Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = the height of the water-conducting fracture zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 16583 KB  
Article
Investigation of Overburden Fracture Evolution and Feasibility of Upward Mining in Shallow-Buried Coal Seams
by Baoming Fang, Fuhai Wang, Fan Wang, Haibo Liu, Xuming Guo and Wen Wang
Appl. Sci. 2025, 15(24), 13028; https://doi.org/10.3390/app152413028 - 10 Dec 2025
Viewed by 238
Abstract
Taking Yujialiang Coal Mine as the engineering background, aiming at the actual demand of 5-2 coal seam mining and 4-4 coal seam upward mining, the temporal evolution and spatial distribution characteristics of overburden failure height after 5-2 coal seam mining are systematically investigated [...] Read more.
Taking Yujialiang Coal Mine as the engineering background, aiming at the actual demand of 5-2 coal seam mining and 4-4 coal seam upward mining, the temporal evolution and spatial distribution characteristics of overburden failure height after 5-2 coal seam mining are systematically investigated by using multi-source field detection technology such as ground drilling, logging, and borehole peeping, combined with a numerical simulation method. The field detection results show that after the 5-2 coal seam is mined, the development height of the water-conducting fracture zone (WCFZ) is 116.25–129.92 m, and the height of the caving zone is 9.32–21.56 m. The 4-4 coal seam is located within the fracture zone, 15.99–22.88 m above the caving zone. The strength of the 4-4 coal seam and its surrounding rock affected by mining is reduced, with a more significant decrease in the middle of the goaf. The numerical simulation further reveals the law of overburden movement and deformation. After the 5-2 coal seam mining, the maximum subsidence of the 4-4 coal seam floor reaches 4.57 m, and there is stress concentration above the remaining coal pillars. The maximum vertical stress after mining all three working faces (52,204, 52,205, 52,206) is 4.10 MPa, and the stress environment above the goaf is better. The results show that the average distance between the 4-4 coal seam and 5-2 coal seam is about 39.45 m, and the upward mining is feasible, but the stability of the rock strata in the fracture zone should be paid more attention to. Based on the movement law of overlying strata and the characteristics of stress distribution, it is suggested that the mining gateway of the 4-4 coal seam should be arranged in the middle of the remaining coal pillar of the 5-2 coal seam or the corresponding area in the middle of the goaf so as to ensure the stability of the roadway surrounding the rock during mining. The research results provide a reliable theoretical basis and technical support for the upward mining design of the 4-4 coal seam in Yujialiang Coal Mine and have important reference value for the upward mining projects of coal mines under similar conditions. Full article
(This article belongs to the Special Issue Mining-Induced Rock Strata Damage and Mine Disaster Control)
Show Figures

Figure 1

17 pages, 8006 KB  
Article
Research on Characteristics and Control Methods of Roof Water Inflow in Syncline Structure Mining Area Under High-Confined Aquifer
by Tao Luo, Gangwei Fan, Shizhong Zhang, Zihan Kong, Shaodong Li, Lei Zhang and Zhenxiang Wei
Sustainability 2025, 17(24), 10961; https://doi.org/10.3390/su172410961 - 8 Dec 2025
Viewed by 142
Abstract
Investigating the evolution mechanism of overlying strata fractures during mining and identifying the key factors that influence the development height of water-conducting fracture zones (WCFZs) are essential for preventing roof water inrush disasters, protecting mine water resources, and ensuring safe and sustainable mine [...] Read more.
Investigating the evolution mechanism of overlying strata fractures during mining and identifying the key factors that influence the development height of water-conducting fracture zones (WCFZs) are essential for preventing roof water inrush disasters, protecting mine water resources, and ensuring safe and sustainable mine development. To investigate the height of WCFZs and the evolution law of roof water inflow in a syncline structure working face under high-confined aquifer conditions, the 203 working face of Gaojiapu Coal Mine in Binchang Coalfield is selected as the engineering case. This paper analyzes the characteristics and control mechanisms of roof water inflow in a syncline structure mining area using UDEC 7.0 and COMSOL Multiphysics 6.0 multiphysics numerical simulation software. The results indicate that under different mining heights and advancing speeds, the height of the WCFZ in the overlying strata of a syncline structure working face continuously increases during the downward mining stage and in areas below the axis, and decreases thereafter, eventually stabilizing after reaching its maximum value at the initial stage of upward mining. When the WCFZ communicates with the strong aquifer of the Cretaceous Luohe Formation during the mining process, roof water inflow into the working face increases abruptly. The effectiveness of controlling water inflow by adjusting mining height is superior to that of controlling mining speed. Based on the response relationship between mining height, mining speed, and roof WCFZ, an on-site drainage prevention strategy was implemented involving reduced mining height and increased mining speed. Consequently, the roof water inflow at the working face has decreased from an initial rate of 950 m3/h to 360 m3/h. This study is of great significance for the safe and efficient extraction of coal seams under high-confined aquifers in the Binchang Coalfield, supporting the efficient development of coal resources while safeguarding regional water resources, thereby offering considerable engineering and practical value in promoting green mining and sustainable mining practices in large-scale coal production bases with similar geological conditions. Full article
Show Figures

