensis BFYBC-8 Isolated from E. crus-galli Seeds
by Dashan Yang, Quanlong He, Qingling Wang, Jing Zhou, Haiyan Ke, Xin Wen, Jiawei Pan, Yi Zhou and Jianwei Jiang
Microorganisms 2025, 13(10), 2293; https://doi.org/10.3390/microorganisms13102293 - 2 Oct 2025
Viewed by 302
Abstract
The long-term application of traditional chemical herbicides has caused a significant escalation in herbicide resistance of barnyard grass (Echinochloa crus-galli). As an eco-friendly alternative, biological herbicides demonstrate substantial application potential. Acknowledging the growing herbicide resistance of E. crus-galli, this study [...] Read more.
The long-term application of traditional chemical herbicides has caused a significant escalation in herbicide resistance of barnyard grass (Echinochloa crus-galli). As an eco-friendly alternative, biological herbicides demonstrate substantial application potential. Acknowledging the growing herbicide resistance of E. crus-galli, this study aimed to screen target bacteria with inhibitory effects on the growth for bio-herbicide development. By using ungerminated E. crus-galli seeds as the screening substrate, a bacterial strain (BFYBC-8) with potent inhibitory activity was isolated and identified as Brucella pseudorignonensis. Pot experiments revealed that inoculation with B. pseudorignonensis BFYBC-8 significantly suppressed E. crus-galli growth, reducing plant height by 16.7% and root length by 85.1%, while markedly inhibiting biomass accumulation. Fluorescent labeling with green fluorescent protein (GFP) showed that BFYBC-8 successfully colonized the root intercellular spaces of E. crus-galli and extended continuously along the tissue matrix. Additionally, the strain’s supernatant metabolic products exhibited exceptional thermostability: inhibitory activity against E. crus-galli was maintained after thermal treatment at 28 °C, 60 °C, 80 °C, and 100 °C. Crucially, the bacterium displayed no toxicity to agronomically important crops such as rice, wheat, and corn. This study highlights B. pseudorignonensis BFYBC-8 as a promising candidate for bioherbicide development and provides an important reference for applying seed-associated pathogenic bacteria in developing bioherbicides for sustainable weed management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 3800 KB  
Article
Study on Carboxymethylation Modification of Konjac Gum and Its Effect in Drilling Fluid and Fracturing Fluid
by Yongfei Li, Pengli Guo, Kun Qu, Weichao Du, Yanling Wang and Gang Chen
Gels 2025, 11(10), 792; https://doi.org/10.3390/gels11100792 - 2 Oct 2025
Viewed by 290
Abstract
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum [...] Read more.
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum easily forms a weak gel network in water, but its water solubility and thermal stability are poor, and it is easily degraded at high temperatures. Therefore, its application in drilling fluid and fracturing fluid is limited. In this paper, a method of carboxymethyl modification of KGM was developed, and a carboxymethyl group was introduced to adjust KGM’s hydrogel forming ability and stability. Carboxymethylated Konjac glucomannan (CMKG) is a water-soluble anionic polysaccharide derived from natural Konjac glucomannan. By introducing carboxymethyl groups, CMKG overcomes the limitations of the native polymer, such as poor solubility and instability, while retaining its safe and biocompatible nature, making it an effective natural polymer additive for oilfield applications. The results show that when used as a drilling fluid additive, CMKG can form a stable three-dimensional gel network through molecular chain cross-linking, significantly improving the rheological properties of the mud. Its unique gel structure can enhance the encapsulation of clay particles and inhibit clay hydration expansion. When used as a fracturing fluid thickener, the viscosity of the gel system formed by CMKG at 0.6% (w/v) is superior to that of the weak gel system of KGM. The heat resistance/shear resistance tests confirm that the gel structure remains intact under high-temperature and high-shear conditions, meeting the sand-carrying capacity requirements for fracturing operations. The gel-breaking experiment shows that the system can achieve controlled degradation within 300 min, in line with on-site gel-breaking specifications. This modification process not only improves the rheological properties and water solubility of the CMKG gel but also optimizes the gel stability and controlled degradation through molecular structure adjustment. Full article
Show Figures

