Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions
Abstract
1. Introduction

2. Methodology
3. Characteristics of Plants from the Zingiberaceae Family
3.1. Zingiber officinale Roscoe (Ginger)
| Plant | Fraction | Chemical Type | Examples of Main Compounds | Effect | Reference |
|---|---|---|---|---|---|
| Zingiber officinale Roscoe | Volatile | Monoterpenes | Camphor, camphene, limonene, neral, geranial | Anti-inflammatory, antibacterial, antioxidant, digestive, cardioprotective, antispasmodic | [15,26,27,28] |
| Sesquiterpenes | β-bisabolene, α-zingiberene, β-sesquiphellandrene, ar-curcumene, farnesene, zerumbone | ||||
| Non-volatile | Phenols | 6-gingerol, 8-gingerol, 6-shogaol, zingerone | Antioxidant, anti-inflammatory, anticancer, antidiabetic, antiallergic, antiemetic, lipid-lowering, heart-protective, supporting glucose metabolism, anti-obesity | [15,26,27,28,29] |
3.2. Curcuma longa L. (Turmeric)
3.3. Alpinia galanga (Greater Galangal)
| Plant | Fraction | Chemical Type | Examples of Main Compounds | Effect | Reference |
|---|---|---|---|---|---|
| Alpinia galanga | Volatile | Monoterpenes | 1,8-cineol, α-terpineol, β-pinene | Antibacterial, antifungal, anti-inflammatory, antioxidant, gastroprotective, anticancer | [43,44,45] |
| Sesquiterpenes | Farnesene, germacrene D, β-caryophyllene | ||||
| Non-volatile | Flavonoids | Galangin, quercetin | Antidiabetic, antioxidant | [44,46,47,48] | |
| Stilbenoids/ lignans | Pinostilbene, pinoresinol | Antioxidant, anti-inflammatory, immunomodulatory, antidiabetic, anticancer | [43,44,45] |
4. Signaling Pathways and Molecular Mechanisms
4.1. Zingiber officinale Roscoe (Ginger)
4.2. Curcuma longa L. (Turmeric)
4.3. Alpinia galanga (Greater Galangal)
5. Formulation, Dosage, and Clinical Context of Zingiberaceae Supplements
5.1. Zingiber officinale Roscoe (Ginger)
5.2. Curcuma longa L. (Turmeric)
5.3. Alpinia galanga (Greater Galangal)
| Plant | Dosage | Study Design | Time | Participants | Effect | Reference |
|---|---|---|---|---|---|---|
| Zingiber officinale Roscoe | 1200 mg/d ginger powder | Randomized clinical trial | 90 days | Type 2 diabetic patients | ↓ FBG, ↓ TC, ↓ LDL | [55] |
| 1800 mg/d ginger powder | Randomized, single blind, placebo-controlled clinical trial | 8 weeks | Newly diagnosed type 2 diabetic patients | ↓ BMI, ↓ FBG, ↓ HOMA-IR, ↓ HbA1c, ↓ TC, ↓ LDL, ↓ TG, ↓ fasting insulin levels | [88] | |
| 2000 mg/d ginger powder | Randomized double-blinded placebo-controlled clinical trial | 3 months | Type 2 diabetic patients with NAFLD | ↓ SBP, ↓ DBP, ↓ serum insulin levels, ↓ HOMA-IR | [89] | |
| 2000 mg/d ginger powder | Randomized, double blind, placebo-controlled clinical trial | 12 weeks | Type 2 diabetic patients | ↓ FBG, ↓ HbA1c, ↓ apoB, ↓ apoA1, ↓ apoB/apoA1, ↓ MDA | [90] | |
| 1197 mg/d ginger powder | Single-arm clinical trial | 6 weeks | Type 2 diabetic patients | ↓ HbA1c, ↓ TG, ↓ diurnal DBP, ↓ diurnal MAP, ↓ 24 h DBP | [91] | |
| Curcuma longa L. | 1500 mg/d curcumin | Randomized controlled trial | 12 months | Type 2 diabetic patients | ↓ FBG, ↓ HbA1c, ↓ HOMA-IR, ↓ leptin, ↑ adiponectin, ↓ BMI | [95] |
| 500 mg/d of curcuminoids with 5 mg/d of piperine | Double-blind randomized controlled trial | 12 weeks | Type 2 diabetic patients with hypertriglyceridemia | ↓ FBG, ↓ TG, ↓ TC, ↓ CRP | [98] | |
| 1000 mg/d curcumin with 10 mg/d of piperine | Randomized controlled trial | 8 weeks | Type 2 diabetic patients | ↑ TAC, ↑ SOD, ↓ MDA | [105] | |
| 80 mg curcumin | Pilot, double-blind, placebo-controlled trial | 12 weeks | Older adults with prediabetes or overweight/obesity | ↓ HbA1c, ↑ AST levels, ↓ ALT/AST ratio | [106] | |
| 1000 mg/d curcumin | Randomized, double-blind, placebo-controlled trial | 12 weeks | Type 2 diabetic patients with coronary heart disease | ↓ MDA, ↑ TAC, ↑ GSH, ↓ PSQI | [107] | |
| Alpinia galanga | (1′S)-1′-Acetoxyeugenol acetate (AEA)—5 and 10 μM | Controlled in vitro experimental study | 24 h | INS-1 pancreatic β-cells | ↑ GSIS, ↑ IRS-2/PI3K/Akt pathway protein expressions; ↓ α-glucosidase | [77] |