Figure 1

25 pages, 9232 KB  
Article
Distributed Fiber Optic Sensing for Monitoring Mining-Induced Overburden Deformation
by Shunjie Huang, Xiangrui Meng, Guangming Zhao, Xiang Cheng, Xiangqian Wang and Kangshuo Xia
Coatings 2025, 15(11), 1317; https://doi.org/10.3390/coatings15111317 - 11 Nov 2025
Viewed by 690
Abstract
The accurate real-time delineation of overburden failure zones, specifically the caved and water-conducted fracture zones, remains a significant challenge in longwall mining, as conventional monitoring methods often lack the spatial continuity and resolution for precise, full-profile strain measurement. Based on the hydrogeological data [...] Read more.
The accurate real-time delineation of overburden failure zones, specifically the caved and water-conducted fracture zones, remains a significant challenge in longwall mining, as conventional monitoring methods often lack the spatial continuity and resolution for precise, full-profile strain measurement. Based on the hydrogeological data of the E9103 working face in Hengjin Coal Mine, a numerical calculation model for the overburden strata of the E9103 working face was established to simulate and analyze the stress distribution, failure characteristics, and development height of the water-conducting fracture zones in the overburden strata of the working face. To address this problem, this study presents the application of a distributed optical fiber sensing (DOFS) system, centering on an innovative fiber installation technology. The methodology involves embedding the sensing fiber into boreholes within the overlying strata and employing grouting to achieve effective coupling with the rock mass, a critical step that restores the in situ geological environment and ensures measurement reliability. Field validation at the E9103 longwall face successfully captured the dynamic evolution of the strain field during mining. The results quantitatively identified the caved zone at a height of 13.1–16.33 m and the water-conducted fracture zone at 58–60.6 m. By detecting abrupt strain changes, the system enables the back-analysis of fracture propagation paths and the identification of potential seepage channels. This work demonstrates that the proposed DOFS-based monitoring system, with its precise spatial resolution and real-time capability, provides a robust scientific basis for the early warning of roof hazards, such as water inrushes, thereby contributing to the advancement of intelligent and safe mining practices. Full article
Show Figures

Figure 1

20 pages, 8324 KB  
Article
Development Characteristics of Mining-Induced Fractures in Weakly Cemented Overburden During the First Layer Mining of Ultra-Thick Coal Seam: Similar Simulation and Field Measurement
by Yupei Deng, Weidong Pan, Shiqi Liu, Bo Cui and Kunming Zhang
Fractal Fract. 2025, 9(11), 718; https://doi.org/10.3390/fractalfract9110718 - 7 Nov 2025
Viewed by 623
Abstract
Focusing on the mining-induced fracture development characteristics of Weakly Cemented Overburden (WCO) in Ultra-Thick Coal Seam (UTCS) extraction, this study, based on the 1101 first mining face in Xinjiang’s Zhundong Coalfield, systematically investigates the dynamic evolution law of the water-conducting fracture zone (WCFZ) [...] Read more.
Focusing on the mining-induced fracture development characteristics of Weakly Cemented Overburden (WCO) in Ultra-Thick Coal Seam (UTCS) extraction, this study, based on the 1101 first mining face in Xinjiang’s Zhundong Coalfield, systematically investigates the dynamic evolution law of the water-conducting fracture zone (WCFZ) in WCO by employing similarity simulation, quantitative characterization using Fractal Dimension (D), and surface borehole exploration and borehole imaging technology. The results show that existing prediction equations for the WCFZ have poor applicability in the study area, with significant fluctuations in prediction outcomes. Similarity simulation reveals that Thick Soft Rock Layers (TS) guide and control fracture development, with the D exhibiting a “step-like” evolution. After the first rupture of TS1, the peak D reaches 1.49, stabilizing between 1.36 and 1.37 after full extraction. The height of the WCFZ increases non-linearly with the advance of the working face, reaching a maximum of 189 m, with a fracture-to-mining ratio of 10.5. Based on D fluctuations and extension patterns, the fracture development is divided into three stages, initial development, vertical propagation, and stabilization, clarifying its spatial evolution. Field measurements indicate a WCFZ height ranging from 161 to 178 m, with a fracture-to-mining ratio of 9.73–12.18, showing only a 6.2% error compared to the simulation results, which verifies the reliability of the experiment. This study reveals the evolution mechanism of the WCFZ during mining in UTCS and WCO in the Zhundong area, providing a theoretical basis and practical guidance for mine disaster prevention and control, as well as safe and efficient mining. Full article
Show Figures

