Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = therapy-induced acute myeloid leukemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1560 KiB  
Article
Knockdown of the snoRNA-Jouvence Blocks the Proliferation and Leads to the Death of Human Primary Glioblastoma Cells
by Lola Jaque-Cabrera, Julia Buggiani, Jérôme Bignon, Patricia Daira, Nathalie Bernoud-Hubac and Jean-René Martin
Non-Coding RNA 2025, 11(4), 54; https://doi.org/10.3390/ncrna11040054 - 18 Jul 2025
Viewed by 399
Abstract
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small [...] Read more.
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small nucleolar RNAs (snoRNAs) in many physiological and pathological cellular processes, including cancers. SnoRNAs are a group of non-coding RNAs involved in different post-transcriptional modifications of ribosomal RNAs. Recently, we identified a new snoRNA (jouvence), first in Drosophila, and thereafter, by homology, in humans. Methods: Here, we characterize the effect of the knockdown of jouvence by a sh-lentivirus on human primary patient-derived glioblastoma cells. Results: The sh-lentivirus anti-jouvence induces a significant decrease in cell proliferation and leads to cell death. EdU staining confirmed this decrease, while TUNEL also showed the presence of apoptotic cells. An RNA-Seq analysis revealed a decrease, in particular, in the level of BAALC, a gene known to potentiate the oncogenic ERK pathway and deregulating p21, leading to cell cycle blockage. Conclusions: Altogether, these results allow the hypothesis that the knockdown of jouvence could potentially be used as a new anti-cancer treatment (sno-Therapy), especially against glioblastoma and also, potentially, against acute myeloid leukemia (AML) due to the BAALC deregulation. Full article
(This article belongs to the Section Small Non-Coding RNA)
Show Figures

Figure 1

15 pages, 1607 KiB  
Article
Caspofungin for Primary Antifungal Prophylaxis in Acute Myeloid Leukemia: A Real-Life Study from an Academic Center
by Francesco Grimaldi, Mara Memoli, Simona Avilia, Carlangela Causa, Maria Luisa Giannattasio, Italia Conversano, Dario Lisi, Daniela D’Angelo, Raffaella Iannotta, Nicola Schiano Moriello, Giulio Viceconte, Emanuela Zappulo, Ivan Gentile, Marco Picardi and Fabrizio Pane
Cancers 2025, 17(13), 2184; https://doi.org/10.3390/cancers17132184 - 28 Jun 2025
Viewed by 476
Abstract
Background: Invasive fungal infections (IFIs) are a major complication in patients with acute myeloid leukemia (AML), particularly during chemotherapy-induced neutropenia. Posaconazole is the standard drug for primary antifungal prophylaxis (PAP), but its use is limited by oral bioavailability and CYP3A4 interactions. Study Objective: [...] Read more.
Background: Invasive fungal infections (IFIs) are a major complication in patients with acute myeloid leukemia (AML), particularly during chemotherapy-induced neutropenia. Posaconazole is the standard drug for primary antifungal prophylaxis (PAP), but its use is limited by oral bioavailability and CYP3A4 interactions. Study Objective: This study aims to evaluate the clinical efficacy and safety of intravenous caspofungin versus oral posaconazole as PAP in AML patients during their first cycle of chemotherapy and assess their subsequent impact on clinical outcomes. Methods: A retrospective, monocentric study was conducted on 75 consecutive AML patients treated at the Federico II University Medical School of Naples, Italy (2021–2025). Patients received either caspofungin or posaconazole as PAP based on the drug–drug interaction risk or clinical conditions. IFIs were diagnosed using EORTC/MSG criteria. Logistic and Cox regression models were used to assess risk factors and overall survival (OS). Results: IFI incidence was 13.3% overall (9.4% proven/probable). No significant difference was found between the caspofungin and posaconazole groups (six vs. four IFIs; p = 0.878). Post-chemotherapy refractory AML (OR = 11.9; p = 0.003) and liver disease (OR = 30.4; p = 0.004) independently predicted IFI development. Median OS did not significantly differ in patients receiving caspofungin versus posaconazole (29.3 vs. 32.1 months, p = 0.6). Conclusions: Caspofungin appears clinically comparable to posaconazole for PAP in AML during the induction phase, especially when azole use is contraindicated. Prospective studies are warranted to refine prophylactic strategies in the era of new AML therapies. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

