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Abstract: Flight control law parameters should be designed to provide a sufficient stability margin for
closed-loop aircraft while ensuring command tracking accuracy. The singular perturbation margin
(SPM) and generalized gain margin (GGM), which are generalizations of the classical phase margin
(PM) and gain margin (GM), respectively, from a linear time-invariant system to a nonlinear time-
varying system, can be used to quantitatively characterize the maximum singular perturbation and
regular perturbation allowed to maintain system stability. In this paper, the sliding mode flight
control structure and the design parameters of the sliding mode control law are first introduced
for an oblique wing aircraft (OWA), the SPM-gauge and GGM-gauge are added to this closed-loop
aircraft model, and the analytical expressions of the SPM and GGM are derived with respect to the
control law parameters. Second, the stability margin design requirements of closed-loop aircraft in
flight control system design specifications are converted into limitations on the SPM and GGM to
determine the value range of the flight control law parameters. Then, with the goal of reducing the
sum of the approaching time and sliding time, the parameter value combination is selected within
the control law parameter range that meets the stability margin requirements, thus forming a flight
control law design method for OWA during the wing skewing process. Finally, the designed control
law parameters are applied to a sample OWA, and the stability margin of closed-loop aircraft during
the wing skewing process is verified.

Keywords: stability margin; singular perturbation margin; generalized gain margin; sliding mode
flight control; oblique wing aircraft

1. Introduction

An oblique wing aircraft (OWA) is an asymmetric layout aircraft that can rotate its
wing at different flight velocities, forming various wing sweep configurations, with one
side swept forwards and the other side swept back, as shown in Figure 1 [1]. During the
oblique wing skewing process, the rotating wing will not only produce changes in lift,
drag, and pitch moments but also generate asymmetric side forces, roll moments, and
yaw moments. In addition, the wing components can have nonlinear interference with the
fuselage, resulting in nonsteady time-varying aerodynamic forces during the wing skewing
process. The variation rules of this time-varying aerodynamic force are complex, and it is
impossible to accurately characterize the functional relationship between the time-varying
aerodynamic force and the wing skewing rate. Therefore, the three-axis motion of the
OWA during the wing skewing process has coupling and nonlinear characteristics, making
it difficult to establish an accurate aerodynamic model, and resulting in uncertainty in
closed-loop aircraft. Sliding mode control is a nonlinear control method that ensures the
dynamic quality of a system through the design of a sliding mode function and reaching
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law. It can generate control signals in a targeted manner based on changes in controlled
system state variables, thereby causing the state variables to move along a specified sliding
surface [2–5]. The flight control law designed using the sliding mode control method has a
certain adaptability to changes in the configuration and aerodynamic parameters of OWA.
In addition, the robustness of the sliding mode control is strong, and only a set of control
law parameters are needed to eliminate the disturbances caused by aerodynamic modeling
errors, noise measurement errors, and large-scale variations in aircraft motion parameters
during the wing skewing process, without the need for frequent switching of the control
law parameter values, making it more suitable for wing skewing processes with uncertainty
in aerodynamic models.
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The stability margin is an important criterion for evaluating whether the design values
of flight control law parameters are suitable for real flight environments. As the stability
metrics of linear time-invariant systems, the phase margin (PM) and gain margin (GM)
have become the basic criteria for the design of flight control law parameters. The PM is
defined as the angle difference between −180◦ and the open-loop frequency characteristics
of the system with an open-loop gain of 1. It can reflect the maximum lag phase at
which the system can still maintain stability for a specific frequency input signal with
a gain of 1 [6]. The GM is defined as the inverse value of the open-loop amplitude–
frequency characteristics of the system when there is a 180◦ phase lag in the feedback
signal, reflecting the maximum range of open-loop gain changes allowed for the system to
maintain stability [6]. However, the calculation of the PM and GM needs to be based on the
linearized model of the control system. Due to the no-fixed configuration of OWA during
the wing skewing process, the equilibrium point of closed-loop aircraft will change in real
time with different skewing angles, resulting in the linear model of closed-loop aircraft
not being unique. Even if a certain intermediate configuration in the skewing process is
linearized, the analytical expression for the stability margin cannot be derived due to the
high order and complexity of the linearized model. Therefore, it is difficult to quantify the
impact of the control law parameter values on the stability of closed-loop aircraft using
only the PM and GM.

