Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
Abstract
1. Introduction
2. Materials and Methods
2.1. OPP Preparation
2.2. Film Preparation
2.3. Physicochemical Characterization of Films
2.3.1. Biofilm Thickness
2.3.2. Determination of Moisture Content (MC)
2.3.3. Determination of Solubility (S)
2.3.4. Determination of Water Vapor Permeability (WVP)
2.3.5. Determination of Color Parameters and Opacity
2.4. Determination of Morphological and Structural Properties
2.4.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDX)
2.4.2. Fourier-Transform Infrared Spectroscopy (FTIR) Test
2.4.3. X-Ray Diffraction (XRD) Analysis
2.4.4. Determination of Mechanical Properties
2.5. Determination of Thermal Decomposition Behavior
2.5.1. Differential Scanning Calorimetry (DSC)
2.5.2. Thermogravimetric Analysis (TGA)
2.6. Determination of Biodegradability
2.7. Statistical Analysis
3. Results and Discussion
3.1. Films Characterization
3.1.1. Film Thickness
3.1.2. Moisture Content (MC)
3.1.3. Solubility (S)
3.1.4. Water Vapor Permeability (WVP)
3.1.5. Color Parameters and Opacity
3.2. Morphological and Structural Properties
3.2.1. SEM and EDX
3.2.2. FTIR
3.2.3. XRD
3.2.4. Mechanical Properties
3.3. Thermal Decomposition Behavior
3.3.1. DSC
3.3.2. TGA
3.4. Biodegradability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van den Abeele, L.; Smets, T.; Derden, A.; Huybrechts, D.; Nevens, F. Feasibility study for the food processing industry in Flanders (Belgium) to become water neutral by 2030. J. Clean. Prod. 2017, 141, 1376–1390. [Google Scholar] [CrossRef]
- Feng, P.X.; Xie, Y.H.; Chen, X.Y.; Li, J.F.; Luo, Y.R.; Feng, Y.H.; Wang, H. Constructing lignin functional coatings for intelligent protection through interface engineering technology: Exhibiting excellent anti-corrosion and weather resistance. Rare Met. 2025, 44, 6614–6625. [Google Scholar] [CrossRef]
- Bisht, B.; Gururani, P.; Aman, J.; Vlaskin, M.S.; Anna, I.K.; Irina, A.A.; Joshi, S.; Kumar, S.; Kumar, V. A review on holistic approaches for fruits and vegetables biowastes valorization. Mater. Today Proc. 2023, 73, 54–63. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Bains, A.; Sridhar, K.; Singh, B.N.; Kuhad, R.C.; Chawla, P.; Sharma, M. Valorization of onion peel waste: From trash to treasure. Chemosphere 2023, 343, 140178. [Google Scholar] [CrossRef]
- Ranjbar Banforuzi, S.; Hadjmohammadi, M.R. Two-phase hollow fiber-liquid microextraction based on reverse micelle for the determination of quercetin in human plasma and vegetables samples. Talanta 2017, 173, 14–21. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, R.; Song, Y.; Liu, M.; Li, J.; Bi, Z.; Huang, H.; Li, Y. Schiff base crosslinking based dialdehyde-chitosan/gelatin/tea polyphenol electrospun nanofibrous membranes with excellent antibacterial and antioxidant activity for food packaging. Food Packag. Shelf Life 2025, 50, 101568. [Google Scholar] [CrossRef]
- Dang, X.; Du, Y.; Wang, X. Engineering eco-friendly and biodegradable biomass-based multifunctional antibacterial packaging films for sustainable food preservation. Food Chem. 2024, 439, 138119. [Google Scholar] [CrossRef]
- Alqahtani, N.; Alnemr, T.; Ali, S. Development of low-cost biodegradable films from corn starch and date palm pits (Phoenix dactylifera). Food Biosci. 2021, 42, 101199. [Google Scholar] [CrossRef]