21 pages, 6696 KiB  
Article
Ethanol Extract of Adlay Hulls Suppresses Acute Myeloid Leukemia Cell Proliferation via PI3K/Akt Pathway Inhibition
by Guangjie Li, Wenyuan Yang, Jiahui Xu, Ziqian Liu, Zhijian Li, Xiaoqiu Wu, Tongtong Li, Ruoxian Wang, Yamin Zhu and Ning Liu
Curr. Issues Mol. Biol. 2025, 47(5), 358; https://doi.org/10.3390/cimb47050358 - 13 May 2025
Viewed by 503
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research [...] Read more.
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research on adlay hulls, particularly their anti-AML bioactive molecules, remains insufficient. This study evaluated the effects of adlay hull ethanol extract (AHE) on AML cell proliferation and apoptosis. AHE was extracted with ethanol and fractionated using n-hexane, ethyl acetate, and n-butanol, followed by silica gel chromatography. Cytotoxicity was assessed via the CCK-8 assay, and mechanisms were analyzed by flow cytometry and Western blotting. The bioactive components were characterized by UPLC-IMS-QTOF-MS. AHE-EA-C (ethyl acetate fraction C) inhibited AML cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis. It suppressed the PI3K/Akt pathway by reducing PI3K and Akt phosphorylation. Using UPLC-IMS-QTOF-MS analysis, a total of 52 compounds with potential anti-AML activity were identified in AHE-EA-C, among which neohesperidin and cycloartanol have been previously reported to exhibit anti-AML activity and thus hold promise as candidates for further development as AML inhibitors. This study is the first to identify adlay hull bioactive components and their anti-AML mechanisms via PI3K/Akt pathway inhibition, providing a foundation for developing natural anti-AML therapies. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

31 pages, 1305 KiB  
Review
Recent Developments in Differentiation Therapy of Acute Myeloid Leukemia
by Ugo Testa, Germana Castelli and Elvira Pelosi
Cancers 2025, 17(7), 1141; https://doi.org/10.3390/cancers17071141 - 28 Mar 2025
Cited by 1 | Viewed by 1137
Abstract
Acute myeloid leukemia (AML) is characterized by the clonal expansion of myeloid progenitors blocked at various stages of their differentiation process, and drugs that bypass this differentiation block are therapeutically efficient, as shown by retinoic acid and arsenic trioxide in acute promyelocytic leukemia. [...] Read more.
Acute myeloid leukemia (AML) is characterized by the clonal expansion of myeloid progenitors blocked at various stages of their differentiation process, and drugs that bypass this differentiation block are therapeutically efficient, as shown by retinoic acid and arsenic trioxide in acute promyelocytic leukemia. However, the successful application of differentiation therapy in APL has not translated into clinical benefit for other non-APL subtypes of AML, in which intensive chemotherapy regimens represent the standard of care. However, the development of molecular studies has led to the identification of therapeutic targets (such as mutated proteins and deregulated pathways) and has led to the generation of a new category of specific pharmacologic agents. Some of these agents, such as inhibitors of mutant isocitrate dehydrogenase (IDH1 and IDH2), lysine-specific demethylase-1 (LSD1), and Menin, have shown the capacity to induce leukemic cell differentiation and with significant therapeutic efficacy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 3613 KiB  
Article
Leukemia-Derived Dendritic Cells Induce Anti-Leukemic Effects Ex Vivo in AML Independently of Patients’ Clinical and Biological Features
by Lara Kristina Klauer, Hazal Aslan Rejeski, Selda Ugur, Elias Rackl, Joudi Abdulmajid, Zuzanna Fischer, Elena Pepeldjiyska, Annalena Frischhut, Nicolas Schmieder, Antje Völker, Andreas Rank, Christoph Schmid, Jörg Schmohl, Daniel Christoph Amberger and Helga Maria Schmetzer
Int. J. Mol. Sci. 2025, 26(4), 1700; https://doi.org/10.3390/ijms26041700 - 17 Feb 2025
Viewed by 2746
Abstract
New therapies are highly needed to stabilize remission in patients with acute myeloid leukemia (AML). This study investigates the value of dendritic cells derived from leukemic blasts (DCleu) to enhance anti-leukemic immunity after T-cell-enriched mixed lymphocyte cultures (MLCs). We correlated induced [...] Read more.
New therapies are highly needed to stabilize remission in patients with acute myeloid leukemia (AML). This study investigates the value of dendritic cells derived from leukemic blasts (DCleu) to enhance anti-leukemic immunity after T-cell-enriched mixed lymphocyte cultures (MLCs). We correlated induced anti-leukemic activity with patient data, including biological, clinical and prognostic factors. Additionally, we correlated the frequencies of DC/DCleu and leukemic-specific T cells with the achieved anti-leukemic activity after MLC. We show that mature DC/DCleu can be generated using the immunomodulating Kit-M, which contains granulocyte–macrophage colony-stimulating-factor (GM-CSF) and prostaglandin E1 (PGE1), without inducing blast proliferation from leukemic whole blood (WB) samples. Activated leukemia-specific immune and memory cells increased after MLC with Kit-M-pretreated WB, leading to improved blast lysis. Enhanced anti-leukemic activity positively correlated with the frequencies of generated DC/DCleu, proliferating leukemic-specific T cells and memory T cells, but not with leukemic blast counts, hemoglobin levels or platelet counts at diagnosis. No correlation was found between improved blast lysis and patients’ prognostic data, including age, gender, ELN risk groups, disease stage and response to induction chemotherapy. These findings underscore the potential of DC/DCleu to evoke robust immune responses and potential immunological memory against AML. Overall, this innovative approach could pave the way for the development of improved immunotherapeutic strategies that function in vivo. Full article
(This article belongs to the Special Issue Drug-Induced Modulation and Immunotherapy of Leukemia)
Show Figures

