Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,328)

Search Parameters:
Keywords = therapeutic products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 667 KB  
Article
Quantitative Assessment of Total Aerobic Viable Counts in Apitoxin-, Royal-Jelly-, Propolis-, Honey-, and Bee-Pollen-Based Products Through an Automated Growth-Based System
by Harold A. Prada-Ramírez, Raquel Gómez-Pliego, Humberto Zardo, Willy-Fernando Cely-Veloza, Ericsson Coy-Barrera, Rodrigo Palacio-Beltrán, Romel Peña-Romero, Sandra Gonzalez-Alarcon, Juan Camilo Fonseca-Acevedo, Juan Pablo Montes-Tamara, Lina Nieto-Celis, Ruth Dallos-Acosta, Tatiana Gonzalez, David Díaz-Báez and Gloria Inés Lafaurie
Microorganisms 2026, 14(1), 218; https://doi.org/10.3390/microorganisms14010218 (registering DOI) - 17 Jan 2026
Abstract
Bee-derived products such as apitoxin, royal jelly, propolis, bee pollen, and honey are increasingly being used as part of cosmetic products because all of them contain a large number of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial, and regenerative properties, which enable them to [...] Read more.
Bee-derived products such as apitoxin, royal jelly, propolis, bee pollen, and honey are increasingly being used as part of cosmetic products because all of them contain a large number of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial, and regenerative properties, which enable them to be used for therapeutic purposes. The aim of this investigation was to assess the performance of an automated growth-based system in order to make a quantitative examination of the total aerobic viable counts in bee-derived personal care products using NF-TVC vials that contained a nutrient-based medium with dextrose as the carbon source. According to USP general chapter <1223>, pivotal validation criteria such as linearity, equivalence of results, operative range, precision, accuracy, ruggedness, limit of quantification, and limit of detection have demonstrated that the automated system can be used for a reliable total aerobic viable count. Moreover, the actual research demonstrated that polysorbates efficiently block the antimicrobiological potential of bioactive compounds, such as phenols, flavonoids, enzymes, peptides, and fatty acids, which naturally occur in apitoxin, royal jelly, propolis, bee pollen, and honey, allowing for efficient microorganism recovery from the bee-made products tested. Therefore, this AGBS could be applied efficiently within the cosmetic industry to assess the total aerobic viable count in bee-derived products such as capillary treatments, toothpaste, and anti-aging cream, affording several benefits associated with faster product release into the market. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

25 pages, 3112 KB  
Review
The Emerging Promise of Pentacyclic Triterpenoid Derivatives as Novel Antiviral Agents Against SARS-CoV-2 Variants
by Xin Wan, Xiaoxuan Cui, Ke Liang, Junran Huang, Kangan Chen, Wen Chen and Gaopeng Song
Molecules 2026, 31(2), 325; https://doi.org/10.3390/molecules31020325 (registering DOI) - 17 Jan 2026
Abstract
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids [...] Read more.
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids (PTs), a structurally varied group of compounds derived from plants, exhibit both antiviral and anti-inflammatory activities, making them attractive candidates for further therapeutic development. These natural products, along with their saponin derivatives, show broad-spectrum inhibitory effects against multiple SARS-CoV-2 variants (from Alpha to Omicron) via interactions with multiple targets, such as the spike protein, main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and inflammatory signaling pathways. This review consolidates recent findings on PTs and their saponins, emphasizing their influence on the key structural features required for inhibiting viral attachment, membrane fusion, reverse transcription, and protease function. We systematically summarized the structure–activity relationships and their antiviral results of PTs based on different target proteins in existing studies. Furthermore, this work points toward new strategies for designing multi-target PT-based inhibitors with improved efficacy against Omicron and future variants. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Figure 1