- Huang, Z.; Han, D.; Yi, G.; Lin, W.; Lin, X.; Sun, Y.; Wang, H. High-Performance and Multifunctional Lignin-Derived Polyurethane Elastomers for Robotic Flexible Protective Layers. Adv. Funct. Mater. 2025, 2507845. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Effect of incorporation of blackberry particles on the physicochemical properties of edible films of arrowroot starch. Dry. Technol. 2019, 37, 448–457. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Tongdeesoontorn, W. Effect of Antioxidants on Properties of Rice Flour/Cassava Starch Film Blends Plasticized with Sorbitol. Agric. Nat. Resour. 2009, 43, 252–258. [Google Scholar]
- Zanela, J.; Casagrande, M.; Radaelli, J.C.; Dias, A.P.; Wagner Júnior, A.; Malfatti, C.R.M.; Yamashita, F. Active Biodegradable Packaging for Foods Containing Baccharis dracunculifolia Leaf as Natural Antioxidant. Food Bioprocess Technol. 2021, 14, 1301–1310. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.d.; Rodrigues, J.M.; Valadares, A.C.F.; Almeida, A.B.d.; Lima, T.M.d.; Takeuchi, K.P.; Alveas, C.C.F.; Sousa, H.A.d.F.; Silva, E.R.d.; Dyszy, F.H.; et al. Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocoll. 2019, 92, 267–275. [Google Scholar] [CrossRef]
- Carpiné, D.; Luiz, J.; Dagostin, A.; Bertan, L.C.; Mafra, M.R. Development and Characterization of Soy Protein Isolate Emulsion-Based Edible Films with Added Coconut Oil for Olive Oil Packaging: Barrier, Mechanical, and Thermal Properties. Food Bioprocess Technol. 2015, 8, 1811–1823. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: Degradation and water-barrier properties. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012006. [Google Scholar] [CrossRef]
- Abdalrazeq, M.; Giosafatto, C.V.L.; Esposito, M.; Fenderico, M.; Di Pierro, P.; Porta, R. Glycerol-plasticized films obtained from whey proteins denatured at alkaline pH. Coatings 2019, 9, 322. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Rithin Kumar, N.B.; Crasta, V.; Bhajantri, R.F.; Praveen, B.M. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films. J. Polym. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 2017, 7, 207. [Google Scholar] [CrossRef]
- Santos, L.G.; Silva, G.F.A.; Gomes, B.M.; Martins, V.G. A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatal. Agric. Biotechnol. 2021, 35, 102096. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Chi, F.; Tan, Z.; Liu, L. Development and characterization of novel active chitosan films containing fennel and peppermint essential oils. Coatings 2020, 10, 936. [Google Scholar] [CrossRef]
- Khan, M.J.; Saeed, S.; Javed, M.; Khan, W.Q.; Anis-Ur-rehman, M.; Aljeidi, R.A.; Almutairi, S.M.; Toleikiene, M.; Ejaz, R.; Iqbal, R. Chitosan-doped ZnO nanoparticles for antibacterial, antifungal, and food preservation applications. Glob. Nest J. 2024, 26, 1–8. [Google Scholar]
- Afshar, S.; Baniasadi, H. Investigation the effect of graphene oxide and gelatin/starch weight ratio on the properties of starch/gelatin/GO nanocomposite films: The RSM study. Int. J. Biol. Macromol. 2018, 109, 1019–1028. [Google Scholar] [CrossRef]
- Mohammadi Nafchi, A.; Cheng, L.H.; Karim, A.A. Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocoll. 2011, 25, 56–60. [Google Scholar] [CrossRef]
- Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Singla, R.K.; Kang, N.; Kaur, G.; Kaur, H.; Kennedy, J.F. Carbamoylethyl locust bean gum: Synthesis, characterization and evaluation of its film forming potential. Int. J. Biol. Macromol. 2020, 149, 348–358. [Google Scholar] [CrossRef]
- Capitani, M.I.; Matus-Basto, A.; Ruiz-Ruiz, J.C.; Santiago-García, J.L.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomás, M.C.; Segura-Campos, M.R. Characterization of Biodegradable Films Based on Salvia hispanica L. Protein and Mucilage. Food Bioprocess Technol. 2016, 9, 1276–1286. [Google Scholar] [CrossRef]
- Pirsa, S.; Bener, M.; Şen, F.B. Biodegradable film of carboxymethyl cellulose modified with red onion peel powder waste and boron nitride nanoparticles: Investigation of physicochemical properties and release of active substances. Food Chem. 2024, 445, 138721. [Google Scholar] [CrossRef]
- Munir, S.; Hu, Y.; Liu, Y.; Xiong, S. Enhanced properties of silver carp surimi-based edible films incorporated with pomegranate peel and grape seed extracts under acidic condition. Food Packag. Shelf Life 2019, 19, 114–120. [Google Scholar] [CrossRef]
- Rodrigues, M.Á.V.; Bertolo, M.R.V.; Marangon, C.A.; Martins, V.d.C.A.; Plepis, A.M.d.G. Chitosan and gelatin materials incorporated with phenolic extracts of grape seed and jabuticaba peel: Rheological, physicochemical, antioxidant, antimicrobial and barrier properties. Int. J. Biol. Macromol. 2020, 160, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of pectin films with pomegranate juice and citric acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Moura, M.R.d.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; Soares, N.d.F.F.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Sartori, T.; Menegalli, F.C. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocoll. 2016, 55, 210–219. [Google Scholar] [CrossRef]
- Jasem Odhaib, A.; Pirsa, S.; Mohtarami, F. Biodegradable film based on barley sprout powder/pectin modified with quercetin and V2O5 nanoparticles: Investigation of physicochemical and structural properties. Heliyon 2024, 10, e25448. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J. International Journal of Biological Macromolecules Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef]
- Yang, Z.; Julian, D.; Peng, X.; Xu, Z.; Meng, M.; Chen, L.; Jin, Z. Fabrication of zein—carboxymethyl cellulose nanoparticles for co-delivery of quercetin and resveratrol. J. Food Eng. 2023, 341, 111322. [Google Scholar] [CrossRef]
- Wangsawangrung, N.; Choipang, C.; Chaiarwut, S.; Ekabutr, P.; Suwantong, O.; Chuysinuan, P.; Techasakul, S.; Supaphol, P. Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels 2022, 8, 573. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.W. Preparation of multifunctional carboxymethyl cellulose-based films incorporated with chitin nanocrystal and grapefruit seed extract. Int. J. Biol. Macromol. 2020, 152, 1038–1046. [Google Scholar] [CrossRef]
- González, A.; Barrera, G.N.; Galimberti, P.I.; Ribotta, P.D.; Alvarez Igarzabal, C.I. Development of edible films prepared by soy protein and the galactomannan fraction extracted from Gleditsia triacanthos (Fabaceae) seed. Food Hydrocoll. 2019, 97, 105227. [Google Scholar] [CrossRef]
- Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. A review of recent developments in edible films and coatings-focus on whey-based materials. Foods 2024, 2024 13, 2638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, J.H. Mechanical Properties of High- amylose Rice and Pea Starch Films as Affected by Relative Humidity and Plasticizer with Monosaccharides and Polyols. Food Eng. Phys. Prop. 2006, 69, 449–454. [Google Scholar]
