Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = the combined GGM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 474 KiB  
Article
Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis
by Farooq Ahmad, Livio Finos and Mariangela Guidolin
Forecasting 2024, 6(4), 1045-1064; https://doi.org/10.3390/forecast6040052 - 16 Nov 2024
Viewed by 1571
Abstract
Hydroelectric power is one of the most important renewable energy sources in the world. It currently generates more electricity than all other renewable technologies combined and, according to the International Energy Agency, it is expected to remain the world’s largest source of renewable [...] Read more.
Hydroelectric power is one of the most important renewable energy sources in the world. It currently generates more electricity than all other renewable technologies combined and, according to the International Energy Agency, it is expected to remain the world’s largest source of renewable electricity generation into the 2030s. Thus, despite the increasing focus on more recent energy technologies, such as solar and wind power, it will continue to play a critical role in energy transition. The management of hydropower plants and future planning should be ensured through careful planning based on the suitable forecasting of the future of this energy source. Starting from these considerations, in this paper, we examine the evolution of hydropower with a forecasting analysis for a selected group of countries. We analyze the time-series data of hydropower generation from 1965 to 2023 and apply Innovation Diffusion Models, as well as other models such as Prophet and ARIMA, for comparison. The models are evaluated for different geographical regions, namely the North, South, and Central American countries, the European countries, and the Middle East with Asian countries, to determine their effectiveness in predicting trends in hydropower generation. The models’ accuracy is assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). Through this analysis, we find that, on average, the GGM outperforms the Prophet and ARIMA models, and is more accurate than the Bass model. This study underscores the critical role of precise forecasting in energy planning and suggests further research to validate these results and explore other factors influencing the future of hydroelectric generation. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

16 pages, 13284 KiB  
Article
Recovering Bathymetry Using BP Neural Network Combined with Modified Gravity–Geologic Method: A Case Study in the South China Sea
by Xiaodong Chen, Min Zhong, Mingzhi Sun, Dechao An, Wei Feng and Meng Yang
Remote Sens. 2024, 16(21), 4023; https://doi.org/10.3390/rs16214023 - 29 Oct 2024
Cited by 1 | Viewed by 1507
Abstract
The gravity–geologic method (GGM) is widely used for bathymetric predictions. However, the conventional GGM cannot be applied in regions without actual bathymetric data. The modified gravity–geologic method (MGGM) enhances the accuracy of bathymetric models by supplementing short-wavelength gravity anomalies with an a priori [...] Read more.
The gravity–geologic method (GGM) is widely used for bathymetric predictions. However, the conventional GGM cannot be applied in regions without actual bathymetric data. The modified gravity–geologic method (MGGM) enhances the accuracy of bathymetric models by supplementing short-wavelength gravity anomalies with an a priori bathymetric model, but it overlooks the significance of actual bathymetric data in the prediction process. In this study, we used the BP neural network (BPNN), incorporating shipborne depth soundings and coastline data as zero-depth estimates combined with the MGGM to produce a bathymetric model (BPGGM_BAT) for the South China Sea (105°E–122°E, 0°N–26°N). The results indicate that the BPGGM_BAT model decreases the root-mean-square (RMS) of bathymetry differences from 154.33 m to approximately 140.43 m relative to multibeam depth data. Additionally, the RMS differences between the BPGGM_BAT model and multibeam depth data show further improvements of 19.63%, 20.10%, and 19.54% when compared with the recently released SRTM15_V2.6, GEBCO_2022, and topo_V27.1 models, respectively. The precision of the BPGGM_BAT model is comparable to that of the SDUST2023BCO model, as verified using multibeam depth data in open sea regions. The BPGGM_BAT model outperforms existing models with RMS differences of 8.54% to 32.66%, as verified using Electronic Navigational Chart (ENC) bathymetric data in the regions around the Zhongsha and Nansha Islands. A power density analysis suggests that the BPGGM_BAT model is superior to the MGGM_BAT model for predicting seafloor topography within wavelengths shorter than 15 km, and its performance is closely consistent with that of the topo_V27.1 and SDUST2023BCO models. Overall, this integrated method demonstrates significant potential for improving the accuracy of bathymetric predictions. Full article
Show Figures