Figure 1

18 pages, 5161 KiB  
Article
Therapeutic Potential of Adina rubella Hance Stem and Picroside III as a Differentiation Inducer in AML Cells via Mitochondrial ROS Accumulation
by Chan-Seong Kwon, Byeol-Eun Jeon, Ji-Eun Lee, Hyeon-Young Kim, Ryun-Young Kang, Keun-Hu Kim, Eun-Ju Lee, Ju-Yeon Jang, Tae-Jin Kim, Ho-Jin Shin and Sang-Woo Kim
Int. J. Mol. Sci. 2025, 26(3), 1350; https://doi.org/10.3390/ijms26031350 - 5 Feb 2025
Viewed by 3001
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block, highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant [...] Read more.
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block, highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant extracts. ARH stem promoted phenotypic differentiation in AML cells. In addition to its differentiation-inducing effects, ARH stem exhibited strong antileukemic activities, such as inhibiting cell proliferation, inducing cell death, and enhancing mitochondrial reactive oxygen species (mtROS) levels, the latter of which is critical for its differentiation-promoting activity. Comparative analysis with the extracts from other parts of the plant confirmed the superior efficacy of the stem extract because of its unique chemical composition. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry analysis identified Picroside III as a major active compound within the stem extract, capable of recapitulating ARH stem-induced differentiation and demonstrating significant antileukemic properties. These findings underscore the therapeutic potential of ARH stem and its active component, Picroside III, as promising agents for differentiation-based treatment strategies in AML. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

22 pages, 3987 KiB  
Article
Lipopolymers as the Basis of Non-Viral Delivery of Therapeutic siRNA Nanoparticles in a Leukemia (MOLM-13) Model
by Panadda Yotsomnuk, Amarnath Praphakar Rajendran, Daniel Nisakar Meenakshi Sundaram, Luis Carlos Morales, Cezary Kucharski, Mohammad Nasrullah, Wanwisa Skolpap, Xiaoyan Jiang, Spencer B. Gibson, Joseph Brandwein and Hasan Uludağ
Biomolecules 2025, 15(1), 115; https://doi.org/10.3390/biom15010115 - 13 Jan 2025
Cited by 2 | Viewed by 1592
Abstract
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the [...] Read more.
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.2k-PHPA-Lin9). The siRNAs utilized in this study were targeting the oncogenes FLT3 and KMT2A::MLLT3. Both lipopolymers gave similar-size siRNA complexes (210–220 nm) with positive ζ-potentials (+17 to +25 mV). While the binding efficiency of both lipopolymers to siRNA were similar, PEI1.2k-PHPA-Lin9 complexes were more resistant to heparin-induced dissociation. The quantitative analysis of gene silencing performed by qPCR as well as immunostaining/flow cytometry indicated significant reduction in both FLT3 expression and FLT3 protein after specific siRNA delivery. The desired inhibition of cell growth was attained with both FLT3 and KMT2A::MLLT3 siRNAs, and the combination provided more potent effects in both cell growth and colony formation assays. Induction of apoptosis was confirmed after specific siRNA treatments using the Annexin V assay. Using Luc(+) MOLM-13 cells, the growth of the xenografted cells was shown to be retarded with Prime-Fect-delivered FLT3 siRNA, unlike the siRNA delivered with PEI1.2k-PHPA-Lin9. These results demonstrate the potential of designed lipopolymers in implementing RNAi (via delivery of siRNA) for inhibition of leukemia growth and provide evidence for the feasibility of targeting different oncogenes using siRNA-mediated therapy. Full article
(This article belongs to the Special Issue The Role of Nanoparticles in Tumor Treatment)
Show Figures