Figure 1

25 pages, 4997 KB  
Article
Application of Game Theory Weighting in Roof Water Inrush Risk Assessment: A Case Study of the Banji Coal Mine, China
by Yinghao Cheng, Xingshuo Xu, Peng Li, Xiaoshuai Guo, Wanghua Sui and Gailing Zhang
Appl. Sci. 2025, 15(16), 9197; https://doi.org/10.3390/app15169197 - 21 Aug 2025
Viewed by 713
Abstract
Mine roof water inrush represents a prevalent hazard in mining operations, characterized by its concealed onset, abrupt occurrence, and high destructiveness. Since mine water inrush is controlled by multiple factors, rigorous risk assessment in hydrogeologically complex coal mines is critically important for operational [...] Read more.
Mine roof water inrush represents a prevalent hazard in mining operations, characterized by its concealed onset, abrupt occurrence, and high destructiveness. Since mine water inrush is controlled by multiple factors, rigorous risk assessment in hydrogeologically complex coal mines is critically important for operational safety. This study focuses on the roof water inrush hazard in coal seams of the Banji coal mine, China. The conventional water-conducting fracture zone height estimation formula was calibrated through comparative analysis of empirical models and analogous field measurements. Eight principal controlling factors were systematically selected, with subjective and objective weights assigned using AHP and EWM, respectively. Game theory was subsequently implemented to compute optimal combined weights. Based on this, the vulnerability index model and fuzzy comprehensive evaluation model were constructed to assess the roof water inrush risk in the coal seams. The risk in the study area was classified into five levels: safe zone, relatively safe zone, transition zone, relatively hazardous zone, and hazardous zone. A zoning map of water inrush risk was generated using Geographic Information System (GIS) technology. The results show that the safe zone is located in the western part of the study area, while the hazardous and relatively hazardous zones are situated in the eastern part. Among the two models, the fuzzy comprehensive evaluation model aligns more closely with actual engineering practices and demonstrates better predictive performance. It provides a reliable evaluation and prediction model for addressing roof water hazards in the Banji coal seam. Full article
(This article belongs to the Special Issue Hydrogeology and Regional Groundwater Flow)
Show Figures