Graphical abstract

24 pages, 6643 KiB  
Article
Irruption of Network Analysis to Explain Dietary, Psychological and Nutritional Patterns and Metabolic Health Status in Metabolically Healthy and Unhealthy Overweight and Obese University Students: Ecuadorian Case
by María Alejandra Aguirre-Quezada and María Pilar Aranda-Ramírez
Nutrients 2024, 16(17), 2924; https://doi.org/10.3390/nu16172924 - 1 Sep 2024
Viewed by 2029
Abstract
Background. The association between dietary nutritional patterns, psychological factors, and metabolic health status has not been investigated in university students. There are studies that include numerous variables to test hypotheses from various theoretical bases, but due to their complexity, they have not been [...] Read more.
Background. The association between dietary nutritional patterns, psychological factors, and metabolic health status has not been investigated in university students. There are studies that include numerous variables to test hypotheses from various theoretical bases, but due to their complexity, they have not been studied in combination. The scientific community recognizes the use of Gaussian graphical models (GGM) as a set of novel methods capable of addressing this. Objective. To apply GGMs to derive specific networks for groups of healthy and unhealthy obese individuals that represent nutritional, psychological, and metabolic patterns in an Ecuadorian population. Methodology. This was a quantitative, non-experimental, cross-sectional, correlational study conducted on a sample of 230 obese/overweight university students, selected through a multi-stage random sampling method. To assess usual dietary intake, a Food Frequency Questionnaire (FFQ) was used; to evaluate psychological profiles (anxiety, depression, and stress), the DASS-21 scale was employed; blood pressure and anthropometric data were collected; and insulin levels, lipid profiles, and glucose levels were determined using fasting blood samples. The International Diabetes Federation (IDF) criteria were applied to identify metabolically healthy and unhealthy individuals. Statistical analysis relied on univariate methods (frequencies, measures of central tendency, and dispersion), and the relationships were analyzed through networks. The Mann-Whitney U test was used to analyze differences between groups. Results. In metabolically unhealthy obese individuals, GGMs identified a primary network consisting of the influence of waist circumference on blood pressure and insulin levels. In the healthy obese group, a different network was identified, incorporating stress and anxiety variables that influenced blood pressure, anthropometry, and insulin levels. Other identified networks show the dynamics of obesity and the effect of waist circumference on triglycerides, anxiety, and riboflavin intake. Conclusions. GGMs are an exploratory method that can be used to construct networks that illustrate the behavior of obesity in the studied population. In the future, the identified networks could form the basis for updating obesity management protocols in Primary Care Units and supporting clinical interventions in Ecuador. Full article
Show Figures

Figure 1

16 pages, 5398 KiB  
Article
Comparative Study of Seafloor Topography Prediction from Gravity–Geologic Method and Analytical Algorithm
by Yuwei Tian, Huan Xu, Jinhai Yu, Qiuyu Wang, Yongjun Jia and Xin Chen
Remote Sens. 2024, 16(17), 3154; https://doi.org/10.3390/rs16173154 - 27 Aug 2024
Viewed by 876
Abstract
Seafloor topography prediction can fill in sea areas without ship sounding data. However, the dependence of various topographic prediction algorithms on ship soundings varies significantly. Hence, this study explores the impact of the number and distributions of ship soundings on topographic prediction using [...] Read more.
Seafloor topography prediction can fill in sea areas without ship sounding data. However, the dependence of various topographic prediction algorithms on ship soundings varies significantly. Hence, this study explores the impact of the number and distributions of ship soundings on topographic prediction using the gravity–geologic method (GGM) and an analytical algorithm. Firstly, this study investigates the influence of ship sounding coverage on the two algorithms. The simulation results demonstrate that increasing coverage from 5.40% to 31.80%, coupled with more uniform distributions across the study area, substantially reduces the RMS error of the GGM. Specifically, the RMS error decreases from 238.68 m to 42.90 m, an improvement of 82.03%. The analytical algorithm maintains a consistent RMS error of 40.39 m because it does not depend on ship soundings. Furthermore, we select a 1° × 1° sea area (134.8°–135.8°E, 30.0°–31.0°N), and the ship soundings are divided into two control groups, Part I and Part II, with coverages of 8.19% and 33.19%, respectively. When Part II is used for calculation, the RMS error of the GGM decreases from 204.17 m to 126.95 m compared to when Part I is used, while the analytical algorithm exhibits an RMS error of 167.94 m. The findings indicate that the prediction accuracy of the GGM is significantly affected by ship soundings, whereas the analytical algorithm is more stable and independent of ship soundings. Based on simulation experiments and realistic examples, when the effective ship soundings coverage exceeds 30%, the GGM may have more advantages. Conversely, the analytical algorithm may be better. This suggests that effectively combining and utilizing different algorithms based on the ship sounding coverage can improve the accuracy of topographic prediction. This will provide a basis for integrating multiple algorithms to construct a global seafloor topography model. Full article
Show Figures