In recent years, Yang X et al. [7–12] developed two new types of stability margin
metrics based on perturbation theory for linear time-invariant, linear time-varying, and
nonlinear systems, namely, the singular perturbation margin (SPM) and generalized gain
margin (GGM). In control theory, perturbations are usually categorized into singular
perturbations and regular perturbations. Singular perturbation refers to the perturbation
that changes the nominal system’s order, such as the transmission time delay of state
feedback signals, and unmodelled elastic deformation of the wings and fuselage. Regular
perturbation refers to perturbation that does not change the nominal system’s order, such
as the measurement errors in the state feedback signals, and changes in the aircraft mass
and center of the gravity position. Under this classification condition, the SPM is defined
as the maximum singular perturbation value allowed to maintain system stability. The
GGM is defined as the maximum regular perturbation value allowed to maintain system
stability [7]. In reference [7], the bijective correspondence between the SPM and PM, as
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well as between the GGM and GM, was derived for a linear time-invariant system, proving
the equivalence between the two new types of stability margins and classical stability
metrics. References [8–12] used the Lyapunov stability analysis method to provide the
calculation steps for the SPM and GGM when there are nonlinear or time-varying factors in
the system. However, the above two stability margins defined by perturbation theory still
lack engineering application, and the minimum stability margin requirements for designing
nonlinear time-varying systems have not been summarized.

In the field of flight control design for variable configuration aircraft, researchers
have focused on applying new nonlinear or intelligent control methods to control law
design [1,13–23]. The values of the control law parameters are mostly determined based on
time-domain simulation results and are continuously tested until the closed-loop aircraft
achieves good command tracking characteristics without considering the limitations of
the stability margin requirements. Cheng L et al. [13] designed an L1 adaptive control
law based on dynamic inversion for the morphing process of a variable sweep aircraft
and verified that the flight control law has satisfactory command tracking performance
and strong robustness. Xu W et al. [19] designed a switching adaptive backstepping
control law for the speed and altitude command tracking process of a variable sweep
aircraft and proved the stability of the closed-loop aircraft using Lyapunov stability theory.
Ting Y et al. [1] designed a sliding mode control law for the wing skewing process of an
OWA, achieving trajectory stability during transitions between different configurations.
However, the control law parameter values for completing the aforementioned variable
sweep [13,17–19], variable V-tail [20], wing folding [21], wing telescoping [22], and wing
skewing [1,23] are not unique. Although different parameter combinations can ensure
the stability of closed-loop aircraft, they will have different effects on the stability margin,
which can be used to determine whether the control law can ensure a smooth transition of
the configuration in real flight environments.

The main innovation of this paper is to introduce the stability margin requirement of
closed-loop aircraft into the design process of sliding mode flight control law parameters,
which can help designers easily select a combination of control law parameters that can
provide appropriate stability margin, fast response speed, and fast error convergence speed
for closed-loop aircraft from numerous control law parameters that only meet the tracking
accuracy of flight commands. This paper is based on the research results of perturbation
theory and flight control design theory. The SPM and GGM are used as the stability metrics
for a closed-loop aircraft model, and a parameter design requirement is proposed for the
sliding mode flight control law of OWA that considers stability margin. First, the sliding
mode flight control structure and the design parameters of the control law for OWA are
introduced. The SPM-gauge and GGM-gauge are added to the closed-loop aircraft, and
the analytical expressions of the SPM and GGM with respect to the sliding mode control
law parameters are derived. Second, based on the quasi-steady assumption, a closed-loop
aircraft with a low wing skew rate is regarded as a linear time-invariant system. The
design requirements for PM and GM in the flight control system design specifications are
transformed into the limiting requirements for the SPM and GGM, respectively. Therefore,
the value range of the flight control law parameters is determined. Then, with the goal
of reducing the sum of the sliding mode reaching motion time and sliding motion time, a
parameter value combination with a faster command tracking speed within the control law
parameter value range that meets the stability margin requirements is selected. Finally, the
design process of the sliding mode flight control law is presented for a sample OWA, and
the verification of the closed-loop aircraft stability margin is completed.