Figure 1

19 pages, 980 KiB  
Review
Menin Inhibitors: New Targeted Therapies for Specific Genetic Subtypes of Difficult-to-Treat Acute Leukemias
by Pasquale Niscola, Valentina Gianfelici, Marco Giovannini, Daniela Piccioni, Carla Mazzone and Paolo de Fabritiis
Cancers 2025, 17(1), 142; https://doi.org/10.3390/cancers17010142 - 4 Jan 2025
Cited by 1 | Viewed by 3248
Abstract
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A [...] Read more.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development. By disrupting the MEN1-KMT2Ar complex, a group of proteins involved in chromatin remodeling, MIs induce apoptosis and differentiation AL expressing KMT2Ar or NPM1m AML. Phase I and II clinical trials have evaluated MIs as standalone treatments and combined them with other synergistic drugs, yielding promising results. These trials have demonstrated notable response rates with manageable toxicities. Among MIs, ziftomenib received orphan drug and breakthrough therapy designations from the European Medicines Agency in January 2024 and the Food and Drug Administration (FDA) in April 2024, respectively, for treating R/R patients with NPM1m AML. Additionally, in November 2024, the FDA approved revumenib for treating R/R patients with KMT2Ar-AL. This review focuses on the pathophysiology of MI-sensitive AL, primarily AML. It illustrates data from clinical trials and discusses the emergence of resistance mechanisms. In addition, we outline future directions for the use of MIs and emphasize the need for further research to fully realize the potential of these novel compounds, especially in the context of specific genetic subtypes of challenging AL. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 4126 KiB  
Article
In Vivo Induction of Leukemia-Specific Adaptive and Innate Immune Cells by Treatment of AML-Diseased Rats and Therapy-Refractory AML Patients with Blast Modulating Response Modifiers
by Michael Atzler, Tobias Baudrexler, Daniel Christoph Amberger, Nicole Rogers, Alexander Rabe, Joerg Schmohl, Ruixiao Wang, Andreas Rank, Olga Schutti, Klaus Hirschbühl, Marit Inngjerdingen, Diana Deen, Britta Eiz-Vesper, Christoph Schmid and Helga Maria Schmetzer
Int. J. Mol. Sci. 2024, 25(24), 13469; https://doi.org/10.3390/ijms252413469 - 16 Dec 2024
Cited by 2 | Viewed by 1342
Abstract
There is a high medical need to develop new strategies for the treatment of patients with acute myeloid leukemia (AML) refractory to conventional therapy. In vitro, the combinations of the blast-modulatory response modifiers GM-CSF + Prostaglandin E1, (summarized as Kit M) have been [...] Read more.
There is a high medical need to develop new strategies for the treatment of patients with acute myeloid leukemia (AML) refractory to conventional therapy. In vitro, the combinations of the blast-modulatory response modifiers GM-CSF + Prostaglandin E1, (summarized as Kit M) have been shown to convert myeloid leukemic blasts into antigen-presenting dendritic cells of leukemic origin (DCleu) that were able to (re-)activate the innate and adaptive immune system, direct it specifically against leukemic blasts, and induce memory cells. This study aimed to investigate the immune modulatory capacity and antileukemic efficacy of Kit M in vivo. Brown Norway rats suffering from AML were treated with Kit M (twofold application). Blasts and immune cells were monitored in peripheral blood (PB) and spleen. Upon the observation of promising immune modulatory effects in the treated animals, two patients with AML refractory to multiple lines of therapy were offered treatment with Kit M on an individualized basis. Safety, as well as immunological and clinical effects, were monitored. Samples obtained from a third patient in similar clinical conditions not receiving Kit M were used as controls for immune monitoring tests. Animal experiments: Drugs were well tolerated by the treated animals. After 9 days of treatment, DCleu and memory-like T cells increased in the peripheral blood, whereas regulatory T cells, especially blasts, decreased in treated as compared to untreated control animals. Clinical courses: No severe side