Figure 1

18 pages, 13835 KiB  
Article
A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China
by Yingchun Shen, Wei Feng, Meng Yang, Min Zhong, Wei Tian, Yuhao Xiong and Zhongshan Jiang
Remote Sens. 2024, 16(15), 2756; https://doi.org/10.3390/rs16152756 - 28 Jul 2024
Viewed by 1212
Abstract
A global gravity field model (GGM) is essential to be validated with ground-based or airborne observational data for the accurate application of the GGM at a regional scale. Furthermore, accurately understanding the commission errors between the GGM and observational data are crucial for [...] Read more.
A global gravity field model (GGM) is essential to be validated with ground-based or airborne observational data for the accurate application of the GGM at a regional scale. Furthermore, accurately understanding the commission errors between the GGM and observational data are crucial for improving regional gravity fields. Taking the North China region as an example, to circumvent the omission errors, it is necessary to unify the spatial resolutions of the EIGEN-6C4 model and terrestrial gravity observational data to 110 km (determined by the distribution of gravity stations) by employing the spherical harmonic function for the EIGEN-6C4 model and the Slepian basis function for the gravity data, respectively. However, the application of spherical harmonic function expansions in the gravity model results in the Gibbs phenomenon, which may be a primary factor contributing to commission errors and impedes the accurate validation of the EIGEN-6C4 model with terrestrial gravity data. To effectively mitigate this issue, this study proposes a combination approach of window function filtering and regional eigenvalue constraint (based on the Slepian basis). Utilizing the EIGEN-6C4 gravity model to derive the gravity disturbance field at a resolution of 110 km (with spherical harmonic expansion up to the 180th degree and order), the combination approach effectively suppresses over 90% of high-degree (above the 120th degree) Gibbs phenomena. This approach also reduces signal leakage outside the region, thus enhancing the spatial accuracy of the regional gravity disturbance field. A subsequent comparison of the regional gravity disturbance field derived from the true model and terrestrial gravity data in North China indicates excellent consistency, with a root mean squared error (RMSE) of 0.80 mGal. This validation confirms that the combined approach of window function filtering and regional eigenvalue constraints effectively mitigates the Gibbs phenomenon and yields precise regional gravity fields. This approach is anticipated to significantly benefit scientific applications such as improving the accuracy of regional elevation benchmarks and accurately inverting the Earth’s internal structure. Full article
Show Figures

Figure 1

15 pages, 2736 KiB  
Technical Note
A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model
by Haipeng Yu, Guobin Chang, Yajie Yu and Shubi Zhang
Remote Sens. 2024, 16(10), 1731; https://doi.org/10.3390/rs16101731 - 14 May 2024
Viewed by 1203
Abstract
The remove–compute–restore (RCR) approach is widely used in local quasi-geoid modeling. However, the classical RCR approach usually does not take into account the noise of the satellite-only global gravity field model (GGM), which may lead to a suboptimal result. This paper presents an [...] Read more.
The remove–compute–restore (RCR) approach is widely used in local quasi-geoid modeling. However, the classical RCR approach usually does not take into account the noise of the satellite-only global gravity field model (GGM), which may lead to a suboptimal result. This paper presents an approach for local quasi-geoid modeling based on spherical radial basis functions that combines local noisy datasets and a noisy satellite-only GGM. This approach includes an RCR procedure using a satellite-only GGM. This is a direct approach that takes the spherical harmonic coefficients of satellite-only GGM as a noisy dataset and includes the corresponding full-noise covariance matrix in the least-squares estimation, aiming to obtain a statistically optimal local quasi-geoid model. The direct approach goes beyond the indirect approach, which treats the height anomalies generated from the satellite-only GGM as a noisy dataset. However, the generated GGM height anomaly dataset is not an equivalent representation of the satellite-only GGM, which may result in the loss of information from the satellite-only GGM. Through mathematical deduction, we demonstrate the theoretical consistency between the direct approach and the indirect approach. The direct approach also has an advantage over the indirect approach in terms of computational complexity due to the simpler algorithm. We conducted a synthetic closed-loop test with a real data distribution in Colorado, and numerical results demonstrated the advantage of the direct approach in local quasi-geoid modeling. In terms of the root mean square of the differences between the predicted values and the true reference values, the direct approach provided an improvement of approximately 14% compared to the indirect approach. Full article
Show Figures