Graphical abstract

20 pages, 7147 KB  
Article
Application Potential of Lion’s Mane Mushroom in Soy-Based Meat Analogues by High Moisture Extrusion: Physicochemical, Structural and Flavor Characteristics
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(19), 3402; https://doi.org/10.3390/foods14193402 - 1 Oct 2025
Viewed by 399
Abstract
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product [...] Read more.
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product quality by acting as a secondary phase that inhibited lateral protein aggregation while promoting longitudinal alignment, achieving a peak fibrous degree of 1.54 with dense, ordered fibers confirmed by scanning electron microscopy. Rheological analysis showed that LMM improved viscoelasticity (G′ > G″) through β-glucan; however, excessive addition (≥30%) compromised structural integrity due to insoluble dietary fiber disrupting protein network continuity, concurrently reducing thermal stability as denaturation enthalpy (ΔH) decreased from 1176.6 to 776.3 J/g. Flavor analysis identified 285 volatile compounds in HMMAs with 20% LMM, including 98 novel compounds, and 101 flavor metabolites were upregulated. The mushroom-characteristic compound 1-octen-3-ol exhibited a marked increase in its Relative Odor Activity Value of 18.04, intensifying mushroom notes. Furthermore, LMM polysaccharides promoted the Maillard reaction, increasing the browning index from 48.77 to 82.07, while β-glucan induced a transition in protein secondary structure from random coil to β-sheet configurations via intramolecular hydrogen bonding. In conclusion, 20% LMM incorporation synergistically improved texture, fibrous structure, and flavor complexity—particularly enhancing mushroom aroma. This research offers valuable insights and a foundation for future research for developing high-quality fungal protein-based meat analogues Full article
Show Figures

Figure 1

28 pages, 10701 KB  
Article
The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S
by Ying Wei, Peiqing La, Yuehong Zheng, Faqi Zhan, Min Zhu, Penghui Yang, Haicun Yu and Ruixin Li
Crystals 2025, 15(10), 860; https://doi.org/10.3390/cryst15100860 - 30 Sep 2025
Viewed by 150
Abstract
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged [...] Read more.
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged as ideal heat transfer and thermal energy storage media. Metallic materials are susceptible to performance degradation under such conditions, which not only shortens equipment service life but also entails potential safety hazards. Thus, the development of alloy protection technologies resistant to molten salt corrosion has become an urgent priority for the deployment of next-generation CSP plants. Research has indicated that high-aluminum stainless steel is a promising candidate due to its unique advantages: it can form a stable Al2O3 protective film in oxygen-containing anionic environments, effectively inhibiting the dissolution of Cr, Fe, and other elements, and preventing the penetration of corrosive species. Additionally, the incorporation of magnesium-based corrosion inhibitors into MgCl2-NaCl-KCl ternary molten salt systems has been proven to be an economically viable and efficient corrosion mitigation strategy. This study focused on high-aluminum 310S heat-resistant steel, with its performance validated through targeted experiments: samples subjected to pre-oxidation at 800 °C for 2 h were immersed in a specific ternary molten salt mixture (20.4 wt.% KCl, 55.1 wt.% MgCl2, 24.5 wt.% NaCl) containing magnesium corrosion inhibitors, followed by a 600 h static corrosion test at 800 °C. The results revealed that the addition of magnesium significantly enhanced the corrosion resistance of high-aluminum 310S. These findings demonstrate that this material holds application potential in the storage tank and pipeline systems of next-generation CSP plants. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 3511 KB  
Article
Enhancement of Activity of Thermophilic Inorganic Pyrophosphatase Ton1914 via Site-Directed Mutagenesis
by Siyao Liu, Xinrui Yang, Renjun Gao and Guiqiu Xie
Biomolecules 2025, 15(10), 1395; https://doi.org/10.3390/biom15101395 - 30 Sep 2025
Viewed by 186
Abstract
Inorganic pyrophosphatase (PPase) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) into two phosphates. Ton1914, a thermophilic inorganic pyrophosphatase derived from Thermococcus onnurineus NA1, has good thermal stability and an extremely high optimum temperature and has been shown to reduce pyrophosphate [...] Read more.
Inorganic pyrophosphatase (PPase) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) into two phosphates. Ton1914, a thermophilic inorganic pyrophosphatase derived from Thermococcus onnurineus NA1, has good thermal stability and an extremely high optimum temperature and has been shown to reduce pyrophosphate inhibition. In this study, eight sites were selected based on sequence alignment and software calculations, and multiple single mutants were successfully constructed. After saturation and superposition mutations, six superior mutants were obtained. The enzyme activities of E97Y, D101K and L42F were increased 2.57-, 2.47- and 2.15-fold, respectively, while those of L42F/E97Y, L42F/D101K and E97Y/D101K were increased 2.60-, 2.63- and 1.88-fold, respectively, relative to the wild-type enzyme. Compared to Ton1914, all mutants more effectively increased PCR product quantity, reduced the number of qPCR cycles required to reach the threshold, and improved the efficiency of gene amplification. In the UDP-Galactose (UDP-Gal) synthesis reaction, the addition of mutants could further improve yield. When Ton1914 and mutants with the same activity were added, the yield of UDP-Gal was almost identical, effectively reducing the dosage of pyrophosphatase. Overall, the mutants showed greater prospects for industrial application. Full article
Show Figures