effects were observed. In patient 1482, PB blasts remained under the detection threshold during 27 days of treatment, thrombocytes were normalized, and (leukemia specific) immune effector cells of the adaptive and innate immune system increased up to 800-fold compared to the start of treatment. Patient 1601 responded with a 12% reduction in blasts in PB immediately after Kit M treatment. Several subtypes of (leukemia-specific) immune effector cells in PB increased up to four-fold during the 19 days of treatment. In contrast, immune-reactive cells decreased under mild chemotherapy in the PB of control patient 1511 with comparably refractory AML. Within the limitation of low numbers in both animal experiments and clinical applications, our data suggest that Kit M treatment of AML-diseased rats and patients is feasible and may induce leukemia-specific immune reactions and clinical improvement. A larger series and a prospective clinical trial will be required to confirm our observations. Beyond optimized doses and schedules of the applied compounds, the combination with other antileukemic strategies or the application of Kit M in less proliferative stages of the myeloid diseases need to be discussed. If effects are confirmed, the concept may add to the armamentarium of treatments for highly aggressive blood cancer. Full article
(This article belongs to the Special Issue Drug-Induced Modulation and Immunotherapy of Leukemia)
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
The Immunomodulatory Effect of Different FLT3 Inhibitors on Dendritic Cells
by Sebastian Schlaweck, Alea Radcke, Sascha Kampmann, Benjamin V. Becker, Peter Brossart and Annkristin Heine
Cancers 2024, 16(21), 3719; https://doi.org/10.3390/cancers16213719 - 4 Nov 2024
Cited by 4 | Viewed by 1616
Abstract
Background: FMS-like tyrosine kinase 3 (FLT3) mutations or internal tandem duplication occur in 30% of acute myeloid leukemia (AML) cases. In these cases, FLT3 inhibitors (FLT3i) are approved for induction treatment and relapse. Allogeneic hematopoietic stem cell transplantation (alloHSCT) remains the recommended post-induction [...] Read more.
Background: FMS-like tyrosine kinase 3 (FLT3) mutations or internal tandem duplication occur in 30% of acute myeloid leukemia (AML) cases. In these cases, FLT3 inhibitors (FLT3i) are approved for induction treatment and relapse. Allogeneic hematopoietic stem cell transplantation (alloHSCT) remains the recommended post-induction therapy for suitable patients. However, the role of FLT3i therapy after alloHSCT remains unclear. Therefore, we investigated the three currently available FLT3i, gilteritinib, midostaurin, and quizartinib, in terms of their immunosuppressive effect on dendritic cells (DCs). DCs are professional antigen-presenting cells inducing T-cell responses to infectious stimuli. Highly activated DCs can also cause complications after alloHSCT, such as triggering Graft versus Host disease, a serious and potentially life-threatening complication after alloHSCT. Methods: To study the immunomodulatory effects on DCs, we differentiated murine and human DCs in the presence of FLT3i and performed immunophenotyping by flow cytometry and cytokine measurements and investigated gene and protein expression. Results: We detected a dose-dependent immunosuppressive effect of midostaurin, which decreased the expression of costimulatory markers like CD86, and found a reduced secretion of pro-inflammatory cytokines such as IL-12, TNFα, and IL-6. Mechanistically, we show that midostaurin inhibits TLR and TNF signaling and NFκB, PI3K, and MAPK pathways. The immunosuppressive effect of gilteritinib was less pronounced, while quizartinib did not show truncation of relevant signaling pathways. Conclusions: Our results suggest different immunosuppressive effects of these three FLT3i and may, therefore, provide an additional rationale for optimal maintenance therapy after alloHSCT of FLT3-positive AML patients to prevent infectious complications and GvHD mediated by DCs. Full article
(This article belongs to the Special Issue Advancements in Treatment Approaches for AML)
Show Figures