2. Sliding Mode Flight Control Structure of OWA

The sliding mode flight control structure adopted by a general form of OWA during
the wing skewing process is shown in Figure 2 [1]:
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yaw displacement change rate ẏ, the roll angle command in the speed axis μ
c
 is gener-

ated, and together with αc, it serves as the input for the outer sliding mode control loop. 

Since the influences of the PID control law parameter values on the stability margin of 

closed-loop aircraft are not studied in this paper, the design process of trajectory com-

mand solver parameters is not discussed and its detailed description can be found in ref-

erence [1]. 

The outer sliding mode control loop is used to achieve attitude angle command track-

ing of the aircraft relative to the airflow coordinate system. The outer loop sliding mode 

controller can be used to calculate the received roll angle command in the speed axis μ
c
, 

angle of attack command αc, and side slip angle command β
c
 into the roll rate command 

p
c
, pitch rate command q

c
, and yaw rate command rc, which are used as inputs for the 

inner loop. As shown in Figure 2, the outer loop sliding mode control structure contains 

feedback for three state variables p, q, r. Therefore, it is necessary to design the corre-

sponding sliding mode control law parameters for each of these three state variables. 

The design of the outer loop sliding mode controller includes the design of the sliding 

surface s and the design of the reaching law ṡ. The s determines the motion equation of 
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As shown in Figure 2, the flight control structure consists of three different functional
control loops, namely a trajectory control loop, an outer sliding mode control loop, and an
inner sliding mode control loop.

The trajectory control loop is used to maintain the stability of the OWA trajectory
during the wing skewing process. The design of the trajectory command solver in Figure 2
adopts the PID control method, which can be used to solve the received flight speed
command Vc and flight altitude command Hc into the engine thrust command Tc and angle
of attack command αc, respectively. At the same time, based on the feedback of the yaw
displacement change rate

·
y, the roll angle command in the speed axis µc is generated, and

together with αc, it serves as the input for the outer sliding mode control loop. Since the
influences of the PID control law parameter values on the stability margin of closed-loop
aircraft are not studied in this paper, the design process of trajectory command solver
parameters is not discussed and its detailed description can be found in reference [1].

The outer sliding mode control loop is used to achieve attitude angle command
tracking of the aircraft relative to the airflow coordinate system. The outer loop sliding
mode controller can be used to calculate the received roll angle command in the speed
axis µc, angle of attack command αc, and side slip angle command βc into the roll rate
command pc, pitch rate command qc, and yaw rate command rc, which are used as inputs
for the inner loop. As shown in Figure 2, the outer loop sliding mode control structure
contains feedback for three state variables p, q, r. Therefore, it is necessary to design the
corresponding sliding mode control law parameters for each of these three state variables.

The design of the outer loop sliding mode controller includes the design of the sliding
surface s and the design of the reaching law

·
s. The s determines the motion equation of the

closed-loop aircraft, while the
·
s determines the output of the sliding mode controller. The

design form of s and
·
s adopted in this paper is as follows [2,3]:{

s = e + c
∫ t

0 edt
.
s = −∆sgn(s)− ωs

(1)

where e is the tracking error of the state variable on the command signal, c >0 is the error
integral gain, ω> 0 is the reaching law index, ∆ > 0 is the approaching speed when the
state variable reaches the sliding surface, and sgn( ) is the sign function. The value of
parameter ∆ can generally be chosen as a constant [24], so the parameters to be designed in
Equation (1) are only ω and c.

For any control loop in state variable µ, α, β, the corresponding reaching law index and
error integral gain need to be designed. Therefore, there are a total of 6 design parameters
for the outer loop sliding mode controller: three reaching law indices ωµ, ωα, ωβ and three
error integral gains cµ, cα, cβ.

