Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = the underdeveloped region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

33 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 274
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

32 pages, 629 KiB  
Article
Beyond the Guestroom: Financial and Promotional Dimensions of Eco-Friendly Rural Hospitality in Agricultural Landscapes
by Aleksandra Vujko, Dušan Mandić, Aleksa Panić, Maja Obradović, Ana Obradović, Ilija Savić and Ivana Brdar
Agriculture 2025, 15(15), 1610; https://doi.org/10.3390/agriculture15151610 - 25 Jul 2025
Viewed by 222
Abstract
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from [...] Read more.
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from 393 farm-based accommodation stakeholders, this research identifies sustainable entrepreneurship as comprising six interconnected dimensions: Economic Resilience and Diversification, Sociocultural Integration, Environmental and Regional Commitment, Market Visibility and Strategic Communication, Quality Assurance and Institutional Support, and Perceived Value and Branding. This multidimensional and hierarchically structured framework reflects the complex yet coherent nature of sustainability-driven entrepreneurship in cooperative tourism networks. The findings confirm the multidimensional nature of sustainable entrepreneurship and support the hypothesized structural relationships. The UaB network is presented as a transferable model that demonstrates how cooperative frameworks can enhance sustainability, regional identity, and rural revitalization, offering valuable insights and practical guidance for rural regions in the Western Balkans, where economic challenges, depopulation, and underdeveloped tourism infrastructure prevail. By illustrating a successful cooperative approach rooted in sustainability and regional identity, this study contributes to policy-making aimed at fostering resilient, culturally rich, and environmentally responsible rural tourism entrepreneurship in transitioning contexts. Full article
Show Figures

Figure 1

21 pages, 3271 KiB  
Article
Evaluation of the Coupling Coordination Degree Between PM2.5 and Urbanization Level: A Case in Guangdong Province
by Jiwei Shen, Ziwen Zhu, Dakang Wang, Yingpin Yang, Yongru Mo, Hui Xia, Xiankun Yang, Yibo Wang, Zhen Li and Jinnian Wang
Sustainability 2025, 17(15), 6751; https://doi.org/10.3390/su17156751 - 24 Jul 2025
Viewed by 208
Abstract
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. [...] Read more.
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. Based on the spatiotemporal relationship between the evolution of urbanization levels and PM2.5 concentrations, and starting from multiple factors characterizing urbanization, this study constructs a coupling coordination degree model between PM2.5 and urbanization levels to explore the interaction and degree of coordination between urbanization and PM2.5 in Guangdong Province from 2000 to 2021. The research reveals that the conflict between the urbanization process and PM2.5 pollution in various cities of Guangdong Province is gradually easing. The year 2011 was a turning point as the PM2.5 pollution levels in cities that were in an uncoordinated phase began to improve. The coupling coordination degree between urbanization and PM2.5 pollution in Guangdong Province exhibits significant spatial heterogeneity. The coupling coordination degree in most coastal cities is higher than that in inland cities. Cities in economically underdeveloped regions also face relatively lower pressure from pollution emissions. These regions are characterized by lagging urbanization, and their coupling coordination degree is slowly increasing as urbanization progresses. In economically developed regions, the coupling coordination degree between urbanization levels and PM2.5 pollution has reached a basic level of coordination, although the specific types vary. Full article
Show Figures