41 pages, 2263 KB  
Review
Bacteriophage Therapy: Overcoming Antimicrobial Resistance Through Advanced Delivery Methods
by Marcin Wacnik, Emilia Hauza, Aneta Skaradzińska and Paulina Śliwka
Molecules 2026, 31(2), 324; https://doi.org/10.3390/molecules31020324 (registering DOI) - 17 Jan 2026
Abstract
Microbial resistance to antibiotics necessitates the development of alternative treatments to address the challenges posed by severe bacterial infections. Bacteriophages are regaining clinical relevance, but the effectiveness of phage therapy depends directly on the route of administration and the carrier used. This review [...] Read more.
Microbial resistance to antibiotics necessitates the development of alternative treatments to address the challenges posed by severe bacterial infections. Bacteriophages are regaining clinical relevance, but the effectiveness of phage therapy depends directly on the route of administration and the carrier used. This review provides a critical overview of the therapeutic potential of phages, emphasizing different strategies for delivery to the site of infection. We focus on the preclinical and clinical data on phage therapies using various routes of administration, such as oral, intravenous, inhalation, topical, and local administration to joints and bones. In view of different phage formulations, including liquid suspension, phages immobilized in polymers or liposome-based carriers, we highlight the potential challenges and obstacles that may affect phage stability and bioavailability and limit the successful outcome of therapy. This review serves to enhance the understanding of the integration of materials engineering with clinical practice and production standardization, to address these issues. Additionally, a clear knowledge of the bacteriophage and pharmacokinetics of phage preparations is necessary to implement safe and efficacious bacteriophage treatment in the era of antimicrobial resistance. Full article
Show Figures