| Methanolic extract of A. galanga 200 and 400 mg/kg body weight | Non-randomized, controlled in vivo experimental study | 21 days | STZ-induced diabetic rats | ↓ FBG, ↓ body weight, ↓ TG, ↓ TC, ↓ LDL, ↑ HDL | [104] |
6. Discussion
Limitations
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DM | Diabetes mellitus |
| IRS | Insulin receptor substrate |
| PI3K | Phosphoinositide 3-kinase |
| Akt | Protein kinase B |
| OGTT | Oral glucose tolerance test |
| HbA1c | Glycated hemoglobin |
| T1DM | Type 1 diabetes |
| T2DM | Type 2 diabetes |
| GDM | Gestational diabetes mellitus |
| LADA | Latent autoimmune diabetes in adults |
| GLUT4 | Glucose transporter type 4 |
| CUR | Curcumin |
| DMC | Demethoxycurcumin |
| BDMC | Bisdemethoxycurcumin |
| ACA | 1′S-1′-acetoxychavicol acetate |
| AEA | 1′S-1′-acetoxy-eugenol acetate |
| HPLC | High-performance liquid chromatography |
| GC-MS | Gas chromatography-mass spectrometry |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| AMPK | AMP-activated protein kinase |
| CNS | Central nervous system |
| MAPK | Mitogen-activated protein kinase |
| FBG | Fasting blood glucose |
| HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
| QUICKI | Quantitative insulin sensitivity check index |
| PPARγ | Peroxisome proliferator-activated receptor gamma |
| TNF-α | Tumor necrosis factor α |
| IL-6 | Interleukin-6 |
| IL-1β | Interleukin-1 β |
| MCP-1 | Monocyte chemoattractant protein-1 |
| RANTES | Regulated on activation, normal T-cell expressed and secreted |
| SOD | Superoxide dismutase |
| CAT | Catalase |
| TAC | Total antioxidant capacity |
| TLR4 | Toll-like receptor 4 |
| NLRP3 | Nucleotide-binding Leucine-rich repeat and Pyrin domain containing 3 |
| JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
| iNOS | Inducible nitric oxide synthase |
| CRP | C-reactive protein |
| ROS | Reactive oxygen species |
| GPx | Glutathione peroxidase |
| AGEs | Advanced glycation end products |
| MDA | Malondialdehyde |
| LDL-C | Low-density lipoprotein cholesterol |
| VLDL-C | Very low-density lipoprotein cholesterol |
| HDL-C | High-density lipoprotein cholesterol |
| GSIS | Glucose-dependent insulin secretion |
| NO | Nitric oxide |
| COX-2 | Cyclooxygenase-2 |
| GSK-3β | Glycogen synthase kinase-3 beta |
| SGLT-2 | Sodium-glucose cotransporter 2 |
| GLP-1 | Glucagon-like peptide 1 |
References
- Duncan, B.B.; Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 11th Edition 2025: Global Prevalence and Projections for 2050. Nephrol. Dial. Transpl. 2025, 41, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Committee, A.D.A.P.P.; ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Ebekozien, O.; Echouffo-Tcheugui, J.B.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic Regulation of Glucose Homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef]
- Tumurkhuu, M.; Bhat, S.A.; Hossain, M.Z.; Shafiq, M.; Hasnain, M.S.; Nayak, A.K.; Ahmed, S.A. Editorial: Cellular and Molecular Mechanisms in Metabolic Disorders: Role of Inflammation and Oxidative Stress. Front. Pharmacol. 2025, 16, 1580553. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; et al. 2023 Guidelines on the Management of Patients with Diabetes—A Position of Diabetes Poland. Curr. Top. Diabetes 2023, 3, 1–133. [Google Scholar] [CrossRef]
- Tegegne, B.A.; Adugna, A.; Yenet, A.; Yihunie Belay, W.; Yibeltal, Y.; Dagne, A.; Hibstu Teffera, Z.; Amare, G.A.; Abebaw, D.; Tewabe, H.; et al. A Critical Review on Diabetes Mellitus Type 1 and Type 2 Management Approaches: From Lifestyle Modification to Current and Novel Targets and Therapeutic Agents. Front. Endocrinol. 2024, 15, 1440456. [Google Scholar] [CrossRef]
- Quattrin, T.; Mastrandrea, L.D.; Walker, L.S.K. Type 1 Diabetes. Lancet 2023, 401, 2149–2162. [Google Scholar] [CrossRef]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 Diabetes Mellitus in Adults: Pathogenesis, Prevention and Therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef]