Figure 1

21 pages, 4369 KiB  
Article
Breast Cancer Classification via a High-Precision Hybrid IGWO–SOA Optimized Deep Learning Framework
by Aniruddha Deka, Debashis Dev Misra, Anindita Das and Manob Jyoti Saikia
AI 2025, 6(8), 167; https://doi.org/10.3390/ai6080167 - 24 Jul 2025
Viewed by 498
Abstract
Breast cancer (BRCA) remains a significant cause of mortality among women, particularly in developing and underdeveloped regions, where early detection is crucial for effective treatment. This research introduces an innovative hybrid model that combines Improved Grey Wolf Optimizer (IGWO) with the Seagull Optimization [...] Read more.
Breast cancer (BRCA) remains a significant cause of mortality among women, particularly in developing and underdeveloped regions, where early detection is crucial for effective treatment. This research introduces an innovative hybrid model that combines Improved Grey Wolf Optimizer (IGWO) with the Seagull Optimization Algorithm (SOA), forming the IGWO–SOA technique to enhance BRCA detection accuracy. The hybrid model draws inspiration from the adaptive and strategic behaviors of seagulls, especially their ability to dynamically change attack angles in order to effectively tackle complex global optimization challenges. A deep neural network (DNN) is fine-tuned using this hybrid optimization method to address the challenges of hyperparameter selection and overfitting, which are common in DL approaches for BRCA classification. The proposed IGWO–SOA model demonstrates optimal performance in identifying key attributes that contribute to accurate cancer detection using the CBIS-DDSM dataset. Its effectiveness is validated using performance metrics such as loss, F1-score, precision, accuracy, and recall. Notably, the model achieved an impressive accuracy of 99.4%, outperforming existing methods in the domain. By optimizing both the learning parameters and model structure, this research establishes an advanced deep learning framework built upon the IGWO–SOA approach, presenting a robust and reliable method for early BRCA detection with significant potential to improve diagnostic precision. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

19 pages, 2642 KiB  
Article
Calculation of Greenhouse Gas Emissions from Tourist Vehicles Using Mathematical Methods: A Case Study in Altai Tavan Bogd National Park
by Yerbakhyt Badyelgajy, Yerlan Doszhanov, Bauyrzhan Kapsalyamov, Gulzhaina Onerkhan, Aitugan Sabitov, Arman Zhumazhanov and Ospan Doszhanov
Sustainability 2025, 17(15), 6702; https://doi.org/10.3390/su17156702 - 23 Jul 2025
Viewed by 352
Abstract
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry [...] Read more.
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry national parks and mountainous regions lacking basic infrastructure. This study addresses that gap by developing and applying a terrain-adjusted, segment-based methodology to estimate GHG emissions from tourist vehicles in Altai Tavan Bogd National Park, one of Mongolia’s most remote protected areas. The proposed method uses Tier 1 IPCC emission factors but incorporates field-segmented route analysis, vehicle categorization, and terrain-based fuel adjustments to achieve a spatially disaggregated Tier 1 approach. Results show that carbon dioxide (CO2) emissions increased from 118.7 tons in 2018 to 2239 tons in 2024. Tourist vehicle entries increased from 712 in 2018 to 13,192 in 2024, with 99.1% of entries occurring between May and October. Over the same period, cumulative methane (CH4) and nitrous oxide (N2O) emissions were estimated at 300.9 kg and 45.75 kg, respectively. This modular approach is especially suitable for high-altitude, infrastructure-limited regions where real-time emissions monitoring is not feasible. By integrating localized travel patterns with global frameworks such as the IPCC 2006 Guidelines, this model enables more precise and context-sensitive GHG estimates from vehicles in national parks and similar environments. Full article
Show Figures

Figure 1

34 pages, 31153 KiB  
Article
Study on Urban System Relationships and Resilience Promotion Strategies in Underdeveloped Mountainous Areas Based on Social Network Analysis: A Case Study of Qiandongnan Miao and Dong Autonomous Prefecture
by Huayan Yuan, Jinyu Fan, Jie Luo, Rui Ren and Hai Li
Land 2025, 14(7), 1500; https://doi.org/10.3390/land14071500 - 19 Jul 2025
Viewed by 342
Abstract
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban [...] Read more.
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban agglomerations in underdeveloped mountainous regions and optimize their spatial resource allocation and resilience, this study takes the urban agglomeration of Qiandongnan in China as an example and researches their internal relationships, development potential, and influencing factors based on quantitative methods such as social network analysis. The results show that the urban cluster in Qiandongnan presents “large dispersion and small aggregation” distribution characteristics, with the karst landscape as the main influencing factor; the spatial network exhibits a scale-free morphology with an obvious core–periphery structure, demonstrating moderate stability but poor completeness, weak equilibrium, and low overall resilience; only 15.61% of nodes demonstrate high competitiveness; urban units with functional roles serve as critical network nodes; urban units’ development potential is divided into three tiers (with 47.31% being medium-high), although overall levels remain low; and the development potential, overall network, individual network, and network resilience of urban units are all positively correlated, with economic and transportation development conditions being the main influencing factors. Based on the abovementioned findings, this study proposes a “multi-level resilience promotion path for network structure optimization”, which provides a theoretical basis and optimization control methods for the reconstruction and synergistic development of urban agglomerations. It also serves as a reference for the development planning of urban systems in other underdeveloped mountainous regions. Full article
Show Figures