Figure 1

20 pages, 5077 KiB  
Article
Sliding Mode Flight Control Law Design Requirements for Oblique Wing Aircraft Based on Perturbation Theory
by Lixin Wang, Xun Sun, Hailiang Liu, Jingzhong Ma, Wenyuan Cheng, Shang Tai, Yun Zhu and Ting Yue
Aerospace 2024, 11(5), 366; https://doi.org/10.3390/aerospace11050366 - 6 May 2024
Cited by 1 | Viewed by 1978
Abstract
Flight control law parameters should be designed to provide a sufficient stability margin for closed-loop aircraft while ensuring command tracking accuracy. The singular perturbation margin (SPM) and generalized gain margin (GGM), which are generalizations of the classical phase margin (PM) and gain margin [...] Read more.
Flight control law parameters should be designed to provide a sufficient stability margin for closed-loop aircraft while ensuring command tracking accuracy. The singular perturbation margin (SPM) and generalized gain margin (GGM), which are generalizations of the classical phase margin (PM) and gain margin (GM), respectively, from a linear time-invariant system to a nonlinear time-varying system, can be used to quantitatively characterize the maximum singular perturbation and regular perturbation allowed to maintain system stability. In this paper, the sliding mode flight control structure and the design parameters of the sliding mode control law are first introduced for an oblique wing aircraft (OWA), the SPM-gauge and GGM-gauge are added to this closed-loop aircraft model, and the analytical expressions of the SPM and GGM are derived with respect to the control law parameters. Second, the stability margin design requirements of closed-loop aircraft in flight control system design specifications are converted into limitations on the SPM and GGM to determine the value range of the flight control law parameters. Then, with the goal of reducing the sum of the approaching time and sliding time, the parameter value combination is selected within the control law parameter range that meets the stability margin requirements, thus forming a flight control law design method for OWA during the wing skewing process. Finally, the designed control law parameters are applied to a sample OWA, and the stability margin of closed-loop aircraft during the wing skewing process is verified. Full article
(This article belongs to the Special Issue Flight Control (2nd Edition))
Show Figures

Figure 1

17 pages, 11514 KiB  
Article
Enhancing Sea Level Rise Estimation and Uncertainty Assessment from Satellite Altimetry through Spatiotemporal Noise Modeling
by Jiahui Huang, Xiaoxing He, Jean-Philippe Montillet, Machiel Simon Bos and Shunqiang Hu
Remote Sens. 2024, 16(8), 1334; https://doi.org/10.3390/rs16081334 - 10 Apr 2024
Cited by 6 | Viewed by 2092
Abstract
The expected acceleration in sea level rise (SLR) throughout this century poses significant threats to coastal cities and low-lying regions. Since the early 1990s, high-precision multi-mission satellite altimetry (SA) has enabled the routine measurement of sea levels, providing a continuous 30-year record from [...] Read more.
The expected acceleration in sea level rise (SLR) throughout this century poses significant threats to coastal cities and low-lying regions. Since the early 1990s, high-precision multi-mission satellite altimetry (SA) has enabled the routine measurement of sea levels, providing a continuous 30-year record from which the mean sea level rise (global and regional) and its variability can be computed. The latest reprocessed product from CMEMS span the period from 1993 to 2020, and have enabled the acquisition of accurate sea level data within the coastal range of 0–20 km. In order to fully utilize this new dataset, we establish a global virtual network consisting of 184 virtual SA stations. We evaluate the impact of different stochastic noises on the estimation of the velocity of the sea surface height (SSH) time series using BIC_tp information criterion. In the second step, the principal component analysis (PCA) allows the common mode noise in the SSH time series to be mitigated. Finally, we analyzed the spatiotemporal characteristics and accuracy of sea level change derived from SA. Our results suggest that the stochasticity of the SSH time series is not well described by a combination of random, flicker, and white noise, but is best described by an ARFIM/ARMA/GGM process. After removing the common mode noise with PCA, about 96.7% of the times series’ RMS decreased, and most of the uncertainty associated with the computed SLR decreased. We confirm that the spatiotemporal correlations should be accounted for to yield trustworthy trends and reliable uncertainties. Our estimated SLR is 2.75 ± 0.89 mm/yr, which aligns closely with recent studies, emphasizing the robustness and consistency of our method using virtual SA stations. We additionally introduce open-source software (SA_Tool V1.0) to process the SA data and reduce noise in surface height time series to the community. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