- Huang, J.; Guan, B.; Lin, L.; Wang, Y. Improvement of Intestinal Barrier Function, Gut Microbiota, and Metabolic Endotoxemia in Type 2 Diabetes Rats by Curcumin. Bioengineered 2021, 12, 11947–11958. [Google Scholar] [CrossRef] [PubMed]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The Master Regulator of Glucose Metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.A.; Xiang, A.H.; Page, K.A.; Watanabe, R.M. What Is Gestational Diabetes—Really? Diabetes 2025, 74, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, J.; Prinz, R.A.; Li, Y.; Xu, X. Gingerenone A Sensitizes the Insulin Receptor and Increases Glucose Uptake by Inhibiting the Activity of P70 S6 Kinase. Mol. Nutr. Food Res. 2018, 62, 1800709. [Google Scholar] [CrossRef]
- Taylor, T. Flowering Plants. In Biology and Evolution of Fossil Plants; Academic Press: New York, NY, USA, 2009; pp. 873–997. [Google Scholar] [CrossRef]
- Sharma, S.K.; Baliyan, P.; Alam, A. Bioactive Compounds in Lamiaceae, Ranunculaceae, and Zingiberaceae: A Review of Healing Potential. Trends Biol. Sci. 2025, 1, 12–25. [Google Scholar] [CrossRef]
- Alolga, R.N.; Wang, F.; Zhang, X.; Li, J.; Tran, L.S.P.; Yin, X. Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants 2022, 11, 1281. [Google Scholar] [CrossRef]
- Victoria-Montesinos, D.; Cerdá Martínez-Pujalte, B.; Zafrilla, P.; Ballester, P.; García-Muñoz, A.M. Effect of the Consumption of Species from the Zingiberaceae or Berberidaceae Family on Glycemic Profile Parameters: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 5565. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Stoner, G.D. Ginger: Is It Ready for Prime Time? Cancer Prev. Res. 2013, 6, 257–262. [Google Scholar] [CrossRef]
- Kiyama, R. Nutritional Implications of Ginger: Chemistry, Biological Activities and Signaling Pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef]
- Matin, M.; Kan Yeung, A.W.; Joshi, T.; Tzvetkov, N.T.; Matin, F.B.; Strzałkowska, N.; Ksepka, N.; Wysocki, K.; Tomasik, C.; Mickael, M.-E.; et al. Ginger: A Total-Scale Analysis of the Scientific Literature on a Widely Used Spice and Phytotherapeutic. Anim. Sci. Pap. Rep. 2024, 42, 349–364. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Anjani, G.; Ayu, A.M.; Fogliano, V. A Critical Review of Ginger’s (Zingiber officinale) Antioxidant, Anti-Inflammatory, and Immunomodulatory Activities. Front. Nutr. 2024, 11, 1364836. [Google Scholar] [CrossRef]
- Anh, N.H.; Kim, S.J.; Long, N.P.; Min, J.E.; Yoon, Y.C.; Lee, E.G.; Kim, M.; Kim, T.J.; Yang, Y.Y.; Son, E.Y.; et al. Ginger on Human Health: A Comprehensive Systematic Review of 109 Randomized Controlled Trials. Nutrients 2020, 12, 157. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; Marhuenda, J.; Yamedjeu, K.; Zafrilla, P. Effect of Ginger on Inflammatory Diseases. Molecules 2022, 27, 7223. [Google Scholar] [CrossRef]
- Boyina, H.K.; Chakraborty, S.; Atrooz, O.M.; Adamska, O.; Sanka, K.; Atanasov, A.G.; Stolarczyk, A.; Chellammal, H.S.J.; Arora, V.; Gangarapu, K.; et al. Zingiberaceae Wonders: The Antioxidant Powerhouse for Optimal Health. Anim. Sci. Pap. Rep. 2025, 43, 1–18. [Google Scholar] [CrossRef]
- Ivanović, M.; Makoter, K.; Razboršek, M.I. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef]
- Edo, G.I.; Igbuku, U.A.; Makia, R.S.; Isoje, E.F.; Gaaz, T.S.; Yousif, E.; Jikah, A.N.; Zainulabdeen, K.; Akpoghelie, P.O.; Opiti, R.A.; et al. Phytochemical Profile, Therapeutic Potentials, Nutritional Composition, and Food Applications of Ginger: A Comprehensive Review. Discov. Food 2025, 5, 25. [Google Scholar] [CrossRef]
- Ajanaku, C.O.; Ademosun, O.T.; Atohengbe, P.O.; Ajayi, S.O.; Obafemi, Y.D.; Owolabi, O.A.; Akinduti, P.A.; Ajanaku, K.O. Functional Bioactive Compounds in Ginger, Turmeric, and Garlic. Front. Nutr. 2022, 9, 1012023. [Google Scholar] [CrossRef] [PubMed]
- Promdam, N.; Panichayupakaranant, P. [6]-Gingerol: A Narrative Review of Its Beneficial Effect on Human Health. Food Chem. Adv. 2022, 1, 100043. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to Its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef]
- Sabir, S.M.; Zeb, A.; Mahmood, M.; Abbas, S.R.; Ahmad, Z.; Iqbal, N. Phytochemical Analysis and Biological Activities of Ethanolic Extract of Curcuma longa Rhizome. Braz. J. Biol. 2021, 81, 737–740. [Google Scholar] [CrossRef]