- Chaichi, M.; Hashemi, M.; Badii, F.; Mohammadi, A. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym. 2017, 157, 167–175. [Google Scholar] [CrossRef]
- Das, P.; Borah, P.P.; Badwaik, L.S. Transformation of Chicken Feather Keratin and Pomelo Peel Pectin into Biodegradable Composite Film. J. Polym. Environ. 2018, 26, 2120–2129. [Google Scholar] [CrossRef]
- Kaya, M.; Khadem, S.; Cakmak, Y.S.; Mujtaba, M.; Ilk, S.; Akyuz, L.; Salaberria, A.M.; Labidi, J.; Abdulqadir, A.H.; Deligöz, E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018, 8, 3941–3950. [Google Scholar] [CrossRef]
- López-De-Dicastillo, C.; Gómez-Estaca, J.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012, 131, 1376–1384. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll. 2008, 22, 826–835. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A.A. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr. Polym. 2013, 96, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lalnunthari, C.; Devi, L.M.; Amami, E.; Badwaik, L.S. Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food Bioprod. Process. 2019, 118, 58–66. [Google Scholar] [CrossRef]
- Bergo, B.P.V.A.; Carvalho, R.A.; Sobral, P.J.A.; Santos, R.M.C.; Silva, F.B.R.; Prison, J.M.; Habitante, A.M.Q.B. Physical Properties of Edible Films Based on Cassava Starch as Affected by the Plasticizer Concentration. Packag. Technol. Sci. 2008, 21, 85–89. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef]
- Shogren, R.L.; Fanta, G.F.; Doane, W.M. Development of Starch Based Plastics—A Reexamination of Selected Polymer Systems in Historical Perspective. Starch 1993, 45, 276–280. [Google Scholar] [CrossRef]
- Martínez-camacho, A.P.; Cortez-rocha, M.O.; Ezquerra-brauer, J.M.; Graciano-verdugo, A.Z. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010, 82, 305–315. [Google Scholar] [CrossRef]
- Jovanović, J.; Ćirković, J.; Radojković, A.; Mutavdžić, D.; Tanasijević, G.; Joksimović, K.; Bakić, G.; Branković, G.; Branković, Z. Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging. Prog. Org. Coat. 2021, 158, 106349. [Google Scholar] [CrossRef]
- Jha, P. Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. Int. J. Biol. Macromol. 2020, 160, 571–582. [Google Scholar] [CrossRef]
Variable Code | Actual Variable | Response | |||||
---|---|---|---|---|---|---|---|
Run | X1 | X2 | Cassava Starch (%) | OPP (%) | Tensile Strength (MPa) | Elongation (%) | Biodegradability (%) |
1 | 0 | 0 | 80 | 20 | 1.07 ± 0.02 e,f | 48.7 ± 0.02 f | 30.8 ± 0.05 e,f |
2 | −1.414 | 0 | 60 | 20 | 0.75 ± 0.01 i | 72.1 ± 0.03 c | 30.0 ± 0.04 f |
3 | 1 | −1 | 94.142 | 5.8579 | 0.58 ± 0.01 j | 47.6 ± 0.01 g | 32.1 ± 0.06 c |
4 | 1 | 1 | 94.142 | 34.1421 | 1.52 ± 0.01 b | 60.4 ± 0.02 d | 26.0 ± 0.5 h |
5 | 0 | 0 | 80 | 20 | 0.97 ± 0.02 g | 47.2 ± 0.05 h | 31.4 ± 0.03 c,d,e |
6 | 0 | 1.414 | 80 | 40 | 3.87 ± 0.01 a | 14.1 ± 0.03 l | 27.4 ± 0.02 g |
7 | −1 | 1 | 65.858 | 34.1421 | 1.41 ± 0.02 c | 24.1 ± 0.05 k | 31.0 ± 1.14 d,e,f |
8 | −1 | −1 | 65.858 | 5.8579 | 0.52 ± 0.02 k | 73.5 ± 0.06 b | 36.7 ± 0.02 b |
9 | 0 | 0 | 80 | 20 | 1.08 ± 0.01 d,e | 47.67 ± 0.03 g | 30.7 ± 0.04 e,f |