Figure 1

18 pages, 2680 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 - 19 Jul 2025
Viewed by 318
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
Show Figures

Figure 1

17 pages, 6145 KiB  
Article
Exploring Epigenetic Ageing Using Direct Methylome Sequencing
by Elena-Cristina Găitănaru, Roua Gabriela Popescu, Andreea-Angelica Stroe, Sergiu Emil Georgescu and George Cătălin Marinescu
Epigenomes 2025, 9(3), 25; https://doi.org/10.3390/epigenomes9030025 - 14 Jul 2025
Viewed by 395
Abstract
Background/Objectives: Advances in nanopore sequencing have opened new avenues for studying DNA methylation at single-base resolution, yet their application in epigenetic ageing research remains underdeveloped. Methods: We present a novel framework that leverages the unique capabilities of nanopore sequencing to profile [...] Read more.
Background/Objectives: Advances in nanopore sequencing have opened new avenues for studying DNA methylation at single-base resolution, yet their application in epigenetic ageing research remains underdeveloped. Methods: We present a novel framework that leverages the unique capabilities of nanopore sequencing to profile and interpret age-associated methylation patterns in native DNA. Results: Unlike conventional array-based approaches, long reads sequencing captures full CpG context, accommodates diverse and repetitive genomic regions, removes bisulfite conversion steps, and is compatible to the latest reference genome. Conclusions: This work establishes nanopore sequencing as a powerful tool for next-generation epigenetic ageing studies, offering a scalable and biologically rich platform for anti-ageing interventions monitoring and longitudinal ageing studies. Full article
Show Figures

Figure 1

32 pages, 971 KiB  
Article
Digital Economy and Sustainable Development in China: From the Perspective of High-Quality Development of Manufacturing
by Ruxian Li and Jiliang Zheng
Sustainability 2025, 17(14), 6438; https://doi.org/10.3390/su17146438 - 14 Jul 2025
Viewed by 405
Abstract
This study investigates the role of the digital economy (DE) in advancing the high-quality development of manufacturing in China, with a particular focus on the moderating effects of manufacturing agglomeration and digital literacy. Using provincial panel data from 2013 to 2023, [...] Read more.
This study investigates the role of the digital economy (DE) in advancing the high-quality development of manufacturing in China, with a particular focus on the moderating effects of manufacturing agglomeration and digital literacy. Using provincial panel data from 2013 to 2023, we find that the digital economy significantly enhances manufacturing development across three key dimensions: green transformation, innovation, and high-end industrial upgrading. Manufacturing agglomeration strengthens this effect, especially in the Eastern and Western regions, by facilitating digital spillovers and leveraging digital infrastructure. However, in the Central region, the impact of agglomeration is weaker, hindered by fragmented industrial clusters and underdeveloped digital infrastructure. The study also highlights significant regional differences in the moderating effect of digital literacy. In the Eastern region, digital literacy negatively moderates the relationship between DE and manufacturing development due to skill mismatches, while in the Western region, localized concentrations of digital skills have a positive but geographically constrained impact. Temporal analysis reveals a shift in the moderating role of digital literacy, with its negative effect becoming more pronounced after 2018, suggesting a growing need for targeted skill development policies. These findings underscore the importance of regionally tailored strategies to promote digital manufacturing integration, with a focus on sustainable development through digital transformation and green manufacturing practices. Full article
Show Figures

Figure 1

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 603
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