- Salehi, B.; Del Prado-Audelo, M.L.; Cortés, H.; Leyva-gómez, G.; Stojanović-radić, Z.; Singh, Y.D.; Patra, J.K.; Das, G.; Martins, N.; Martorell, M.; et al. Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. J. Clin. Med. 2020, 9, 746. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent Developments in Curcumin and Curcumin Based Polymeric Materials for Biomedical Applications: A Review. Int. J. Biol. Macromol. 2015, 81, 877–890. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M.; Khan, M.A. Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways. BioMed Res. Int. 2014, 2014, 761608. [Google Scholar] [CrossRef]
- Tian, W.W.; Liu, L.; Chen, P.; Yu, D.M.; Li, Q.M.; Hua, H.; Zhao, J.N. Curcuma longa (Turmeric): From Traditional Applications to Modern Plant Medicine Research Hotspots. Chin. Med. 2025, 20, 76. [Google Scholar] [CrossRef]
- Singh, J.; Tareq, F.S.; Luthria, D.L. Comparative Investigation of Untargeted and Targeted Metabolomics in Turmeric Dietary Supplements and Rhizomes. Foods 2025, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Patra, J.K.; Gonçalves, S.; Romano, A.; Gutiérrez-Grijalva, E.P.; Heredia, J.B.; Talukdar, A.D.; Shome, S.; Shin, H.S. Galangal, the Multipotent Super Spices: A Comprehensive Review. Trends Food Sci. Technol. 2020, 101, 50–62. [Google Scholar] [CrossRef]
- Ramanunny, A.K.; Wadhwa, S.; Gulati, M.; Vishwas, S.; Khursheed, R.; Paudel, K.R.; Gupta, S.; Porwal, O.; Alshahrani, S.M.; Jha, N.K.; et al. Journey of Alpinia Galanga from Kitchen Spice to Nutraceutical to Folk Medicine to Nanomedicine. J. Ethnopharmacol. 2022, 291, 115144. [Google Scholar] [CrossRef]
- Destryana, R.A.; Estiasih, T.; Sukardi; Pranowo, D.; Destryana, R.A.; Estiasih, T.; Sukardi; Pranowo, D. The Potential Uses of Galangal (Alpinia Sp.) Essential Oils as the Sources of Biologically Active Compounds. AIMS Agric. Food 2024, 9, 1064–1109. [Google Scholar] [CrossRef]
- Van, H.T.; Thang, T.D.; Luu, T.N.; Doan, V.D. An Overview of the Chemical Composition and Biological Activities of Essential Oils from Alpinia Genus (Zingiberaceae). RSC Adv. 2021, 11, 37767–37783. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.M.; Alfuraydi, A.A.; Almarfadi, O.M.; Aboul-Soud, M.A.M.; Alshememry, A.K.; Alsaleh, A.N.; Almajhdi, F.N. Phytochemical Analysis, Antioxidant, Anticancer, and Antibacterial Potential of Alpinia Galanga (L.) Rhizome. Heliyon 2024, 10, e37196. [Google Scholar] [CrossRef]
- Chouni, A.; Paul, S. A Review on Phytochemical and Pharmacological Potential of Alpinia Galanga. Pharmacogn. J. 2018, 10, 9–15. [Google Scholar] [CrossRef]
- Lin, H.; Li, X.; Song, Z.; Liu, Y.; Li, Z.; He, Q.; Wei, B.; Wang, Z. Exploration of the Varieties Differences on the Volatile and Non-Volatile Metabolites of Alpinia Galanga and Myristica Fragrans Utilizing Electronic Sensing Evaluation and Untargeted Metabolomics Analysis. Food Chem. X 2025, 28, 102514. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jia, X.; Wang, Q.; Lu, T.; Deng, G.; Tian, M.; Zhou, Y. Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia Galanga Flower Essential Oil. Pharmaceuticals 2022, 15, 1069. [Google Scholar] [CrossRef]
- Aljobair, M.O. Chemical Composition, Antimicrobial Properties, and Antioxidant Activity of Galangal Rhizome. Food Sci. Technol. 2022, 42, e45622. [Google Scholar] [CrossRef]
- Liu, P.; Wu, S.L.; Wang, T.; Zhang, X.M.; Geng, C.A. Four New Phenolic Compounds from the Fruits of Alpinia Galanga. Phytochem. Lett. 2023, 55, 75–79. [Google Scholar] [CrossRef]
- Putra, W.E.; Sustiprijatno; Hidayatullah, A.; Widiastuti, D.; Heikal, M.F.; Salma, W.O. Virtual Screening of Natural Alpha-Glucosidase Inhibitor from Alpinia Galanga Bioactive Compounds as Anti-Diabetic Candidate: Anti-Diabetic Activity of Alpinia Galanga. J. Microbiol. Biotechnol. Food Sci. 2023, 13, e4353. [Google Scholar] [CrossRef]