Figure 1

21 pages, 4240 KB  
Article
Development and Characterization of Effective Hemostatic Composites Based on Polyvinyl Alcohol/Kaolinite/Chitosan
by Aruzhan Alimbek, Bayansulu Otegenova, Zhanar Bekissanova, Balzhan Savdenbekova, Nailya Ibragimova, Renata Nemkayeva, Myroslav Sprynskyy and Alyiya Ospanova
Polymers 2025, 17(19), 2637; https://doi.org/10.3390/polym17192637 - 30 Sep 2025
Viewed by 295
Abstract
In this study, hemolytically safe and antibacterial polyvinyl alcohol/kaolinite/chitosan (PVA/KAO/CS) hydrogels were obtained using the freeze–thaw method. The structure of the chemical bonds present in the developed hydrogels was investigated by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) and optical microscopy [...] Read more.
In this study, hemolytically safe and antibacterial polyvinyl alcohol/kaolinite/chitosan (PVA/KAO/CS) hydrogels were obtained using the freeze–thaw method. The structure of the chemical bonds present in the developed hydrogels was investigated by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) and optical microscopy study results showed the morphological and structural characteristics of the hydrogels’ surface. The thermal stability and phase transitions of the obtained hydrogel samples were determined by thermogravimetric analysis (TGA). Porosity, swelling, gel fractions, and mechanical properties were also examined. Biomedical properties of the samples were evaluated using in vitro and in vivo tests such as hemolytic activity, inhibition of protein denaturation, antimicrobial activity, and hemostatic activity. The obtained hydrogels demonstrated safe hemolytic activity, pronounced hemostatic activity, the ability to prevent thermal denaturation of albumin, as well as antimicrobial activity against Gram-positive bacteria Staphylococcus aureus ATCC BAA-39 and Streptococcus pyogenes ATCC 19615 and Gram-negative bacteria Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 8739. All the obtained characteristics confirmed the promising biomedical applications of the obtained hydrogels. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 3868 KB  
Article
Effect of Riboflavin and Blue Light-Emitting Diode Irradiation on Microbial Inactivation and the Physicochemical Properties of Betel Leaves
by Rattanaporn Rinpan, Vethaga Panudta, Rawisara Phongkhedkham, Siriyakorn Janpitu, Suphat Phongthai, Wannaporn Klangpetch and Tabkrich Khumsap
Processes 2025, 13(10), 3130; https://doi.org/10.3390/pr13103130 - 29 Sep 2025
Viewed by 344
Abstract
This study evaluated the effectiveness of photodynamic treatment (PDT) using riboflavin (Rbf) and blue light-emitting diode (BL) irradiation for microbial inactivation and quality preservation in fresh betel leaves (Piper betle L.). Non-pathogenic surrogates Escherichia coli K-12 and Listeria innocua were used to [...] Read more.
This study evaluated the effectiveness of photodynamic treatment (PDT) using riboflavin (Rbf) and blue light-emitting diode (BL) irradiation for microbial inactivation and quality preservation in fresh betel leaves (Piper betle L.). Non-pathogenic surrogates Escherichia coli K-12 and Listeria innocua were used to model Gram-negative and Gram-positive bacteria. The combined Rbf-BL treatment significantly reduced microbial populations by up to 5.3 log CFU/g for E. coli and 6.2 log CFU/g for L. innocua on leaf surfaces (p < 0.05) and 1.3–1.5 log CFU/mL in broth cultures. Treated samples showed significantly higher total soluble solids (12.0 ± 0.0 °Brix), total phenolic content (0.17 ± 0.02 mmol GAE/g, p < 0.05), and antioxidant activity (62.0 ± 3.1% DPPH inhibition, p < 0.05), with minimal color alteration after treatment (ΔE = 4.68). The total fluence measured at the leaf surface was approximately 11.72 J/cm2. As a mild thermal treatment utilizing a GRAS photosensitizer, riboflavin-assisted PDT presents a promising strategy for enhancing microbial safety and promoting phytochemical quality in betel leaves. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
Show Figures