The inner loop sliding mode control is used to track the three-axis angular velocity
command of the aircraft. The inner loop sliding mode controller can be used to calculate
the received three-axis angular velocity pc, qc, rc command as the required deflection angle
command for each control surface, and these commands need to pass through the actuator
before they can be used as inputs for the aircraft dynamics model. As shown in Figure 2,
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the inner loop sliding mode control structure contains feedback for three state variables,
p,q,r, and the corresponding sliding mode control law parameters need to be designed for
each of these three state variables. The inner loop sliding mode controller is also based on
the sliding mode surface and reaching law form in Equation (1), so the number of design
parameters is also 6, namely, 3 reaching law indices ωp, ωq, ωr and 3 error integral gains
cp, cq, cr.

In addition, the inner loop sliding mode control structure includes the dynamics model
of the OWA. The dynamic model of an OWA is very different from that of a conventional
fixed-wing aircraft. The characteristic of the wing rotating around the central axis deter-
mines that the OWA cannot be treated as a rigid body as in traditional modeling methods,
but should be treated as a time-varying multibody dynamics system. The expression of its
multibody dynamics model should include the influence of the wing skewing on the forces
and moments. Common multi-body dynamics modeling methods include Newtonian
mechanics modeling methods, Lagrange equation modeling methods, and Kane equation
modeling methods. The vector-form dynamic equations used in modeling OWA in this
paper are as follows [1,22]:

F = m
( .

V + ω × V
)
+ δω

δt × S + 2ω × δS
δt + ω × (ω × S) + δ2S

δt2

M = I · δω
δt + δI

δt · ω + ω × (I · ω) + S × δV
δt + S × (ω × V)

+
1
∑

i=0

{
Ii · δωi

δt + δIi
δt · ωi + ωi × (I · ωi) +

1
mi

[
Si × δ2Si

δt2 + ω ×
(

Si × δSi
δt

)]} (2)

where F and M are the forces and moments acting on the OWA, respectively. m is the
mass of the OWA. V is the flight speed. ω is the angular velocity of rotation of the body
axis system relative to the inertial coordinate system. S is the static moment of the OWA
around the origin of the body axis system, representing the mass distribution of the aircraft,
where the origin of the body axis system is located at the center of gravity of the OWA in
the 0◦ skewing angle configuration. i = 0, 1 represents fixed fuselage and movable wing,
respectively. mi is the rigid mass of each part of the OWA; Ii is the moment of inertia of
each part relative to its own center of mass; ωi is the angular velocity of rotation of each
part around the body axis system; δSi/δt describes the change in mass distribution of the
OWA relative to the body axis system caused by wing skewing.

The values of the reaching law index and error integral gain will affect the SPM and
GGM of the control loop. It has been proven in references [25,26] that when multiple control
loops in a system are perturbed simultaneously, as long as the perturbation value is less
than the minimum stability margin among all control loops, the closed-loop system can
still maintain stability. This conclusion indicates that the SPM and GGM of the closed-loop
system are equal to the minimum SPM and GGM among all control loops, respectively.
From a physical perspective, since the divergence of the response of any control loop can
cause the divergence of the entire closed-loop system, when all control loops are subjected
to the same perturbation, the loop with the lowest stability margin will first exhibit a
divergence trend. Therefore, its stability margin can be used as the stability margin of
the closed-loop system. To determine the SPM and GGM of the closed-loop aircraft, it is
necessary to calculate the SPM and GGM of µ,α,β,p,q,r control loops separately and then
select the minimum value from them.

3. Relationship between the SPM and Sliding Mode Control Law Parameters

In this section, the control loop of the single-state variable is taken as an example and
the Lyapunov stability analysis method is used to calculate the SPM of this loop to establish
the bijective relationship between the SPM and the sliding mode control law parameters.