Figure 1

20 pages, 6947 KB  
Article
Fractal Evolution Characteristics of Weakly Cemented Overlying Rock Fractures in Extra-Thick Coal Seams Mining in Western Mining Areas
by Cun Zhang, Zhaopeng Ren, Jun He and Xiangyu Zhao
Fractal Fract. 2025, 9(8), 531; https://doi.org/10.3390/fractalfract9080531 - 14 Aug 2025
Cited by 3 | Viewed by 867
Abstract
Coal mining disturbance induces progressive damage and fracturing in overlying rock (OLR), forming a complex fracture network. This process triggers groundwater depletion, ecological degradation, and severely compromises mine safety. Based on field drilling sampling and mechanical experiments, this paper reveals the occurrence properties [...] Read more.
Coal mining disturbance induces progressive damage and fracturing in overlying rock (OLR), forming a complex fracture network. This process triggers groundwater depletion, ecological degradation, and severely compromises mine safety. Based on field drilling sampling and mechanical experiments, this paper reveals the occurrence properties and characteristics of weakly cemented overlying rock (WCOLR). At the same time, similar simulation experiments, DIC speckle analysis system, and fractal theory are used to explain the development and evolution mechanism of mining-induced fractures under this special geological condition. The OLR fracture is determined based on the grid fractal dimension (D) distribution. A stress arch-bed separation (BS) co-evolution model is established based on dynamic cyclic BS development and stress arch characteristics, enabling identification of BS horizons. The results show that the overlying weak and extremely weak rock accounts for more than 90%. During the process of longwall face (LF) advancing, the D undergoes oscillatory evolution through five distinct stages: rapid initial growth, constrained slow growth under thick, soft strata (TSS), dimension reduction induced by fracturing and compaction of TSS, secondary growth from newly generated fractures, and stabilization upon reaching full extraction. Grid-based D analysis further categorizes fracture zones, indicating a water conducting fracture zone (WCFZ) height of 160~180 m. Mining-induced fractures predominantly concentrate at dip angles of 0–10°, 40–50°, and 170–180°. Horizontally BS fractures account for 70.2% of the total fracture population, vertically penetrating fractures constitute 13.1% and transitional fractures make up the remaining 16.7%. The stress arch height is 314.4 m, and the stable BS horizon is 260 m away from the coal seam. Finally, an elastic foundation theory-based model was used to predict BS development under top-coal caving operations. This research provides scientific foundations for damage-reduced mining in ecologically vulnerable Western China coalfields. Full article
Show Figures

Figure 1

24 pages, 6997 KB  
Article
Characteristics of Overlying Rock Breakage and Fissure Evolution in the Mining of Extra-Thick Coal Seams in Anticline Structural Area
by Jun Wang, Shibao Liu, Xin Yu, Haoyuan Gu, Huaidong Liu and Changyou Liu
Appl. Sci. 2025, 15(16), 8812; https://doi.org/10.3390/app15168812 - 9 Aug 2025
Cited by 2 | Viewed by 831
Abstract
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods [...] Read more.
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods to systematically investigate the overburden fracture and crack evolution laws during extra-thick coal seam mining in anticlinal zones. The research results demonstrate the following: (1) The large slope angle of the anticlinal zone and significant elevation difference between slope initiation points and the axis constitute the primary causes of water inrush-induced support failures in working face 1309. The conglomerate of the Yijun Formation serves as the critical aquifer responsible for water inrush, while the coarse sandstone in the Anding Formation acts as the key aquiclude. (2) Influenced by the slope angle, both overburden fractures and maximum bed separation zones during rise mining predominantly develop toward the goaf side. The water-conducting fracture zone initially extends in the advance direction, when its width is greater than its height, and changes to a height greater than its width when the key aquifer fractures and connects to the main aquifer. (3) The height of the collapse zone of the working face is 65 m, and the distribution of broken rock blocks in the collapse zone is disordered; after the fracture of the water-insulating key layer, the upper rock layer is synchronously fractured and activated, and the water-conducting fissure leads to the water-conducting layer of the Yijun Formation. (4) Compared to the periodic ruptures of the main roof, the number of fractures and their propagation speed are greater during the initial ruptures of each stratum. Notably, the key aquiclude’s fracture triggers synchronous collapse of overlying strata, generating the most extensive and rapidly developing fracture networks. (5) The fracture surface on the mining face side and the overlying strata separation zone jointly form a “saddle-shaped” high-porosity area, whose distribution range shows a positive correlation with the working face advance distance. During the mining process, the porosity variation in the key aquiclude undergoes three distinct phases with advancing distance: first remaining stable, then increasing, and finally decreasing, with porosity reaching its peak when the key stratum fractures upon attaining its ultimate caving interval. Full article
(This article belongs to the Special Issue Novel Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