Graphical abstract

16 pages, 2423 KB  
Article
Numerical Simulation Study and Stress Prediction of Lithium-Ion Batteries Based on an Electrochemical–Thermal–Mechanical Coupled Model
by Juanhua Cao and Yafang Zhang
Batteries 2025, 11(10), 360; https://doi.org/10.3390/batteries11100360 - 29 Sep 2025
Viewed by 447
Abstract
In lithium-ion batteries, the fracture of active particles that are under stress is a key cause of battery aging, which leads to a reduction in active materials, an increase in internal resistance, and a decay in battery capacity. A coupled electrochemical–thermal–mechanical model was [...] Read more.
In lithium-ion batteries, the fracture of active particles that are under stress is a key cause of battery aging, which leads to a reduction in active materials, an increase in internal resistance, and a decay in battery capacity. A coupled electrochemical–thermal–mechanical model was established to study the concentration and stress distributions of negative electrode particles under different charging rates and ambient temperatures. The results show that during charging, the maximum lithium-ion concentration occurs on the particle surface, while the minimum concentration appears at the particle center. Moreover, as the temperature decreases, the concentration distribution of negative electrode active particles becomes more uneven. Stress analysis indicates that when charging at a rate of 1C and 0 °C, the maximum stress of particles at the negative electrode–separator interface reaches 123.7 MPa, while when charging at 30 °C, the maximum particle stress is 24.3 MPa. The maximum shear stress occurs at the particle center, presenting a tensile stress state, while the minimum shear stress is located on the particle surface, showing a compressive stress state. Finally, to manage the stress of active materials in lithium-ion batteries while charging for health maintenance, this study uses a DNN (Deep Neural Network) to predict the maximum shear stress of particles based on simulation results. The predicted indicators, MAE (Mean Absolute Error) and RMSE (Root Mean Square Error), are 0.034 and 0.046, respectively. This research is helpful for optimizing charging strategies based on the stress of active materials in lithium-ion batteries during charging, inhibiting battery aging and improving safety performance. Full article
Show Figures