Figure 1

14 pages, 3499 KiB  
Article
High Mitophagy and Low Glycolysis Predict Better Clinical Outcomes in Acute Myeloid Leukemias
by Amreen Salwa, Alessandra Ferraresi, Letizia Vallino, Chinmay Maheshwari, Riccardo Moia, Gianluca Gaidano and Ciro Isidoro
Int. J. Mol. Sci. 2024, 25(21), 11527; https://doi.org/10.3390/ijms252111527 - 27 Oct 2024
Cited by 1 | Viewed by 1866
Abstract
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven [...] Read more.
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven catabolic process devoted to macromolecular turnover, displays a dichotomous role in AML by suppressing or promoting disease development and progression. Glycolytic metabolism represents a pivotal strategy for AML cells to sustain increasing energy needs related to uncontrolled growth during disease progression. In this study, we tested the hypothesis that a high glycolytic rate and low autophagy flux could represent an advantage for AML cell proliferation and thus be detrimental for patient’s prognosis, and vice versa. TCGA in silico analysis of the AML cohort shows that the high expression of MAP1LC3B (along with that of BECN1 and with low expression of p62/SQSTM1) and the high expression of BNIP3 (along with that of PRKN and of MAP1LC3B), which together are indicative of increased autophagy and mitophagy, correlate with better prognosis. On the other hand, the high expression of glycolytic markers HK2, PFKM, and PKM correlates with poor prognosis. Most importantly, the association of a low expression of glycolytic markers with a high expression of autophagy–mitophagy markers conferred the longest overall survival for AML patients. Transcriptomic analysis showed that this combined signature correlates with the downregulation of a subset of genes required for the differentiation of myeloid cells, lactate/pyruvate transporters, and cell cycle progression, in parallel with the upregulation of genes involved in autophagy/lysosomal trafficking and proteolysis, anti-tumor responses like beta-interferon production, and positive regulation of programmed cell death. Taken together, our data support the view that enhanced autophagy-mitophagy flux together with low glycolytic rate predisposes AML patients to a better clinical outcome, suggesting that autophagy inducers and glucose restrictors may hold potential as adjuvant therapeutics for improving AML management. Full article
Show Figures

Figure 1

16 pages, 2625 KiB  
Article
Targeting USP14/UCHL5: A Breakthrough Approach to Overcoming Treatment-Resistant FLT3-ITD-Positive AML
by Ayako Nogami, Hideki Jose Amemiya, Hiroki Fujiwara, Yoshihiro Umezawa, Shuji Tohda and Toshikage Nagao
Int. J. Mol. Sci. 2024, 25(19), 10372; https://doi.org/10.3390/ijms251910372 - 26 Sep 2024
Viewed by 1451
Abstract
FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations in acute myeloid leukemia (AML) are associated with poor prognosis and therapy resistance. This study aimed to demonstrate that inhibiting the deubiquitinating enzymes ubiquitin-specific peptidase 14 (USP14) and ubiquitin C-terminal hydrolase L5 (UCHL5) [...] Read more.
FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations in acute myeloid leukemia (AML) are associated with poor prognosis and therapy resistance. This study aimed to demonstrate that inhibiting the deubiquitinating enzymes ubiquitin-specific peptidase 14 (USP14) and ubiquitin C-terminal hydrolase L5 (UCHL5) (USP14/UCHL5) with b-AP15 or the organogold compound auranofin (AUR) induces apoptosis in the ITD-transformed human leukemia cell line MV4-11 and mononuclear leukocytes derived from patients with FLT3-ITD-positive AML. This study included patients diagnosed with AML at Tokyo Medical and Dental University Hospital between January 2018 and July 2024. Both treatments blocked downstream FLT3 pathway events, with the effects potentiated by USP14 knockdown. Both treatments inhibited FLT3 deubiquitination via K48 and disrupted translation initiation via 4EBP1, a downstream FLT3 target. FLT3 was downregulated in the leukemic cells, with the associated activation of stress-related MAP kinase pathways and increased NF-E2-related factor 2. Furthermore, the overexpression of B-cell lymphoma-extra-large and myeloid cell leukemia-1 prevented the cell death caused by b-AP15 and AUR. These results suggest that inhibiting USP14/UCHL5, which involves multiple regulatory mechanisms, is a promising target for novel therapies for treatment-resistant FLT3-ITD-positive AML. Full article
(This article belongs to the Special Issue Molecular Mechanism of Leukemogenesis)
Show Figures