24 pages, 20179 KB  
Article
Research on the Roof Failure Law of Downward Mining of Gently Inclined Coal Seams at Close Range
by Tao Yang, Jiarui Sun, Jie Zhang, Shoushi Gao, Yifeng He, Hui Liu, Dong Liu, Jiayue Deng and Yiming Zhang
Appl. Sci. 2025, 15(12), 6609; https://doi.org/10.3390/app15126609 - 12 Jun 2025
Cited by 1 | Viewed by 607
Abstract
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the [...] Read more.
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the roof failure laws of gently inclined coal seam groups, this study focuses on the Yindonggou Coal Mine and employs a comprehensive approach combining theoretical analysis, numerical simulation, and field measurement. Theoretical calculations indicate that after the mining of Seam 1, the caving zone height ranges from 6.69 to 11.09 m, and the height of the water-conducting fracture zone ranges from 29.59 to 40.79 m. After Coal Seam 2 is mined, the caving zone extends 24.05–33.47 m above the roof of Coal Seam 1, and the fracture zone develops for up to 74.10–94.94 m. Following the mining of Seam 4, the caving zone expands to 30.73–40.15 m above the roof of Coal Seam 1, and the fracture zone reaches 92.26–113.10 m. The numerical simulation results show that after mining Seam 1, the caving zone height is 8.4 m, and the fracture zone reaches 36 m. After Seam 2 is mined, the caving zone extends to 27 m above the roof of Coal Seam 1 and the fracture zone extends to 89 m. After Seam 4 is mined, the caving zone expands to 40 m above the roof of Coal Seam 1 and the fracture zone develops to 112.6 m. The field measurements validate the following findings: a loss of flushing fluid during drilling indicates that after Coal Seam 4 is mined, the fracture zone develops up to 110.5 m above the roof of Coal Seam 1, and the caving zone reaches 47.5 m. Optical imaging logging shows the fracture zone developing to 114.5 m and the caving zone extending to 48.1 m above the roof of Coal Seam 1. The results demonstrate good consistency among these theoretical calculations, numerical simulations, and field measurements. This study reveals a progressive development pattern of roof failure during the repeated mining of gently inclined coal seam groups, providing a theoretical foundation for water hazard prevention and mine pressure control in deep multi-seam mining operations. Full article
Show Figures

Figure 1

22 pages, 7345 KB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Cited by 1 | Viewed by 1084
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

20 pages, 12803 KB  
Article
Prediction of the Water-Conducting Fracture Zone Height Across the Entire Mining Area Based on the Multiple Nonlinear Coordinated Regression Model
by Jianye Feng, Xiaoming Shi, Jiasen Chen and Kang Wang
Water 2025, 17(9), 1303; https://doi.org/10.3390/w17091303 - 27 Apr 2025
Cited by 2 | Viewed by 801
Abstract
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured [...] Read more.
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured heights of fractured water-conducting zone samples from various mining areas in China, this study investigates the influence of five primary factors on the height: mining thickness, mining depth, length of the panel, coal seam dip, and the proportion coefficient of hard rock. The correlation degrees and relative weights of each factor are determined through grey relational analysis and principal component analysis. All five factors exhibit strong correlations with the height of the fractured water-conducting zone, with correlation degrees exceeding 0.79. Mining thickness is found to have the highest weight (0.256). A multiple nonlinear coordinated regression equation was constructed through regression analysis of the influencing factors. The prediction accuracy was compared with three other predictive models: the multiple nonlinear additive regression model, the BP neural network model, and the GA-BP neural network model. Among these models, the multiple nonlinear coordinated regression model was found to achieve the lowest error rate (7.23%) and the highest coefficient of determination (R2 = 87.42%), indicating superior accuracy and reliability. The model’s performance is further validated using drill hole data and numerical simulations at the B-1 drill hole in the Fuda Coal Mine. Predictive results for the entire Fuda Coal Mine area indicate that as the No. 15 coal seam extends northwestward, the height of the fractured water-conducting zone increases from 52.1 m to 73.9 m. These findings have significant implications for improving mine safety and preventing geological hazards in coal mining operations. Full article
Show Figures