Figure 1

14 pages, 3677 KB  
Article
The Effect of ZrO2 Addition and Thermal Treatment on the Microstructure and Mechanical Properties of Aluminum Metal Matrix Composites (AMMCs)
by Isai Rosales-Cadena, Reyna Anahi Falcon-Castrejon, Rene Guardian-Tapia, Jose Luis Roman-Zubillaga, Sergio Ruben Gonzaga-Segura, Lazaro Abdiel Falcon-Franco, Victor Hugo Martinez-Landeros and Rumualdo Servin
Materials 2025, 18(19), 4507; https://doi.org/10.3390/ma18194507 - 28 Sep 2025
Viewed by 302
Abstract
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly [...] Read more.
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly ZrAl3 and Al2O3 phases had formed. Hardness evaluation indicated a maximum value of 63 HV for the zirconia-reinforced samples, representing an increase of approximately 70% compared with pure aluminum. This hardness increase was mainly attributed to the zirconia distribution in the aluminum matrix promoting lattice distortion, which promoted the inhibition of dislocation mobility. Wear tests indicated that the samples with 0.50 vol.% of ZrO2 added presented the lowest wear rate because of the hardness they acquired. The results are discussed considering composite strengthening due to ZrO2 addition and the thermal treatment applied (cooling rate). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 3309 KB  
Article
Formulation and Optimization of a Melissa officinalis-Loaded Nanoemulgel for Anti-Inflammatory Therapy Using Design of Experiments (DoE)
by Yetukuri Koushik, Nadendla Rama Rao, Uriti Sri Venkatesh, Gottam Venkata Rami Reddy, Amareswarapu V. Surendra and Thalla Sreenu
Gels 2025, 11(10), 776; https://doi.org/10.3390/gels11100776 - 26 Sep 2025
Viewed by 290
Abstract
This study reports the development and optimization of a Melissa officinalis oil-based nanoemulgel for transdermal delivery using a Design-of-Experiments (DoE) approach. A Central Composite Design (CCD) was applied to optimize Tween 80 concentration and homogenization time, resulting in a nanoemulsion with a droplet [...] Read more.
This study reports the development and optimization of a Melissa officinalis oil-based nanoemulgel for transdermal delivery using a Design-of-Experiments (DoE) approach. A Central Composite Design (CCD) was applied to optimize Tween 80 concentration and homogenization time, resulting in a nanoemulsion with a droplet size of 127.31 nm, PDI of 17.7%, and zeta potential of −25.0 mV, indicating good colloidal stability. FTIR analysis confirmed the presence of functional groups such as O–H, C=O, and C–O–C, supporting the oil’s phytochemical richness and therapeutic potential. DSC analysis revealed enhanced thermal stability and successful encapsulation, while SEM imaging showed a uniform and spherical microstructure. The drug release followed Higuchi kinetics (R2 = 0.900), indicating diffusion-driven release, with the Korsmeyer–Peppas model (n = 0.88) suggesting anomalous transport. Antibacterial studies showed inhibition of Staphylococcus aureus (MIC = 250 µg/mL) and Escherichia coli (MIC = 500 µg/mL). In vivo anti-inflammatory testing demonstrated significant edema reduction (p < 0.05) using a carrageenan-induced rat paw model. These results support the potential of Melissa nanoemulgel as a stable and effective topical therapeutic for inflammatory and microbial skin disorders. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Graphical abstract

17 pages, 1576 KB  
Article
Assessment of the Possible Inhibitory Effect of PFAS-Containing Aqueous Wastes on Aerobic Biomasses
by Maria Cristina Collivignarelli, Roberta Pedrazzani, Stefano Bellazzi, Giorgia Grecchi, Marco Baldi, Alessandro Abbà and Giorgio Bertanza
Appl. Sci. 2025, 15(19), 10448; https://doi.org/10.3390/app151910448 - 26 Sep 2025
Viewed by 195
Abstract
Per- and polyfluoroalkyl substances (PFASs), known as “forever chemicals,” are synthetic organofluorine compounds widely used since the 1940s due to their chemical and thermal stability. However, growing concerns about their environmental and human health risks have emerged. Although the toxicity of PFASs to [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), known as “forever chemicals,” are synthetic organofluorine compounds widely used since the 1940s due to their chemical and thermal stability. However, growing concerns about their environmental and human health risks have emerged. Although the toxicity of PFASs to humans has been extensively researched, their effects on microbial consortia in wastewater treatment plants (WWTPs) have not been as thoroughly investigated. This study evaluates whether aqueous wastes (AWs) containing PFASs inhibit aerobic biomasses from various WWTPs. Approximately 400 respirometric tests showed no acute toxicity. However, biomass tolerance varied based on acclimatization. Biomass from a municipal WWTP was more tolerant to AWs with short-chain PFASs, whereas biomass from a WWTP authorized to receive AWs was less inhibited by AWs rich in long-chain PFASs. These findings highlight the potential role of municipal WWTPs in treating PFAS-contaminated AWs and emphasize the need for tailored treatment strategies to minimize environmental risks. Full article
(This article belongs to the Special Issue PFAS Removal: Challenges and Solutions)
Show Figures

Figure 1

Back to TopTop