26 pages, 22359 KiB  
Article
GOCE Downward Continuation to the Earth’s Surface and Improvements to Local Geoid Modeling by FFT and LSC
by Dimitrios A. Natsiopoulos, Elisavet G. Mamagiannou, Eleftherios A. Pitenis, Georgios S. Vergos and Ilias N. Tziavos
Remote Sens. 2023, 15(4), 991; https://doi.org/10.3390/rs15040991 - 10 Feb 2023
Cited by 5 | Viewed by 2158
Abstract
One of the main applications of the gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite data is their combination with local gravity anomalies for geoid and gravity field modeling purposes. The aim of the present paper was the determination of an improved [...] Read more.
One of the main applications of the gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite data is their combination with local gravity anomalies for geoid and gravity field modeling purposes. The aim of the present paper was the determination of an improved geoid model for the wider Hellenic area, using original GOCE SGG data filtered to retain only useful signals inside the measurement bandwidth (MBW) of the satellite. The filtered SGGs, originally at the satellite altitude, were projected to a mean orbit (MO) and then downward continued to the Earth’s surface (ES) in order to be combined with local gravity anomalies. For the projection to an MO, grids of disturbing gravity gradients from a global geopotential model (GGM) were used, computed per 1 km from the maximum satellite altitude to that of the MO. The downward continuation process was then undertaken using an iterative Monte Carlo (MC) simulated annealing method with GGM gravity anomalies on the ES used as ground truth data. The final geoid model over the wider Hellenic area was estimated, employing the remove–compute–restore method and both Fast Fourier Transform (FFT) and Least Squares Collocation (LSC). Gravity-only, GOCE-only and combined models using local gravity and GOCE data were determined and evaluation of the results was carried out against available GNSS/levelling data in the study area. From the results achieved, it was concluded that even when FFT is used, so that a combined grid of local gravity and GOCE data is used, improvements to the differences regarding GNSS/levelling data by 14.53% to 27.78% can be achieved. The geoid determination with LSC was focused on three different areas over Greece, with different characteristics in the topography and gravity variability. From these results, improvements from 14.73%, for the well-surveyed local data of Thessaly, to 32.88%, over the mountainous area of Pindos, and 57.10% for the island of Crete for 57.10% were found. Full article
Show Figures

Figure 1

17 pages, 1775 KiB  
Article
Estimation of Geopotential Value W0 for the Geoid and Local Vertical Datum Parameters
by Xinyu Liu, Shanshan Li, Jiajia Yuan, Diao Fan and Xuli Tan
Remote Sens. 2023, 15(4), 912; https://doi.org/10.3390/rs15040912 - 7 Feb 2023
Cited by 3 | Viewed by 2348
Abstract
Unification of the global vertical datum has been a key problem to be solved for geodesy over a long period, and the main challenge for unifying the global vertical datum system is to determine the geopotential value W0 of the geoid and [...] Read more.
Unification of the global vertical datum has been a key problem to be solved for geodesy over a long period, and the main challenge for unifying the global vertical datum system is to determine the geopotential value W0 of the geoid and to calculate the vertical offset between the local vertical datum and the global vertical datum W0. The geopotential value W0 can be calculated using the grid mean sea surface (GMSS) data and the global geopotential model (GGM). In this study, this GMSS data was measured with adjustment methods and 24 years of merged multi-satellite altimetry data. The data of HaiYang-2A (HY-2A) and Jason-3 were first used to calculate W0. The geopotential value W0 was determined to be 62,636,856.82 m2s−2 by combining the EIGEN-6C4 (European Improved Gravity Model of the Earth by New Techniques) and the GMSS data. Then, the geopotential difference approach and geodetic boundary value problem (GBVP) approach were used to determine the vertical datum parameters in this study. To compensate for the omission error of the GGM, this study utilized the remove–compute–restore (RCR) technique and the residual terrain model (RTM)-recovered high-frequency gravity signals. Finally, as a result of the GBVP solution, the geopotential value of the Australian Height Datum (AHD) was 62,636,851.935 m2s−2, and the vertical offset of the AHD relative to the global vertical datum W0 was 0.4885 m. As a result of the geopotential difference approach, the geopotential value of the Chinese Height datum was 62636861.412 m2s−2, and the vertical offset of the Chinese Height datum was −0.4592 m. Full article
(This article belongs to the Special Issue Satellite Altimetry: Technology and Application in Geodesy)
Show Figures