Graphical abstract

12 pages, 611 KB  
Article
Isolation of Neuroprotective Constituents from Dryopteris crassirhizoma Rhizomes Inhibiting Beta-Amyloid Production and BACE1 Activity
by Hwan Bin Joo, Tae Eun Park, Min Sung Ko, Chung Hyeon Lee, Kwang Woo Hwang and So-Young Park
Separations 2026, 13(1), 35; https://doi.org/10.3390/separations13010035 (registering DOI) - 16 Jan 2026
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through sequential β-secretase (BACE1) and γ-secretase cleavage, positioning BACE1 inhibition as a prime therapeutic target. In this study, we applied bioassay-guided fractionation of the butanol-soluble fraction from Dryopteris crassirhizoma rhizomes, previously reported to inhibit Aβ production, to isolate and characterize Aβ-lowering constituents. Through successive chromatographic steps, nine compounds were isolated and structurally classified into flavonoids, chromones, and phloroglucinols, including epicatechin (1), β-carboxymethyl-(-)-epicatechin (2), 7-methoxy-isobiflorin (3), biflorin (4), eriodictyol (5), noreugenin (6), phloroglucinols (butyrylphloroglucinol (7), 2-propionyl-4-methylphloroglucinol (8), and 2-butyryl-4-methylphloroglucinol (9) by comprehensive spectroscopic analysis (NMR, MS, UV, IR). These compounds were assessed for effects on sAPPβ and BACE1 (β-secretase) levels by Western blot, with Aβ production quantified via ELISA in a cellular AD model (APP-CHO cells). Compounds 59 significantly reduced sAPPβ and BACE1 expression while potently suppressing Aβ generation. These results demonstrate that diverse constituents from D. crassirhizoma rhizomes inhibited Aβ production through BACE1 suppression, highlighting their potential as natural lead compounds for AD prevention or therapy. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
20 pages, 718 KB  
Review
Angiopoietin-like Protein 3 (ANGPTL3) Targeting in the Management of Dyslipidemias
by Constantine E. Kosmas, Loukianos S. Rallidis, Ioannis Hoursalas, Evangelia J. Papakonstantinou and Christina E. Kostara
Int. J. Mol. Sci. 2026, 27(2), 921; https://doi.org/10.3390/ijms27020921 - 16 Jan 2026
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, despite advances in pharmacological prevention and treatment. The burden of CVD necessitates implementing the treatment of risk factors including dyslipidemia. Pharmaceutical advancements and in depth understanding of pathophysiology have enabled innovative therapies [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, despite advances in pharmacological prevention and treatment. The burden of CVD necessitates implementing the treatment of risk factors including dyslipidemia. Pharmaceutical advancements and in depth understanding of pathophysiology have enabled innovative therapies targeting pathways underlying lipoprotein metabolism disorders. Angiopoietin protein-like 3 (ANGPTL3) plays a crucial role in the regulation of lipoprotein metabolism, therefore being a potential therapeutic target. Inhibition of ANGPTL3 has emerged as a new therapeutic strategy to reduce LDL-cholesterol levels independent of the LDL receptor function. Therapeutic approaches for ANGPTL3 inhibition range from monoclonal antibodies to nucleic acid therapeutics including antisense oligonucleotides and small interfering RNAs. In this review, we briefly explain the structure and mechanism of action of ANGPTL3 and discuss the therapeutic approaches for targeting ANGPTL3 in the clinical setting. We also discuss Evinacumab, a monoclonal antibody, its structure, mechanism of action, safety, tolerability, pharmacokinetics, and pharmacodynamics, as well as its clinical trial-derived results. The antisense oligonucleotides modify ANGPTL3 mRNA to inhibit protein production, and small interfering RNAs induce mRNA degradation; results from clinical trials were reviewed in detail. Finally, we discuss promising gene editing approaches including clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
26 pages, 2278 KB  
Review
Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review
by Gitishree Das, Sandra Gonçalves, José Basilio Heredia, Nayely Leyva-López, Anabela Romano, Spiros Paramithiotis, Han-Seung Shin and Jayanta Kumar Patra
Foods 2026, 15(2), 336; https://doi.org/10.3390/foods15020336 - 16 Jan 2026
Abstract
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan [...] Read more.
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan derivatives with diverse biological properties have been identified. Lignans are considered promising for human health due to their hydrogen-donating antioxidant activity together with their ability to complex divalent transition metal cations. They have demonstrated beneficial effects for cardiovascular disease, as well as in maintaining blood glucose levels, supporting cardiac health, promoting anti-obesity effects, decreasing the risk of renal diseases, enhancing brain function, improving skin and gut health, among others. This review explores the biosynthesis and biological effects of lignans, with a particular focus on their antihypertensive and anti-obesity properties, as well as the molecular mechanisms involved. It also highlights recent advances in sustainable lignan extraction techniques that are suitable for human use. The mechanisms underlying these bioactivities are thought to involve hormonal metabolism and availability, antioxidant action, modulation of angiogenesis, and more. However, further research is needed to fully elucidate the molecular pathways through which lignans exert their therapeutic effects. Overall, lignans from various plant sources hold significant potential for application in functional foods, dietary supplements, and pharmaceutical products aimed at preventing and managing a range of health conditions, including hypertension and obesity. Full article
Show Figures

Figure 1

20 pages, 1709 KB  
Review
Type 2 Diabetes and Alzheimer’s Disease: Molecular Mechanisms and Therapeutic Insights with a Focus on Anthocyanin
by Muhammad Sohail Khan, Ashfaq Ahmad, Somayyeh Nasiripour and Jean C. Bopassa
J. Dement. Alzheimer's Dis. 2026, 3(1), 5; https://doi.org/10.3390/jdad3010005 - 16 Jan 2026
Abstract
Type 2 Diabetes Mellitus (T2DM) is a recognized risk factor for Alzheimer’s Disease (AD), as epidemiological research indicates that those with T2DM have a markedly increased risk of experiencing cognitive decline and dementia. Chronic hyperglycemia and insulin resistance in T2DM hinder cerebral glucose [...] Read more.
Type 2 Diabetes Mellitus (T2DM) is a recognized risk factor for Alzheimer’s Disease (AD), as epidemiological research indicates that those with T2DM have a markedly increased risk of experiencing cognitive decline and dementia. Chronic hyperglycemia and insulin resistance in T2DM hinder cerebral glucose metabolism, reducing the primary energy source for neurons and compromising synaptic function. Insulin resistance impairs signaling pathways crucial for neuronal survival and plasticity, while high insulin levels compete with amyloid-β (Aβ) for breakdown by insulin-degrading enzyme, promoting Aβ buildup. Additionally, vascular issues linked to T2DM impair blood–brain barrier functionality, decrease cerebral blood flow, and worsen neuroinflammation. Elevated oxidative stress and advanced glycation end-products (AGEs) in diabetes exacerbate tau hyperphosphorylation and mitochondrial dysfunction, worsening neurodegeneration. Collectively, these processes create a robust biological connection between T2DM and AD, emphasizing the significance of metabolic regulation as a possible treatment approach for preventing or reducing cognitive decline. Here, we review the relationship between T2DM and AD and discuss the roles insulin, hyperglycemia, and inflammation therapeutic strategies have in successful development of AD therapies. Additionally evaluated are recent therapeutic advances, especially involving the polyflavonoid anthocyanin, against T2DM-mediated AD pathology. Full article
Show Figures