According to Figure 2, the closed-loop control structure of a single-state variable is
as follows:

In Figure 3, x is the state variable, which can be either the outer loop state variables
µ,α,β or the inner loop state variables p,q,r. xc is the command signal corresponding to the
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state variable x. e = xc − x is the tracking error of the command signal. The sliding surface
s and reaching law

·
s are based on the design form in Equation (1). The parameters to be

designed are the reaching law index ω and error integral gain c.
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According to time-scale separation methods [1,22], the dynamic response of the inner
loop fast variable is ignored in this paper when designing the outer loop; that is, considering
that the inner loop fast variable has reached a steady state, the inner and outer loops can
be separated for control law design. Therefore, when x is selected as the outer loop state
variable, the controlled plant in Figure 3 is a dynamic equation about µ,α,β. When x is
selected as the inner loop state variable, the controlled plant becomes the dynamic equation
about p,q,r, and its specific form is detailed in reference [1].

The dynamic equation of the controlled plant can be written as a nonlinear affine form,
as shown in Equation (3):

.
x = F(x, t) + G(x)u (3)

where F(x, t) and G(x) are the continuous functions related to the state variable. u is the
sliding mode control law. t is the time. To maintain a stable flight path during the wing
skewing process, reference [1] designed u as follows:

u = G−1(x)
[
−F(x, t)− .

s +
.
xc + ce

]
(4)

This control law is related to the motion characteristics of the aircraft and the design
parameters of the sliding mode controller and changes in real time with different flight
states. By substituting Equation (4) into the dynamic Equation (3), the state equation of the
system in Figure 3 can be obtained as follows:

.
x = − .

s +
.
xc + ce = − .

s +
.
xc + c(xc − x) (5)

According to Equation (5), under the action of the sliding mode control law u, the
motion characteristics of the closed-loop system depend only on the design form of the
error integral gain c and sliding mode reaching law

·
s and are independent of the motion

characteristics or scales of the controlled plant, that is, the forms of F(x, t) and G(x).
To impose singular perturbation on the closed-loop aircraft motion model, it is nec-

essary to add subsystems with perturbation parameters to the structure in Figure 3. This
subsystem is artificially introduced for calculating the SPM and is commonly referred to
as the SPM-gauge [7]. The resulting singular perturbation system structure is shown in
Figure 4.
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as follows: 

( )0 2
e ce cy s
y y ce cy sε ω ε

 = − − −


= − − − − −

   
    

 (8)

According to the sliding surface and reaching law designed in Equation (1), sሶ  in 
Equation (8) can be expressed as follows: 

( ) ( ) ( )
0 0

sgn sgn
t t

s s e c edt s e c edtω ω ω= −Δ − + = −Δ + +     (9)

By setting e1 = ׬ ẽt
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The method of imposing singular perturbation on the closed-loop aircraft in this paper
is to increase the phase delay of the state variables in the feedback path. Therefore, the SPM-
gauge in Figure 4 is selected as an all-pass filter with first-order response characteristics,
and its state equation is expressed as follows [7]:{

ε
.
z = −ω0z + 2ω0x

y = z − x
(6)

In Equation (6), ε is the singular perturbation parameter. z is the state variable of
the SPM-gauge. y is the output of the SPM-gauge. ω0 is the filter constant, which affects
the phase delay of the output signal y. Assuming that ε ∈ (0,ε*] is the range of singular
perturbation parameter values that maintain the stability of the system in Figure 4, then ε*
is an SPM.

By combining Equations (5) and (6), the state equation of the system in Figure 4 can be
obtained as follows: 

.
x = − .

s +
.
xc + c(xc − y)

ε
.
z = −ω0z + 2ω0x

y = z − x
(7)

By letting
( ·

x,
·
z
)
= (0, 0), the equilibrium point of Equation (7) is determined to be

(x, z) = (xc, 2xc). To move this equilibrium point to the origin, variable substitutions of
∼
e = x − xc and

∼
y = z − 2xc are implemented, and Equation (7) is rewritten in the form of(∼

e ,
∼
y
)

as follows: { .
ẽ = −cẽ − cỹ − .

s
ε

.
ỹ = −ω0ỹ − 2ε

(
−cẽ − cỹ − .

s
) (8)

According to the sliding surface and reaching law designed in Equation (1),
·
s in

Equation (8) can be expressed as follows:

.
s = −∆sgn(s)− ω

(
e + c

∫ t

0
edt
)
= −∆sgn(s) + ωẽ + ωc

∫ t

0
ẽdt (9)