Figure 1

19 pages, 5754 KiB  
Article
GNSS Data Processing and Validation of the Altimeter Zenith Wet Delay around the Wanshan Calibration Site
by Wanlin Zhai, Jianhua Zhu, Mingsen Lin, Chaofei Ma, Chuntao Chen, Xiaoqi Huang, Yufei Zhang, Wu Zhou, He Wang and Longhao Yan
Remote Sens. 2022, 14(24), 6235; https://doi.org/10.3390/rs14246235 - 9 Dec 2022
Cited by 4 | Viewed by 1812
Abstract
The Wanshan calibration site (WSCS) is the first in-situ field for calibration and validation (Cal/Val) of HY-2 satellite series in China. It was built in December, 2018 and began business operation in 2020. In order to define an accurate datum for Cal/Val of [...] Read more.
The Wanshan calibration site (WSCS) is the first in-situ field for calibration and validation (Cal/Val) of HY-2 satellite series in China. It was built in December, 2018 and began business operation in 2020. In order to define an accurate datum for Cal/Val of altimeters, the permanent GNSS station (PGS) data of the WSCS observed on Zhiwan (ZWAN) and Wailingding (WLDD) islands were processed using GAMIT/GLOBK software in a regional solution, combined with 61 GNSS stations distributed nearby, collected from the GNSS Research Center, Wuhan University (GRC). The Hector software was used to analyze the trend of North (N), East (E), and Up (U) directions using six different noise models with criteria of maximum likelihood estimation (MLE), Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC). We found that the favorite noise models were white noise plus generalized Gauss–Markov noise (WN + GGM), followed by generalized Gauss–Markov noise (GGM). Then, we compared the PGS velocities of each direction with the Scripps Orbit and Permanent Array Center (SOPAC) output parameters and found that there was good agreement between them. The PGSs in the WSCS had velocities in the N, E, and U directions of −10.20 ± 0.39 mm/year, 31.09 ± 0.36 mm/year, and −2.24 ± 0.66 mm/year for WLDD, and −10.85 ± 0.38 mm/year, 30.67 ± 0.30 mm/year, and −3.81 ± 0.66 mm/year for ZWAN, respectively. The accurate datum was defined for Cal/Val of altimeters for WSCS as a professional in-situ site. Moreover, the zenith wet delay (ZWD) of the coastal PGSs in the regional and sub-regional solutions was calculated and used to validate the microwave radiometers (MWRs) of Jason-3, Haiyang-2B (HY-2B), and Haiyang-2C (HY-2C). A sub-regional PGS solution was processed using 19 continuous operational reference stations (CORS) of Hong Kong Geodetic Survey Services to derive the ZWD and validate the MWRs of the altimeters. The ZWD of the PGSs were compared with the radiosonde-derived data in the regional and sub-regional solutions. The difference between them was −7.72~2.79 mm with an RMS of 14.53~18.62 mm, which showed good consistency between the two. Then, the PGSs’ ZWD was used to validate the MWRs. To reduce the land contamination of the MWR, we determined validation distances of 6~30 km, 16~28 km, and 18~30 km for Jason-3, HY-2B, and HY-2C, respectively. The ZWD differences between PGSs and the Jason-3, HY-2B, and HY-2C altimeters were −2.30 ± 16.13 mm, 9.22 ± 22.73 mm, and −3.02 ± 22.07 mm, respectively. Full article
Show Figures