Figure 1

20 pages, 758 KiB  
Review
Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview
by Isabella Spinello, Catherine Labbaye and Ernestina Saulle
Int. J. Mol. Sci. 2024, 25(17), 9178; https://doi.org/10.3390/ijms25179178 - 23 Aug 2024
Cited by 4 | Viewed by 2300
Abstract
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which [...] Read more.
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which influence various cellular functions, including the proliferation and survival of hematological malignant tumor cells, are major aspects of these malignancies that lead to therapeutic drug resistance. Targeting specific metabolic pathways is emerging as a novel therapeutic strategy in hematopoietic neoplasms, particularly in acute myeloid leukemia and multiple myeloma. In this context, CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, is one target candidate involved in reprograming metabolism in different cancer cells, including hematological malignant tumor cells. CD147 overexpression significantly contributes to the metabolic transformation of these cancer cells, by mediating signaling pathway, growth, metastasis and metabolic reprogramming, through its interaction, direct or not, with various membrane proteins related to metabolic regulation, including monocarboxylate transporters, integrins, P-glycoprotein, and glucose transporter 1. This review explores the metabolic functions of CD147 and its impact on the tumor microenvironment, influencing the progression and neoplastic transformation of leukemias, myeloma, and lymphomas. Furthermore, we highlight new opportunities for the development of targeted therapies against CD147, potentially improving the treatment of hematologic malignancies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 11032 KiB  
Article
In Vivo Chemical Screening in Zebrafish Embryos Identified FDA-Approved Drugs That Induce Differentiation of Acute Myeloid Leukemia Cells
by Xiaona Wei, Wei Wang, Qianlan Yin, Hongji Li, Abrar Ahmed, Rahat Ullah, Wei Li and Lili Jing
Int. J. Mol. Sci. 2024, 25(14), 7798; https://doi.org/10.3390/ijms25147798 - 16 Jul 2024
Cited by 2 | Viewed by 1971
Abstract
Acute myeloid leukemia (AML) is characterized by the abnormal proliferation and differentiation arrest of myeloid progenitor cells. The clinical treatment of AML remains challenging. Promoting AML cell differentiation is a valid strategy, but effective differentiation drugs are lacking for most types of AML. [...] Read more.
Acute myeloid leukemia (AML) is characterized by the abnormal proliferation and differentiation arrest of myeloid progenitor cells. The clinical treatment of AML remains challenging. Promoting AML cell differentiation is a valid strategy, but effective differentiation drugs are lacking for most types of AML. In this study, we generated Tg(drl:hoxa9) zebrafish, in which hoxa9 overexpression was driven in hematopoietic cells and myeloid differentiation arrest was exhibited. Using Tg(drl:hoxa9) embryos, we performed chemical screening and identified four FDA-approved drugs, ethacrynic acid, khellin, oxcarbazepine, and alendronate, that efficiently restored myeloid differentiation. The four drugs also induced AML cell differentiation, with ethacrynic acid being the most effective. By an RNA-seq analysis, we found that during differentiation, ethacrynic acid activated the IL-17 and MAPK signaling pathways, which are known to promote granulopoiesis. Furthermore, we found that ethacrynic acid enhanced all-trans retinoic acid (ATRA)-induced differentiation, and both types of signaling converged on the IL-17/MAPK pathways. Inhibiting the IL-17/MAPK pathways impaired ethacrynic acid and ATRA-induced differentiation. In addition, we showed that ethacrynic acid is less toxic to embryogenesis and less disruptive to normal hematopoiesis than ATRA. Thus, the combination of ethacrynic acid and ATRA may have broader clinical applications. In conclusion, through zebrafish-aided screening, our study identified four drugs that can be repurposed to induce AML differentiation, thus providing new agents for AML therapy. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

23 pages, 4904 KiB  
Article
Systems Biology for Drug Target Discovery in Acute Myeloid Leukemia
by Svetlana Novikova, Tatiana Tolstova, Leonid Kurbatov, Tatiana Farafonova, Olga Tikhonova, Natalia Soloveva, Alexander Rusanov and Victor Zgoda
Int. J. Mol. Sci. 2024, 25(9), 4618; https://doi.org/10.3390/ijms25094618 - 23 Apr 2024
Viewed by 2519
Abstract
Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be [...] Read more.
Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3–72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML). Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

Back to TopTop