- Wilcox, G. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 19. [Google Scholar]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin Resistance: Review of the Underlying Molecular Mechanisms. J. Cell. Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Barazzoni, R.; Gortan Cappellari, G.; Ragni, M.; Nisoli, E. Insulin Resistance in Obesity: An Overview of Fundamental Alterations. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2018, 23, 149–157. [Google Scholar] [CrossRef]
- Færch, K.; Vistisen, D.; Pacini, G.; Torekov, S.S.; Johansen, N.B.; Witte, D.R.; Jonsson, A.; Pedersen, O.; Hansen, T.; Lauritzen, T.; et al. Insulin Resistance Is Accompanied by Increased Fasting Glucagon and Delayed Glucagon Suppression in Individuals with Normal and Impaired Glucose Regulation. Diabetes 2016, 65, 3473–3481. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef]
- Taha, A.; Ashour, H.; Reffat, M.; Elkhawaga, O.Y. The Impact of Ginger and Curcumin on Diabetic Nephropathy Induced by Streptozotocin in Rats. Eur. J. Transl. Clin. Med. 2024, 6, 51–65. [Google Scholar] [CrossRef]
- Carvalho, G.C.N.; Lira-Neto, J.C.G.; Araújo, M.F.M.d.; Freitas, R.W.J.F.d.; Zanetti, M.L.; Damasceno, M.M.C. Effectiveness of Ginger in Reducing Metabolic Levels in People with Diabetes: A Randomized Clinical Trial. Rev. Lat.-Am. Enferm. 2020, 28, e3369. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, A.; Ebrahimzadeh, A.; Mirghazanfari, S.M.; Hazrati, E.; Hadi, S.; Milajerdi, A. The Effect of Ginger Supplementation on Metabolic Profiles in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement. Ther. Med. 2022, 65, 102802. [Google Scholar] [CrossRef]
- Rostamkhani, H.; Veisi, P.; Niknafs, B.; Jafarabadi, M.A.; Ghoreishi, Z. The Effect of Zingiber officinale on Prooxidant-Antioxidant Balance and Glycemic Control in Diabetic Patients with ESRD Undergoing Hemodialysis: A Double-Blind Randomized Control Trial. BMC Complement. Med. Ther. 2023, 23, 52. [Google Scholar] [CrossRef]
- Schumacher, J.C.; Mueller, V.; Sousa, C.; Peres, K.K.; da Mata, I.R.; Menezes, R.C.R.; Dal Bosco, S.M. The Effect of Oral Supplementation of Ginger on Glycemic Control of Patients with Type 2 Diabetes Mellitus—A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2024, 63, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E. Effects of Ginger (Zingiber officinale) on Plasma Glucose Level, HbA1c and Insulin Sensitivity in Type 2 Diabetic Patients. Int. J. Food Sci. Nutr. 2013, 64, 682–686. [Google Scholar] [CrossRef]
- Abbood, M.S.; Al-Adsani, A.M.; Al-Bustan, S.A. Ginger Extract Promotes Pancreatic Islets Regeneration in Streptozotocin-Induced Diabetic Rats. Biosci. Rep. 2025, 45, 171–184. [Google Scholar] [CrossRef]
- Venkateswaran, M.; Jayabal, S.; Hemaiswarya, S.; Murugesan, S.; Enkateswara, S.; Doble, M.; Periyasamy, S. Polyphenol-Rich Indian Ginger Cultivars Ameliorate GLUT4 Activity in C2C12 Cells, Inhibit Diabetes-Related Enzymes and LPS-Induced Inflammation: An in Vitro Study. J. Food Biochem. 2021, 45, e13600. [Google Scholar] [CrossRef]
- Preciado-Ortiz, M.E.; Gembe-Olivarez, G.; Martínez-López, E.; Rivera-Valdés, J.J. Immunometabolic Effects of Ginger (Zingiber officinale Roscoe) Supplementation in Obesity: A Comprehensive Review. Molecules 2025, 30, 2933. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shukla, M.K.; Sharma, K.C.; Tirath; Kumar, L.; Anal, J.M.H.; Upadhyay, S.K.; Bhattacharyya, S.; Kumar, D. Revisiting the Therapeutic Potential of Gingerols against Different Pharmacological Activities. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 633–647. [Google Scholar] [CrossRef]
- Veisi, P.; Zarezade, M.; Rostamkhani, H.; Ghoreishi, Z. Renoprotective Effects of the Ginger (Zingiber officinale) on Diabetic Kidney Disease, Current Knowledge and Future Direction: A Systematic Review of Animal Studies. BMC Complement. Med. Ther. 2022, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Shidfar, F.; Rajab, A.; Rahideh, T.; Khandouzi, N.; Hosseini, S.; Shidfar, S. The Effect of Ginger (Zingiber officinale) on Glycemic Markers in Patients with Type 2 Diabetes. J. Complement. Integr. Med. 2015, 12, 165–170. [Google Scholar] [CrossRef]