Figure 1

17 pages, 3143 KB  
Article
High Cell Density Fermentation Strategy for High-Level Soluble Expression of Glucagon-like Peptide-1 Analogue in Escherichia coli
by Sushmita R. Kumar, Esha Shukla and Gaurav Pandey
Fermentation 2026, 12(1), 53; https://doi.org/10.3390/fermentation12010053 - 16 Jan 2026
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and therapeutic agent for Type II diabetes mellitus. However, recombinant production in E. coli yields insufficient quantities, increasing manufacturing costs and limiting patient access. Improving yield and productivity is crucial to make GLP-1 treatments more affordable. [...] Read more.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and therapeutic agent for Type II diabetes mellitus. However, recombinant production in E. coli yields insufficient quantities, increasing manufacturing costs and limiting patient access. Improving yield and productivity is crucial to make GLP-1 treatments more affordable. An optimized bioprocess was developed to enhance the yield of recombinant GLP-1 (rGLP-1) analogues. Expression constructs encoding monomeric and concatemeric GLP-1 fused to GST were designed. Batch fermentations of these clones at varying pre-induction specific growth rates guided the fed-batch strategy for yield enhancement. The specific yield of monomer construct exhibited higher yields than the concatemer. Process optimization achieved a specific yield (Yp/x) of 116.7 mg/g, a dry cell weight of 88.9 g/L, and a volumetric yield of 10.3 g/L. The specific productivity of soluble rGLP-1 reached 0.4 g/L/h. Purification via affinity chromatography and enterokinase cleavage yielded authentic GLP-1 peptide confirmed by Western blot and mass spectrometry. The developed high-yield fermentation process significantly enhances rGLP-1 productivity in E. coli, potentially reducing upstream production costs by 20–30% and enabling wider accessibility to affordable GLP-1 therapies. Full article
Show Figures

Figure 1

21 pages, 1188 KB  
Review
Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions
by Natalia Kuzia, Olga Adamska, Natalia Ksepka, Agnieszka Wierzbicka and Artur Jóźwik
Molecules 2026, 31(2), 311; https://doi.org/10.3390/molecules31020311 - 16 Jan 2026
Abstract
Plants from the Zingiberaceae family, particularly Zingiber officinale, Curcuma longa, and Alpinia galanga, are rich sources of bioactive compounds with documented antidiabetic and anti-inflammatory properties. This review summarizes current evidence on their phytochemical profiles and pathways relevant to metabolic regulation. [...] Read more.
Plants from the Zingiberaceae family, particularly Zingiber officinale, Curcuma longa, and Alpinia galanga, are rich sources of bioactive compounds with documented antidiabetic and anti-inflammatory properties. This review summarizes current evidence on their phytochemical profiles and pathways relevant to metabolic regulation. Key compounds, including gingerols, shogaols, curcuminoids, and phenylpropanoids, support glucose homeostasis by enhancing insulin sensitivity, promoting Glucose Transporter Type 4 (GLUT4)-mediated glucose uptake, improving β-cell function, and modulating metabolic signaling pathways such as PI3K/Akt, AMPK, PPARγ, and NF-κB. Their potent antioxidant and anti-inflammatory activities further reduce oxidative stress and chronic low-grade inflammation, both central to the progression of type 2 diabetes and its complications. Evidence from selected clinical and experimental studies suggests that dietary supplementation with whole-rhizome preparations or standardized extracts (including formulation-enhanced products) may improve fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid metabolism, and oxidative stress markers. Recent advances in delivery systems, including nanoemulsions, liposomes, and curcumin–piperine complexes, substantially enhance the bioavailability of poorly soluble phytochemicals, strengthening their therapeutic potential. Overall, Zingiberaceae plants emerge as promising natural supplements in nutritional and pharmacological strategies targeting diabetes. Further clinical research is required to refine dosage, confirm long-term efficacy, and support their integration into evidence-based metabolic interventions. Full article
(This article belongs to the Special Issue Chemical Composition and Functional Properties of Food By-Products)
Show Figures