Figure 1

24 pages, 12707 KB  
Article
Prediction of Water Inrush Hazard in Fully Mechanized Coal Seams’ Mining Under Aquifers by Numerical Simulation in ANSYS Software
by Ivan Sakhno, Natalia Zuievska, Li Xiao, Yurii Zuievskyi, Svitlana Sakhno and Roman Semchuk
Appl. Sci. 2025, 15(8), 4302; https://doi.org/10.3390/app15084302 - 14 Apr 2025
Cited by 7 | Viewed by 1078
Abstract
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always [...] Read more.
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always a potential risk of connecting the water-conducting fracture zone with aquifers. The water inflows in the coal mine’s roadways have a negative impact on the productivity of the working faces and pose significant hazards to miners in the event of water inrush. Therefore, the assessment of the height of the water-flowing fractured zone has an important scientific and practical significance. The background of this study is the Xinhu Coal Mine in Anhui Province, China. In the number 81 mining area of the Xinhu Coal Mine during the mining of the number 815 longwall, a water inflow occurred due to fractures in the sandstone in the overburden rock. The experience of the successful implementation of the water inrush control method by horizontal regional grouting through multiple directional wells is described in this paper. This study proposes an algorithm for the assessment of the risk of water inrush from aquifers, based on an ANSYS 17.2 simulation in the complex anticline coal seam bedding. It was found that the safety factors based on the stress and strain parameters can be used as criteria for the risk of rock failure in the aquifer zone. For the number 817 longwall panel of the Xinhu Coal Mine, the probability of rock mass failure indicates a low risk of the occurrence of a water-flowing fractured zone. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 5151 KB  
Article
Risk Identification Method and Application of Roof Water Inrush Under Multi-Working Face Mining
by Zhendi Huang, Kun Wang, Xuesheng Liu, Yongqiang Zhao, Xuebin Li, Biao Fu and Yu Zhou
Appl. Sci. 2025, 15(7), 3511; https://doi.org/10.3390/app15073511 - 23 Mar 2025
Cited by 2 | Viewed by 509
Abstract
Adjacent, multi-working face mining can expand the range of disturbed overburden, increasing the risk of triggering roof water inrush, which threatens the safe operation of coal mines. In this paper, we propose a risk identification method for roof water inrush under multi-working face [...] Read more.
Adjacent, multi-working face mining can expand the range of disturbed overburden, increasing the risk of triggering roof water inrush, which threatens the safe operation of coal mines. In this paper, we propose a risk identification method for roof water inrush under multi-working face mining conditions based on the theory of Key Strata and Full Mining Disturbance. Firstly, the key strata of the overburden are determined based on lithological and structural data from exploration boreholes. A formula is then derived to calculate the critical dimension (L) of the working face that could induce a fracture in the key stratum. The relationship between L and the combined width of the preceding and adjacent working faces is analyzed to assess whether the key stratum is fractured and how it affects the preceding working face. Finally, the height of the water-conducting fracture zone is predicted. The impact of repeated disturbances from multi-working face mining is evaluated to determine whether the height of the water-conducting fracture zone in the preceding working face increases, thereby enabling risk identification for roof water inrush under multi-working face mining conditions. Taking the multi-working faces of the Banji Coal Mine in Anhui Province as a case study, the predicted height of the water-conducting fracture zone is 60 m, with no risk of delayed roof water inrush in the preceding working face. Both numerical simulation results and field measurements of the development height of the water-conducting fracture zone confirm the effectiveness of this method. It is capable of accurately predicting the development height of the water-conducting fracture zone under multi-working face mining conditions and identifying the associated risk of roof water inrush, thus providing a valuable reference for ensuring safe mining operations in multi-working face mining conditions. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

26 pages, 13968 KB  
Article
Dynamic Evolution of Fractures in Overlying Rocks Caused by Coal Mining Based on Discrete Element Method
by Junyu Xu, Jienan Pan, Meng Li, Haoran Wang and Jiangfeng Chen
Processes 2025, 13(3), 806; https://doi.org/10.3390/pr13030806 - 10 Mar 2025
Cited by 1 | Viewed by 1040
Abstract
Mining-induced fractures and overlying rock movement change rock layer porosity and permeability, raising water intrusion risks in the working face. This study explores fracture development in working face 31123-1 at Dongxia Coal Mine using UDEC 7.0 software and theoretical analysis. The overlying rock [...] Read more.
Mining-induced fractures and overlying rock movement change rock layer porosity and permeability, raising water intrusion risks in the working face. This study explores fracture development in working face 31123-1 at Dongxia Coal Mine using UDEC 7.0 software and theoretical analysis. The overlying rock movement is a dynamic, spatially evolving process. As the working face advances, the water-conducting fracture zone height (WFZH) increases stepwise, and their relationship follows an S-shaped curve. Numerical simulations give a WFZH of about 112 m and a fracture–mining ratio of 14.93. Empirical formulas suggest a WFZH of 85.43 to 106.3 m and a ratio of 11.39 to 14.17. Key stratum theory calculations show that mining-induced fractures reach the 16th coarse-sandstone layer, with a WFZH of 97 to 113 m and a ratio of 12.93 to 15.07. Simulations confirm trapezoidal fractures with bottom angles of 48° and 50°, consistent with rock mechanics theories. A fractal permeability model for the mined overburden, based on the K-C equation, shows that fracture permeability positively correlates with the fractal dimension. These results verify the reliability of simulations and analyses, guiding mining and water control in this and similar working faces. Full article
Show Figures