- Babaahmadi-Rezaei, H.; Kheirollah, A.; Hesam, S.; Ayashi, S.; Aberumand, M.; Adel, M.H.; Zamanpour, M.; Alasvand, M.; Amozgari, Z.; Noor-Behbahani, M.; et al. Decreased Lipoprotein (a) and Serum High-Sensitivity C-Reactive Protein Levels in Male Patients with Atherosclerosis after Supplementation with Ginger: A Randomized Controlled Trial. ARYA Atheroscler. J. 2020, 16, 153–160. [Google Scholar] [CrossRef]
- Neta, J.F.d.F.; Veras, V.S.; Sousa, D.F.d.; Cunha, M.D.C.D.S.O.; Queiroz, M.V.O.; Neto, J.C.G.L.; Damasceno, M.M.C.; Araújo, M.F.M.d.; Freitas, R.W.J.F.d. Effectiveness of the Piperine-Supplemented Curcuma longa L. in Metabolic Control of Patients with Type 2 Diabetes: A Randomised Double-Blind Placebo-Controlled Clinical Trial. Int. J. Food Sci. Nutr. 2021, 72, 968–977. [Google Scholar] [CrossRef]
- Pathomwichaiwat, T.; Jinatongthai, P.; Prommasut, N.; Ampornwong, K.; Rattanavipanon, W.; Nathisuwan, S.; Thakkinstian, A. Effects of Turmeric (Curcuma longa) Supplementation on Glucose Metabolism in Diabetes Mellitus and Metabolic Syndrome: An Umbrella Review and Updated Meta-Analysis. PLoS ONE 2023, 18, e0288997. [Google Scholar] [CrossRef]
- Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.d.S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto dos Santos Bueno, P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front. Endocrinol. 2021, 12, 669448. [Google Scholar] [CrossRef]
- Rosyid Ridho, M.A.; Indriani, R.D. The Potential of Curcuma longa as an Antidiabetic Agent: Review. J. Med. Health Technol. 2025, 2, 46–53. [Google Scholar] [CrossRef]
- Vafaeipour, Z.; Razavi, B.M.; Hosseinzadeh, H. Effects of Turmeric (Curcuma longa) and Its Constituent (Curcumin) on the Metabolic Syndrome: An Updated Review. J. Integr. Med. 2022, 20, 193–203. [Google Scholar] [CrossRef]
- Boroumand, N.; Samarghandian, S.; Hashemy, S.I. Immunomodulatory, Anti-Inflammatory, and Antioxidant Effects of Curcumin. J. HerbMed Pharmacol. 2018, 7, 211–219. [Google Scholar] [CrossRef]
- da Silva, P.F.L.; Schumacher, B. Principles of the Molecular and Cellular Mechanisms of Aging. J. Investig. Dermatol. 2021, 141, 951–960. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Yu, T.; Wang, H.; Cai, X.; Sun, H. Efficacy and Safety of Curcumin in Diabetic Retinopathy: A Protocol for Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0282866. [Google Scholar] [CrossRef]
- Ramkumar, S.; Thulasiram, H.V.; RaviKumar, A. Improvement in Serum Amylase and Glucose Levels in Diabetic Rats on Oral Administration of Bisdemethoxycurcumin from Curcuma longa and Limonoids from Azadirachta Indica. J. Food Biochem. 2021, 45, e13674. [Google Scholar] [CrossRef] [PubMed]
- Okechukwu, A.-J.M.; Okeke, E.S.; Eze, K.N.; Ezeorba, W.F.C.; Ezeorba, T.P.C. Insight into the Alpha-Glucosidase Inhibitory Potentials of Curcuma longa Methanolic Extracts and Phytochemicals: An In Vitro and In Silico Study. Biol. Life Sci. Forum 2023, 26, 92. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.R.; Qi, Y.; Kang, K.S.; Jang, D.S. (1′S)-1′-Acetoxyeugenol Acetate Enhances Glucose-Stimulated Insulin Secretion. Plants 2023, 12, 579. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- George, G.; Shyni, G.L.; Abraham, B.; Nisha, P.; Raghu, K.G. Downregulation of TLR4/MyD88/P38MAPK and JAK/STAT Pathway in RAW 264.7 Cells by Alpinia Galanga Reveals Its Beneficial Effects in Inflammation. J. Ethnopharmacol. 2021, 275, 114132. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, E.H.M.; Abd El-Maksoud, M.S.; Ibrahim, I.M.; Abd-alhameed, E.K.; Althagafy, H.S.; Mohamed, N.M.; Ross, S.A. The Molecular Mechanisms Underlying Anti-Inflammatory Effects of Galangin in Different Diseases. Phytother. Res. 2023, 37, 3161–3181. [Google Scholar] [CrossRef]
- Thangaiyan, R.; Arjunan, S.; Govindasamy, K.; Khan, H.A.; Alhomida, A.S.; Prasad, N.R. Galangin Attenuates Isoproterenol-Induced Inflammation and Fibrosis in the Cardiac Tissue of Albino Wistar Rats. Front. Pharmacol. 2020, 11, 585163. [Google Scholar] [CrossRef]
- Yuandani; Jantan, I.; Haque, M.A.; Rohani, A.S.; Nugraha, S.E.; Salim, E.; Septama, A.W.; Juwita, N.A.; Khairunnisa, N.A.; Nasution, H.R.; et al. Immunomodulatory Effects and Mechanisms of the Extracts and Secondary Compounds of Zingiber and Alpinia Species: A Review. Front. Pharmacol. 2023, 14, 1222195. [Google Scholar] [CrossRef]