Graphical abstract

19 pages, 1001 KB  
Review
MicroRNAs—Are They Possible Markers of Allergic Diseases and Efficient Immunotherapy?
by Krzysztof Specjalski and Marek Niedoszytko
Int. J. Mol. Sci. 2026, 27(2), 902; https://doi.org/10.3390/ijms27020902 - 16 Jan 2026
Abstract
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers [...] Read more.
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers facilitating diagnosis of the most common allergic diseases, such as allergic rhinitis (miR-21, miR-126, miR-142-3p, miR-181a, miR-221), asthma (miR-16, miR-21, miR-126, miR-146a, miR-148a, miR-221, miR-223) and atopic dermatitis (miR-24, miR-124, miR-155, miR-191, miR-223, miR-483-5p), or objectively assessing severity of inflammation and endotype of the disease. In spite of the large body of literature available, its scientific value is limited due to the small numbers of study participants, heterogeneity of populations enrolled, and diverse methodology. Some studies have revealed significant changes in miRNAs’ profile in the course of allergen immunotherapy. Tolerance induction is associated with processes controlled by miRNAs: enhanced activity of Treg cells and increased production of tolerogenic IL-10 and TGF-β. Thus, miRNAs may be candidates as biomarkers of successful immunotherapy. Finally, they are also possible therapeutic agents or targets of therapies based on antagomirs blocking their activity. However, so far no studies are available that demonstrate efficacy in overcoming delivery barriers, tissue targeting or drugs’ safety. As a consequence, despite promising results of in vitro and animal model studies, translation into human therapeutic agents is uncertain. Full article
Show Figures

Figure 1

15 pages, 6332 KB  
Article
Glycation Product Synthesized in Anhydrous Conditions Mimics an Epitope in Epithelial and Mesenchymal Tissues
by Monika Czech, Elżbieta Gamian, Agata Kochman, Marta Woźniak, Emilia Jaskuła, Piotr Ziółkowski and Andrzej Gamian
Biomedicines 2026, 14(1), 196; https://doi.org/10.3390/biomedicines14010196 - 16 Jan 2026
Abstract
Background: Advanced glycation end-products (AGEs) are formed and deposited in tissues, contributing to various disorders, including diabetes, other metabolic diseases, and aging. A new epitope, AGE10, was identified in human and animal tissues using a monoclonal antibody raised against synthetic melibiose-derived glycation [...] Read more.
Background: Advanced glycation end-products (AGEs) are formed and deposited in tissues, contributing to various disorders, including diabetes, other metabolic diseases, and aging. A new epitope, AGE10, was identified in human and animal tissues using a monoclonal antibody raised against synthetic melibiose-derived glycation end-products (MAGE), which were synthesized under anhydrous conditions with bovine serum albumin or myoglobin. The biology of the AGE10 epitope, particularly its role in diseases and in cancer tissues, is not well understood. Methods: The study was aimed at investigating the immunohistochemical recognition of AGE10 with the MoAb-anti-MAGE antibody. Results: Data obtained show that AGE10 is recognized in striated muscles but not in tumors of muscular origin. AGE10 is also stained in both normal and cancerous salivary glands and in adenomas of the large intestine. The staining is cytoplasmic. Discussion: Our approach may provide a methodology for cell biology research; AGE10 may be related to an advanced lipoxidation end-product; further investigation of MAGE may clarify disease mechanisms, support the development of novel therapeutic strategies. Conclusions: The key finding is that antibodies recognize mainly the epitope in epithelial and some mesenchymal tissues. Thus, the potential for AGE10 as a diagnostic marker is limited. The implications concern the biology of this epitope, the unique tissue distribution, and a role in cellular metabolism. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