43 pages, 2590 KiB  
Article
A Study on the Impact of Industrial Robot Applications on Labor Resource Allocation
by Kexu Wu, Zhiwei Tang and Longpeng Zhang
Systems 2025, 13(7), 569; https://doi.org/10.3390/systems13070569 - 11 Jul 2025
Viewed by 500
Abstract
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path [...] Read more.
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path of these technologies, while systematic analyses of how industrial robots affect labor resource allocation efficiency across different regional and industrial contexts in China remain scarce. In particular, research on the mechanisms and heterogeneity of these effects is still underdeveloped, calling for deeper investigation into their transmission channels and policy implications. Drawing on panel data from 280 prefecture-level cities in China from 2006 to 2023, this paper employs a Bartik-style instrumental variable approach to measure the level of industrial robot penetration and constructs a two-way fixed effects model to assess its impact on urban labor misallocation. Furthermore, the analysis introduces two mediating variables, industrial upgrading and urban innovation capacity, and applies a mediation effect model combined with Bootstrap methods to empirically test the underlying transmission mechanisms. The results reveal that a higher level of industrial robot adoption is significantly associated with a lower degree of labor misallocation, indicating a notable improvement in labor resource allocation efficiency. Heterogeneity analysis shows that this effect is more pronounced in cities outside the Yangtze River Economic Belt, in those experiencing severe population aging, and in areas with a relatively weak manufacturing base. Mechanism tests further indicate that industrial robots indirectly promote labor allocation efficiency by facilitating industrial upgrades and enhancing innovation capacity. However, in the short term, improvements in innovation capacity may temporarily intensify labor mismatch due to structural frictions. Overall, industrial robots not only exert a direct positive impact on the efficiency of urban labor allocation but also indirectly contribute to resource optimization through structural transformation and innovation system development. These findings underscore the need to account for regional disparities and demographic structures when advancing intelligent manufacturing strategies. Policymakers should coordinate the development of vocational training systems and innovation ecosystems to strengthen the dynamic alignment between technological adoption and labor market restructuring, thereby fostering more inclusive and high-quality economic growth. Full article
Show Figures

Figure 1

26 pages, 1407 KiB  
Article
The Binary Moderating Effect of Forest New Quality Productive Forces on the Efficiency of Forest Ecosystem Services Value Realization
by Tingyu Yang, Hongliang Lu and Ali Raza
Forests 2025, 16(7), 1109; https://doi.org/10.3390/f16071109 - 4 Jul 2025
Viewed by 229
Abstract
The realization of forest ecological functions value is an important path for implementing the “Two Mountains” theory. Improving the efficiency of forest ecological functions and benefits value realization faces several challenges, such as an underdeveloped value evaluation system that makes it difficult to [...] Read more.
The realization of forest ecological functions value is an important path for implementing the “Two Mountains” theory. Improving the efficiency of forest ecological functions and benefits value realization faces several challenges, such as an underdeveloped value evaluation system that makes it difficult to quantify ecological value, a weak policy system lacking effective incentive mechanisms, and unclear ecological property rights leading to unfair benefits distribution. Forest new quality productive drivers are a key factor in promoting high-quality forestry development, and can effectively address several issues hindering the efficiency of forest ecological functions and benefits value realization. Forest ecological functions and benefits are divided into tangible forest products and intangible ecological services, with the efficiency of realizing their economic and welfare values reflecting the input–output status of forest ecological value. This paper constructs an indicator system for assessing the modern productive capacity in forestry and the efficiency of forest ecological value realization, and uses a two-stage network DEA model and a double fixed effects model for empirical analysis. The study finds that the advanced drivers of forestry productivity significantly enhance the efficiency of forest ecological economic value realization but constrain the efficiency of ecological welfare value realization, with significant regional differences. As a moderating variable, enhancing the resilience of the industry chain can significantly deepen the effect throughout the process, while improving the informatization level of residents can weaken the constraints of forest new quality productive drivers on the efficiency of forest ecological welfare value realization. Therefore, this paper offers targeted recommendations aimed at providing theoretical support and practical guidance for optimizing the efficiency of forest ecological value realization. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

Back to TopTop