10 | 1.414 | 0 | 100 | 20 | 1.11 ± 0.02 d | 97.1 ± 0.07 a | 25.2 ± 0.02 h |
11 | 0 | 0 | 80 | 20 | 1.11 ± 0.02 d | 52.9 ± 0.03 e | 32.0 ± 0.04 c,d |
12 | 0 | −1.414 | 80 | 0 | 0.88 ± 0.02 h | 38.1 ± 0.04 j | 38.4 ± 0.2 a |
13 | 0 | 0 | 80 | 20 | 1.03 ± 0.01 f | 43.78 ± 0.02 i | 32.2 ± 0.1 c |
p-value | - | - | - | - | p ˂ 0.0001 | p ˂ 0.0001 | p ˂ 0.0001 |
Actual Variable | Response | |||||
---|---|---|---|---|---|---|
Cassava Starch (%) | Onion Peel Powder (OPP) (%) | Tensile Strength (MPa) | Elongation (%) | Biodegradability (%) | ||
1O | Prediction | 72.066 | 21.0563 | 0.996 | 48.9 | 31.9 |
Verification | 72.066 | 21.0563 | 0.98 ± 0.02 | 48.7 ± 0.3 | 31.8 ± 0.08 | |
2O | Prediction | 77.2803 | 37.6878 | 2.75 | 14.1 | 29.1 |
Verification | 77.2803 | 37.6878 | 2.71 ± 0.02 | 14.103 ± 0.02 | 29.0 ± 0.02 | |
3O | prediction | 84.5616 | 27.7373 | 1.62 | 46.0 | 29.0 |
Verification | 84.5616 | 27.7373 | 1.62 ± 0.07 | 46.0 ± 0.02 | 29.0 ± 0.01 |
Films | Thickness (mm) | MC (%) | S (%) | WVP (×10−9 g·m−1·s−1·Pa−1) |
---|---|---|---|---|
Control | 0.138 ± 0.04 c | 32.6 ± 0.3 a | 25.2 ± 1.9 a | 1.69 ± 0.02 c |
Formula 1 (1O) | 0.176 ± 0.07 b | 26.2 ± 1.4 b | 24.0 ± 1. 6 a | 2.16 ± 0.23 b |
Formula 2 (2O) | 0.218 ± 0.02 a | 20.5 ± 0.2 c | 24.0 ± 1.2 a | 2.77 ± 0.446 a |
Formula 3 (3O) | 0.177 ± 0.02 b | 19.2 ± 0.6 c | 24.1 ± 1.0 a | 2.23 ± 0.26 a,b |
p-Value | <0.0001 | <0.0001 | 0.57 | <0.0001 |
Films | L* | a* | b* | ΔE | Opacity (nm/mm) |
---|---|---|---|---|---|
Control | 88.9 ± 1.4 | −1.07 ± 0.15 | 2.9 ± 0.5 | 8.60 ± 1.4 c | 5.41 ± 0.01 d |
Formula 1 (1O) | 54.4 ± 0.9 | 31.6 ± 1.3 | 43.7± 2.4 | 67.7 ± 2.3 b | 6.08 ± 0.01 c |
Formula 2 (2O) | 30.0 ± 1.8 | 37.7 ± 0.9 | 32. 6 ± 0.6 | 83.0 ± 0.9 a | 6.55 ± 0.01 a |
Formula 3 (3O) | 34.8 ± 0.3 | 41.3 ± 1.5 | 33.7 ± 2.4 | 81.4 ± 1.8 a | 6.47 ± 0.44 b |
p-Value | – | – | – | <0.0001 | <0.0001 |
Films | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
Control | 0.88 ± 0.01 c | 38.1 ± 0.01 c |
Formula 1 (1O) | 0.98 ± 0.02 c | 48.7 ± 0.3 a |
Formula 2 (2O) | 2.71 ± 0.02 a | 14.1 ± 0.02 d |
Formula 3 (3O) | 1.62 ± 0.07 b | 46.0 ± 0.002 b |
p-Value | <0.0001 | <0.0001 |
Films | Biodegradability (%) |
---|---|
Control | 38.4 ± 0.03 a |
Formula 1 (1O) | 31.8 ± 0.08 b |
Formula 2 (2O) | 29.1 ± 0.02 c |
Formula 3 (3O) | 29.1 ± 0.01 c |
p-Value | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torche, A.; Chouana, T.; Bensalem, S.; Khaled, M.; Laid Rekbi, F.M.; Kelai, E.; Uzun, Ş.A.; Sarıcaoğlu, F.T.; D’Elia, M.; Rastrelli, L. Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging. Polymers 2025, 17, 2690. https://doi.org/10.3390/polym17192690
Torche A, Chouana T, Bensalem S, Khaled M, Laid Rekbi FM, Kelai E, Uzun ŞA, Sarıcaoğlu FT, D’Elia M, Rastrelli L. Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging. Polymers. 2025; 17(19):2690. https://doi.org/10.3390/polym17192690
Chicago/Turabian StyleTorche, Assala, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia, and Luca Rastrelli. 2025. "Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging" Polymers 17, no. 19: 2690. https://doi.org/10.3390/polym17192690
APA StyleTorche, A., Chouana, T., Bensalem, S., Khaled, M., Laid Rekbi, F. M., Kelai, E., Uzun, Ş. A., Sarıcaoğlu, F. T., D’Elia, M., & Rastrelli, L. (2025). Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging. Polymers, 17(19), 2690. https://doi.org/10.3390/polym17192690