23 pages, 1039 KB  
Review
Advanced Liposomal Systems for Cancer Therapy with Focus on Lipid–Polymer Hybrids and Cell Membrane-Coated Liposomes
by Paraskevi Zagana and Alexandra Paxinou
Future Pharmacol. 2026, 6(1), 6; https://doi.org/10.3390/futurepharmacol6010006 - 16 Jan 2026
Abstract
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming [...] Read more.
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming many disadvantages of early formulations. Lipid–polymer hybrid liposomes (LPHLs), a third-generation nanoparticle model, are vesicles where polymers are incorporated in or around the lipid bilayer to increase their stability, to control drug release, and to provide multifunctional capabilities. More recently, cell membrane-coated (CMC) liposomes, which consist of “core” liposomes (preformed liposomes) cloaked in natural cell membranes, have emerged as an even more innovative approach, offering superior immune evasion and highly selective targeting, which are both particularly promising for cancer therapy. Preclinical studies in cancer models demonstrate that these advanced liposomal systems improve pharmacokinetics and therapeutic outcomes. They hold significant potential for developing next-generation, personalized nanomedicines for cancer and other complex diseases. However, challenges related to large-scale production, long-term stability, and safety evaluation remain. Full article
Show Figures

Figure 1

19 pages, 1992 KB  
Article
Antimicrobial Use and Epidemiological Resistance Profiles of Commensal Escherichia coli from Swine Farms in Córdoba, Argentina
by Nicolás Javier Litterio, María del Pilar Zarazaga, Augusto Matías Lorenzutti, Juan Pablo Vico, Martín Alejandro Himelfarb, Mariano Guillermo Tinti, Ana Paola Zogbi, Sonia Rubio-Langre and Manuel Ignacio San Andrés Larrea
Antibiotics 2026, 15(1), 86; https://doi.org/10.3390/antibiotics15010086 - 15 Jan 2026
Viewed by 65
Abstract
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize [...] Read more.
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize AM use practices and evaluate the epidemiological resistance profiles (non-wild-type phenotypes, NWT) of commensal Escherichia coli of fecal origin from swine farms, using epidemiological cut-off values (ECOFFs) as a surveillance criterion. Methods: An observational cross-sectional study was conducted in 19 farrow-to-finish farms in Córdoba during 2023. Information on AM use (prophylaxis, metaphylaxis, treatment) across production categories was collected. A total of 437 E. coli isolates were obtained from fecal samples, and minimum inhibitory concentrations (MICs) were determined for 10 AMs of critical importance for human and animal health. NWT phenotypes were classified according to EUCAST ECOFFs, and multidrug resistance (MDR) was assessed. Results: AM use was frequent and predominantly prophylactic (89.5% of farms), mainly through mass medication (66.3%), with macrolides and amoxicillin being the most commonly administered AMs. NWT proportions were extremely high (90–92%) for ampicillin, tetracyclines, and chloramphenicol and substantial for ciprofloxacin (50.6%), sulfamethoxazole (68.2%), and trimethoprim (44.9%). Extended-spectrum β-lactamase (ESBL)-producing phenotypes were detected. Alarmingly, 92% of isolates were classified as MDR E. coli, with homogeneous distribution across production categories. Conclusions: Findings reveal intensive and largely empirical AM use that has consolidated a stable intestinal resistome in the swine population. High MDR levels, even in categories with limited direct AM exposure or involving banned compounds, suggest that co-selection and horizontal gene transfer are key drivers of resistance. This scenario highlights the urgent need to strengthen integrated surveillance and promote prudent AM use strategies under the One Health approach to preserve therapeutic efficacy. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science, 2nd Edition)
Show Figures