Graphical abstract

21 pages, 11108 KiB  
Article
Comparison of Mean Dynamic Topography Modeling from Multivariate Objective Analysis and Rigorous Least Squares Method
by Yihao Wu, Xiufeng He, Jia Huang, Hongkai Shi, Haihong Wang, Yunlong Wu and Yuan Ding
Remote Sens. 2022, 14(21), 5330; https://doi.org/10.3390/rs14215330 - 25 Oct 2022
Cited by 2 | Viewed by 1827
Abstract
Filtering methods are usually used to combine the mean sea surface (MSS) and geoid (computable by global geopotential model (GGM)) into a common subspace, to model mean dynamic topography (MDT), which may lead to signal leakage and distortion problems. [...] Read more.
Filtering methods are usually used to combine the mean sea surface (MSS) and geoid (computable by global geopotential model (GGM)) into a common subspace, to model mean dynamic topography (MDT), which may lead to signal leakage and distortion problems. The use of the rigorous least squares (LS) method and multivariate objective analysis (MOA) alleviates these problems, and the derived MDTs from these two methods show better performance than MDTs derived from filtering methods. However, the advantages and disadvantages of these two methods have not been evaluated, and no direct comparison has yet been conducted between these two approaches regarding the performances in MDT recovery. In this study, we compare the performances of the MOA method with the LS method, providing information with respect to the usability of different methods in MDT modeling over regions with heterogeneous ocean states and hydrological conditions. We combined a recently published mean sea surface called DTU21MSS, and a satellite-only GGM named GO_CONS_GCF_2_DIR_R6, for MDT computation over four typical study areas. The results showed that the MDTs derived from the LS method outperformed the MOA method, especially over coastal regions and ocean current areas. The root mean square (RMS) of the discrepancies between the LS-derived MDT and the ocean reanalysis data was lower than the RMS of the discrepancies computed from the MOA method, by a magnitude of 1–2 cm. The formal error of the MDT estimated by the LS method was more reasonable than that derived from the MOA method. Moreover, the geostrophic velocities calculated by the LS-derived MDT were more consistent with buoy data than those calculated by the MOA-derived solution, by a magnitude of approximately 1 cm/s. The reason can be attributed to the fact that the LS method forms the design matrix segmentally, based on the error characteristics of the GGM, and suppresses high-frequency noise by applying constraints in different frequency bands, which improves the quality of the computed MDT. Our studies highlight the superiority of the LS-derived method versus the MOA method in MDT modeling. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods)
Show Figures

Figure 1

15 pages, 30660 KiB  
Article
Combining Global Geopotential Models, Digital Elevation Models, and GNSS/Leveling for Precise Local Geoid Determination in Some Mexico Urban Areas: Case Study
by Norberto Alcantar-Elizondo, Ramon Victorino Garcia-Lopez, Xochitl Guadalupe Torres-Carillo and Guadalupe Esteban Vazquez-Becerra
ISPRS Int. J. Geo-Inf. 2021, 10(12), 819; https://doi.org/10.3390/ijgi10120819 - 4 Dec 2021
Cited by 6 | Viewed by 3992
Abstract
This work shows improvements of geoid undulation values obtained from a high-resolution Global Geopotential Model (GGM), applied to local urban areas. The methodology employed made use of a Residual Terrain Model (RTM) to account for the topographic masses effect on the geoid. This [...] Read more.
This work shows improvements of geoid undulation values obtained from a high-resolution Global Geopotential Model (GGM), applied to local urban areas. The methodology employed made use of a Residual Terrain Model (RTM) to account for the topographic masses effect on the geoid. This effect was computed applying the spherical tesseroids approach for mass discretization. The required numerical integration was performed by 2-D integration with 1DFFT technique that combines DFT along parallels with direct numerical integration along meridians. In order to eliminate the GGM commission error, independent geoid undulations values obtained from a set of GNSS/leveling stations are employed. A corrector surface from the associated geoid undulation differences at the stations was generated through a polynomial regression model. The corrector surface, in addition to the GGM commission error, also absorbs the GNSS/leveling errors as well as datum inconsistencies and systematic errors of the data. The procedure was applied to five Mexican urban areas that have a geodetic network of GNSS/leveling points, which range from 166 to 811. Two GGM were evaluated: EGM2008 and XGM2019e_2159. EGM2008 was the model that showed relatively better agreement with the GNSS/leveling stations having differences with RMSE values in the range of 8–60 cm and standard deviations of 5–8 cm in four of the networks and 17 cm in one of them. The computed topographic masses contribution to the geoid were relatively small, having standard deviations on the range 1–24 mm. With respect to corrector surface estimations, they turned out to be fairly smooth yielding similar residuals values for two geoid models. This was also the case for the most recent Mexican gravity geoid GGM10. For the three geoid models, the second order polynomial regression model performed slightly better than the first order with differences up to 1 cm. These two models produced geoid correction residuals with a standard deviation in one test area of 14 cm while for the others it was of about 4–7 cm. However, the kriging method that was applied for comparison purposes produced slightly smaller values: 8 cm for one area and 4–6 cm for the others. Full article
(This article belongs to the Special Issue Geomorphometry and Terrain Analysis)
Show Figures