- Gupta, R.C.; Chang, D.; Nammi, S.; Bensoussan, A.; Bilinski, K.; Roufogalis, B.D. Interactions between Antidiabetic Drugs and Herbs: An Overview of Mechanisms of Action and Clinical Implications. Diabetol. Metab. Syndr. 2017, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; et al. A Novel Formulation of [6]-Gingerol: Proliposomes with Enhanced Oral Bioavailability and Antitumor Effect. Int. J. Pharm. 2018, 535, 308–315. [Google Scholar] [CrossRef]
- Deleanu, M.; Toma, L.; Sanda, G.M.; Barbălată, T.; Niculescu, L.Ş.; Sima, A.V.; Deleanu, C.; Săcărescu, L.; Suciu, A.; Alexandru, G.; et al. Formulation of Phytosomes with Extracts of Ginger Rhizomes and Rosehips with Improved Bioavailability, Antioxidant and Anti-Inflammatory Effects In Vivo. Pharmaceutics 2023, 15, 1066. [Google Scholar] [CrossRef]
- Zagórska, J.; Pietrzak, K.; Kukula-Koch, W.; Czop, M.; Laszuk, J.; Koch, W. Influence of Diet on the Bioavailability of Active Components from Zingiber officinale Using an In Vitro Digestion Model. Foods 2023, 12, 3897. [Google Scholar] [CrossRef] [PubMed]
- Crichton, M.; Davidson, A.R.; Innerarity, C.; Marx, W.; Lohning, A.; Isenring, E.; Marshall, S. Orally Consumed Ginger and Human Health: An Umbrella Review. Am. J. Clin. Nutr. 2022, 115, 1511–1527. [Google Scholar] [CrossRef]
- Elgayar, M.H.; Mahdy, M.M.M.; Ibrahim, N.A.; Abdelhafiz, M.H. Effects of Ginger Powder Supplementation on Glycemic Status and Lipid Profile in Patients with Type 2 Diabetes Mellitus. QJM Int. J. Med. 2020, 113, hcaa052.053. [Google Scholar] [CrossRef]
- Ghoreishi, P.S.; Shams, M.; Nimrouzi, M.; Zarshenas, M.M.; Lankarani, K.B.; Fallahzadeh Abarghooei, E.; Talebzadeh, M.; Hashempur, M.H. The Effects of Ginger (Zingiber officinale Roscoe) on Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. J. Diet. Suppl. 2024, 21, 294–312. [Google Scholar] [CrossRef]
- Khandouzi, N.; Shidfar, F.; Rajab, A.; Rahideh, T.; Hosseini, P.; Taheri, M.M. The Effects of Ginger on Fasting Blood Sugar, Hemoglobin A1c, Apolipoprotein B, Apolipoprotein A-I and Malondialdehyde in Type 2 Diabetic Patients. Iran. J. Pharm. Res. 2015, 14, 131–140. [Google Scholar]
- Nganou-Gnindjio, C.N.; Ngati Nyonga, D.; Wafeu, G.S.; Nga, E.N.; Sobngwi, E. Cardiometabolic Effects of Zingiber officinale Roscoe Extracts in Type 2 Diabetic Cameroonians Patients after Six Weeks of Add-on Therapy: A Single Clinical-Arm Trial. Ann. Cardiol. D’angéiologie 2022, 71, 160–165. [Google Scholar] [CrossRef]
- Dona Ashanthi Menuka Arawwawala, L.; Arachchige Sachithra Nadishani Silva, P.; Walawwe Saumya Janakanthi Kumari, M.; Galappatthy, P. Effect of Curcuma longa L. and Curcumin on Diabetes and It’s Complications: A Review. J. Ayurvedic Herb. Med. 2021, 7, 109–118. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Mohammed, D.M.; Alkafaas, S.S.; Ghosh, S.; Negm, S.H.; Salem, H.M.; Fahmy, M.A.; Mosa, W.F.A.; Ibrahim, E.H.; et al. Curcumin, an Active Component of Turmeric: Biological Activities, Nutritional Aspects, Immunological, Bioavailability, and Human Health Benefits—A Comprehensive Review. Front. Immunol. 2025, 16, 1603018. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the Active Substance of Turmeric: Its Effects on Health and Ways to Improve Its Bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef] [PubMed]
- Yaikwawong, M.; Jansarikit, L.; Jirawatnotai, S.; Chuengsamarn, S. Curcumin Extract Improves Beta Cell Functions in Obese Patients with Type 2 Diabetes: A Randomized Controlled Trial. Nutr. J. 2024, 23, 119. [Google Scholar] [CrossRef]
- Bulboacă, A.E.; Porfire, A.S.; Tefas, L.R.; Boarescu, P.M.; Bolboacă, S.D.; Stănescu, I.C.; Bulboacă, A.C.; Dogaru, G. Liposomal Curcumin Is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019, 24, 846. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.; Bagherniya, M.; Sahebkar, A.; Iraj, B.; Majeed, M.; Askari, G. The Effect of Curcumin-Piperine Supplementation on Lipid Profile, Glycemic Index, Inflammation, and Blood Pressure in Patients with Type 2 Diabetes Mellitus and Hypertriglyceridemia. Phytother. Res. 2024, 38, 5150–5161. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024, 16, 1728. [Google Scholar] [CrossRef]