Figure 1

35 pages, 1471 KB  
Review
β-Alanine Is an Unexploited Neurotransmitter in the Pathogenesis and Treatment of Alzheimer’s Disease
by Cindy M. Wozniczka and Donald F. Weaver
NeuroSci 2026, 7(1), 13; https://doi.org/10.3390/neurosci7010013 - 15 Jan 2026
Viewed by 43
Abstract
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular [...] Read more.
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular mechanisms underlying AD development. This review suggests that β-alanine (3-aminopropanoic acid) is an underexplored neurotransmitter that could serve as a potential AD drug target. Existing evidence indicates that β-alanine modulates GABAergic and glutamatergic neurotransmission, thereby affecting neuronal hyperexcitability. Additionally, studies suggest that β-alanine has antioxidant effects, reducing oxidative stress caused by reactive oxygen species (ROS). We propose that β-alanine might bind to Aβ/tau proteins, possibly targeting the six-amino acid sequences EVHHQK/DDKKAK, which are involved in protein aggregation. β-Alanine may also influence the release of pro-inflammatory cytokines from microglia, potentially reducing neuroinflammation. We also hypothesize that β-alanine may help regulate metal dyshomeostasis, which leads to ROS production. Taurine, structurally like β-alanine, appears to influence comparable mechanisms. Although structural similarity doesn’t ensure therapeutic effectiveness, this evidence supports considering β-alanine as a treatment for AD. Furthermore, β-alanine and its analogues face challenges, including crossing the blood–brain barrier (BBB) and optimizing structure–activity relationships (SAR). This review includes articles through September 2025, sourced from four databases. Full article
Show Figures

Figure 1

26 pages, 6540 KB  
Review
Development of Curcumin-Loaded Nanoemulsions for Fortification and Stabilization of Dairy Beverages
by Roberta Pino, Vincenzo Sicari, Mudassar Hussain, Stockwin Kwame Kyei Boakye, Faiza Kanwal, Ramsha Yaseen, Manahel Azhar, Zeeshan Ahmad, Benic Degraft-Johnson, Amanuel Abebe Kebede, Rosa Tundis and Monica Rosa Loizzo
Appl. Sci. 2026, 16(2), 885; https://doi.org/10.3390/app16020885 - 15 Jan 2026
Viewed by 44
Abstract
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low [...] Read more.
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low water solubility, poor chemical stability (notably at the near-neutral pH of milk), and very limited oral bioavailability. This review provides a critical synthesis of the literature published in the last two decades, with a focus on the development and application of food-grade oil-in-water (O/W) nanoemulsions to advanced colloidal delivery systems. It covers the fundamental principles of nanoemulsion formulation, including the selection of the oil phase, surfactants, and stabilizers, as well as both high-energy and low-energy fabrication techniques. It further examines the integration of these nano-delivery systems into dairy matrices (milk, yogurt, cheese), highlighting key interactions between nanoemulsion droplets and native dairy constituents such as casein micelles and whey proteins. Critically, findings indicate that nanoencapsulation not only enhances curcumin’s solubility but also protects it from chemical degradation during industrial processes, including pasteurization and sterilization. Moreover, the dairy matrix structure plays a key role in modulating curcumin bioaccessibility, with fortified products frequently exhibiting enhanced stability, shelf life, and sensory attributes. Finally, key technological challenges addressed the heterogeneous global regulatory landscape surrounding biopolymers and future trends: most notably, the growing shift toward “clean-label” biopolymer-based delivery systems. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing: Second Edition)
Show Figures

Figure 1

Back to TopTop