Figure 1

8 pages, 754 KiB  
Article
Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs
by Layal Fahed, Marc El Beyrouthy, Naïm Ouaini, Véronique Eparvier, Didier Stien, Sara Vitalini and Marcello Iriti
Molecules 2021, 26(21), 6545; https://doi.org/10.3390/molecules26216545 - 29 Oct 2021
Cited by 12 | Viewed by 2679
Abstract
The chemical composition of Lebanese Hypericum scabrum essential oil (EO) was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GG-MS). Its antimicrobial activity was evaluated by determining its minimal inhibitory concentrations (MICs) against a Gram-negative and a Gram-positive bacterium, one yeast, and [...] Read more.
The chemical composition of Lebanese Hypericum scabrum essential oil (EO) was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GG-MS). Its antimicrobial activity was evaluated by determining its minimal inhibitory concentrations (MICs) against a Gram-negative and a Gram-positive bacterium, one yeast, and five dermatophytes. H. scabrum EO was most active on filamentous fungi (MIC values of 32–64 µg/mL). Synergy within the oil was investigated by testing each of the following major components on Trichophyton rubrum: α-pinene, limonene, myrcene, β-pinene and nonane, as well as a reconstructed EO. The antifungal activity of the natural oil could not be reached, meaning that its activity might be due, in part, to minor constituent(s). The interactions between H. scabrum EO and commercially available antifungals were assessed by the checkerboard test. A synergistic effect was revealed in the combination of the EO with amphotericin B. Full article
Show Figures

Figure 1

18 pages, 2095 KiB  
Article
Effect of the Interaction between Dietary Patterns and the Gastric Microbiome on the Risk of Gastric Cancer
by Madhawa Gunathilake, Jeonghee Lee, Il Ju Choi, Young-Il Kim and Jeongseon Kim
Nutrients 2021, 13(8), 2692; https://doi.org/10.3390/nu13082692 - 3 Aug 2021
Cited by 15 | Viewed by 3758
Abstract
We aimed to observe the combined effects of Gaussian graphical model (GGM)-derived dietary patterns and the gastric microbiome on the risk of gastric cancer (GC) in a Korean population. The study included 268 patients with GC and 288 healthy controls. Food intake was [...] Read more.
We aimed to observe the combined effects of Gaussian graphical model (GGM)-derived dietary patterns and the gastric microbiome on the risk of gastric cancer (GC) in a Korean population. The study included 268 patients with GC and 288 healthy controls. Food intake was assessed using a 106-item semiquantitative food frequency questionnaire. GGMs were applied to derive dietary pattern networks. 16S rRNA gene sequencing was performed using DNA extracted from gastric biopsy samples. The fruit pattern network was inversely associated with the risk of GC for the highest vs. lowest tertiles in the total population (odds ratio (OR): 0.47; 95% confidence interval (CI): 0.28–0.77; p for trend = 0.003) and in females (OR: 0.38; 95% CI: 0.17–0.83; p for trend = 0.021). Males who had a low microbial dysbiosis index (MDI) and high vegetable and seafood pattern score showed a significantly reduced risk of GC (OR: 0.44; 95% CI: 0.22–0.91; p-interaction = 0.021). Females who had a low MDI and high dairy pattern score showed a significantly reduced risk of GC (OR: 0.23; 95% CI: 0.07–0.76; p-interaction = 0.018). Our novel findings revealed that vegetable and seafood pattern might interact with dysbiosis to attenuate the risk of GC in males, whereas the dairy pattern might interact with dysbiosis to reduce the GC risk in females. Full article
Show Figures

Figure 1

Back to TopTop