- Abbas, Z.S.; Sulaiman, G.M.; Jabir, M.S.; Mohammed, H.A.; Mohammed, S.A.A. Antioxidant Properties of Galangin with β-Cyclodextrin: An in Vitro and in Vivo. J. Appl. Sci. Nanotechnol. 2023, 3, 80–89. [Google Scholar] [CrossRef]
- Simon, A.; Nghiem, K.S.; Gampe, N.; Garádi, Z.; Boldizsár, I.; Backlund, A.; Darcsi, A.; Nedves, A.N.; Riethmüller, E. Stability Study of Alpinia Galanga Constituents and Investigation of Their Membrane Permeability by ChemGPS-NP and the Parallel Artificial Membrane Permeability Assay. Pharmaceutics 2022, 14, 1967. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Liu, Y.; Wang, J.; Xu, H. Preparation of Galangin Self-Microemulsion Drug Delivery System and Evaluation of Its Pharmacokinetics in Vivo and Antioxidant Activity in Vitro. Pharmacogn. Mag. 2022, 18, 1025–1034. [Google Scholar] [CrossRef]
- Patır, İ.; Karkar, B.; Şahin, S. Enhancement of In Vitro Bioaccessibility of Alpinia Officinarum Hance Extract With Dual-Coated Liposomes. Food Sci. Nutr. 2025, 13, e70438. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Mishra, G.; Singh, P.; Jha, K.; Khosa, R. Anti-Diabetic Activity of Methanolic Extract of Alpinia Galanga Linn. Aerial Parts in Streptozotocin Induced Diabetic Rats. AYU 2015, 36, 91. [Google Scholar] [CrossRef]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant Effects of Curcuminoids in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Inflammopharmacology 2017, 25, 25–31. [Google Scholar] [CrossRef]
- Lamichhane, G.; Godsey, T.J.; Liu, J.; Franks, R.; Zhang, G.; Emerson, S.R.; Kim, Y. Twelve-Week Curcumin Supplementation Improves Glucose Homeostasis and Gut Health in Prediabetic Older Adults: A Pilot, Double-Blind, Placebo-Controlled Trial. Nutrients 2025, 17, 2164. [Google Scholar] [CrossRef]
- Shafabakhsh, R.; Mobini, M.; Raygan, F.; Aghadavod, E.; Ostadmohammadi, V.; Amirani, E.; Mansournia, M.A.; Asemi, Z. Curcumin Administration and the Effects on Psychological Status and Markers of Inflammation and Oxidative Damage in Patients with Type 2 Diabetes and Coronary Heart Disease. Clin. Nutr. ESPEN 2020, 40, 77–82. [Google Scholar] [CrossRef] [PubMed]
| Condition | Diagnosis |
|---|---|
| Presence of classical symptoms of hyperglycemia and random plasma glucose | ≥200 mg/dL |
| Fasting plasma glucose measured on two separate occasions | ≥126 mg/dL |
| Plasma glucose at 120 min of the 75 g oral glucose tolerance test (OGTT) | ≥200 mg/dL |
| Glycated hemoglobin (HbA1c) | ≥6.5% |
| Plant | Fraction | Chemical Type | Examples of Main Compounds | Effect | Reference |
|---|---|---|---|---|---|
| Curcuma longa L. | Volatile | Monoterpenes | p-cymen, 1,8-cineol | Antimutagenic | [26,30] |
| Sesquiterpenes | Ar-turmerone, α-turmerone, β-turmerone, curlone | Anti-inflammatory, antimicrobial | [26,30,33,36] | ||
| Non-volatile | Curcuminoids | Curcumin, demethoxycurcumin, bis demethoxycurcumin | Anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, anticancer, immunomodulatory | [15,30,37] | |
| Polyphenols/ flavonoids | Ferulic acid, quercetin, caffeic acid, coumaric acid | Antioxidant, antibacterial | [30,31,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kuzia, N.; Adamska, O.; Ksepka, N.; Wierzbicka, A.; Jóźwik, A. Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions. Molecules 2026, 31, 311. https://doi.org/10.3390/molecules31020311
Kuzia N, Adamska O, Ksepka N, Wierzbicka A, Jóźwik A. Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions. Molecules. 2026; 31(2):311. https://doi.org/10.3390/molecules31020311
Chicago/Turabian StyleKuzia, Natalia, Olga Adamska, Natalia Ksepka, Agnieszka Wierzbicka, and Artur Jóźwik. 2026. "Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions" Molecules 31, no. 2: 311. https://doi.org/10.3390/molecules31020311
APA StyleKuzia, N., Adamska, O., Ksepka, N., Wierzbicka, A., & Jóźwik, A. (2026). Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions. Molecules, 31(2), 311. https://doi.org/10.3390/molecules31020311