Figure 1

28 pages, 19044 KB  
Article
Investigating the Evolution Law and Fracture Mechanism of Overlying Coal-Bearing Strata Caused by Shallow Multi-Seam Mining in a Gully Area
by Xiaoshen Xie, Enke Hou, Bingchao Zhao, Dong Feng and Pengfei Hou
Appl. Sci. 2025, 15(5), 2649; https://doi.org/10.3390/app15052649 - 1 Mar 2025
Cited by 1 | Viewed by 1149
Abstract
Compared with single coal seam mining, the stratum damage induced by shallow multi-seam mining is more severe and poses a risk of mine disasters that threaten the safety of coal mine personnel. In order to reveal the characteristics and mechanism of strata damage, [...] Read more.
Compared with single coal seam mining, the stratum damage induced by shallow multi-seam mining is more severe and poses a risk of mine disasters that threaten the safety of coal mine personnel. In order to reveal the characteristics and mechanism of strata damage, in this paper, field measurement, numerical simulation and mechanical analysis are used to study the development characteristics and dynamic evolution laws of overburden and explain the dynamic evolution mechanism of a water-conducting fracture zone (WCFZ) and surface cracks. The height of the WCFZ to the mining height exceeds 31.68, which is higher than the empirical value of the study area. There are self-healing and activation laws for overburden fissures in shallow multi-seam mining, which is related to the hinge rotation of overburden and the deflection of the inclined structure. However, the maximum subsidence coefficient and crack angle of the surface induced by shallow multi-seam mining does not alter, but the complexity of surface crack activity increases. The dynamic development law of WCFZ is closely related to the breaking of key strata, while the dynamic evolution of surface crack is controlled by the form of surface block fracture instability and topography. In addition, a shallow multi-seam horizontal staggered mining model that is conductive to reducing surface damage is constructed, and a method has been proposed to lessen the risk of landslides brought on by surface cracks. Full article
Show Figures

Figure 1

22 pages, 7196 KB  
Article
Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity
by Yuhang Che, Ximin Cui, Yuanjian Wang and Peixian Li
Water 2025, 17(2), 234; https://doi.org/10.3390/w17020234 - 16 Jan 2025
Viewed by 1047
Abstract
Predicting the height of the water-conducting fracture zone (WCFZ) is crucial for preventing water inrush and ensuring safe underground mining operations. In this study, we propose a novel model combining CatBoost, XGBoost, and AdaBoost with SSA, HHO, and LEA. Key stratum data (DK, [...] Read more.
Predicting the height of the water-conducting fracture zone (WCFZ) is crucial for preventing water inrush and ensuring safe underground mining operations. In this study, we propose a novel model combining CatBoost, XGBoost, and AdaBoost with SSA, HHO, and LEA. Key stratum data (DK, TK) and dip mining intensity data were integrated into the existing parameters for WCFZ height prediction. The main influence angle tangent, derived from the probability integral method, replaces the hard rock ratio coefficient. A total of 104 field datasets with eight input parameters were used, with WCFZ height as the dependent variable. The model was validated using five-fold cross-validation and evaluated with root mean square error (RMSE), mean absolute error (MAE), R2, and mean relative error (MRE). The Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) was applied to rank the models. The CAT-HHO model demonstrated the best performance. Using this model, predictions of WCFZ height under varying dip mining intensities showed an approximately linear relationship. SHAP analysis identified mining thickness as the most influential factor. Removing key stratum data from models significantly reduced prediction accuracy. The results highlight the model’s ability to improve WCFZ height prediction, offering insights for water inrush prevention in coal mining operations and providing guidance for applying machine learning to similar challenges. Full article
Show Figures

Figure 1

Back to TopTop