By setting e1 =
∫ t

0
∼
edt and e2 =

∼
e and substituting Equation (9) into Equation (8), the

final form of the system state equation in Figure 4 can be obtained as follows:
.
e1 = e2.
e2 = −ce2 − cỹ + ∆sgn(s)− ωe2 − ωce1

ε
.
ỹ = −ω0ỹ − 2ε(−ce2 − cỹ + ∆sgn(s)− ωe2 − ωce1)

(10)

The following is based on the Lyapunov stability analysis method to derive the range
of singular perturbation parameters for maintaining System (10) stability.

Equation (11) is selected as an alternative Lyapunov function for System (10).

υ = 0.5(ω + c + 2ωc)e2
1 + e1e2 + e2

2 + 0.5ỹ2 = 0.5[e1, e2]

[
ω + c + 2ωc 1

1 2

][
e1
e2

]
+ 0.5ỹ2 (11)

where ω + c + 2ωc > 0.5. Then, the derivative of υ along the system trajectory can be
expressed as:

.
υ = (ω + c + 2ωc)e1e2 + e2

2 + e1
.
e2 + 2e2

.
e2 + ỹ

.
ỹ (12)
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where e1
·
e2, e2

·
e2 and

∼
y

.
∼
y satisfy the following inequality:

e1
.
e2 ≤ −ce1e2 − ce1ỹ + ∆|e1| − ωe1e2 − ωce2

1
≤ −(1 − θ1)ωce2

1 − (ω + c)e1e2 − ce1ỹ ,∀|e1| ≥ ∆
ωcθ1

e2
.
e2 ≤ −ce2

2 − ce2ỹ + ∆|e2| − ωe2
2 − ωce1e2

≤ −(1 − θ2)(ω + c)e2
2 − ωce1e2 − ce2ỹ, ∀|e2| ≥ ∆

(ω+c)θ2

ỹ
.
ỹ ≤ −ω0

ε ỹ2 + 2ce2ỹ + 2cỹ2 + 2|y|∆ + 2ωe2ỹ + 2ωce1ỹ
≤ −(1 − θ3)(ω0/ε − 2c)ỹ2 + 2ωce1ỹ + (2ω + 2c)e2ỹ, ∀|ỹ| ≥ 2∆

(ω0/ε−2c)θ3

(13)

where θ1, θ2, θ3 ∈ (0,1), whose values affect the final convergence accuracy of the state
variables e1, e2,

∼
y. To reduce the complexity of calculating the stability margin, θ1, θ2, θ3 can

be taken as a constant. By substituting Inequality (13) into Equation (12), we determine
that

·
υ satisfies the following inequality:

.
υ ≤ −[|e1|, |e2|, |ỹ|]

 (1 − θ1)ωc 0 −ωc + 0.5c
0 2(1 − θ2)(ω + c)− 1 −ω

−ωc + 0.5c −ω (1 − θ3)(ω0/ε − 2c)

|e1|
|e2|
|ỹ|

 (14)

When
·
υ is negative, the system in Figure 4 is stable. At this time, the quadratic coeffi-

cient matrix in Equation (14) must be positive definite. The first- to third-order principal
minor determinants of the coefficient matrix are set to be positive, and θ1 = θ2 = θ3 = 0.5
is taken. Then, the range of ε can be determined as follows:

0 < ε < ε∗ =
0.5ω0m1m3

cm1m3 + m2
2m3 + m2

4m1
(15)

where m1 = 0.5ωc, m2 = −ωc + 0.5c, m3 = ω + c − 1, and m4 = −ω. The analytical
expression for the SPM is given by Equation (15), which is mainly influenced by the filter
constant ω0 and sliding mode control law parameters (ω,c). Once the value of the singular
perturbation parameter in the feedback loop is larger than ε*, the motion of the closed-loop
aircraft will exhibit a divergent trend.

4. Relationship between the GGM and Sliding Mode Control Law Parameters

In this section, the single-variable control loop of the OWA is still used as an example,
and the Lyapunov stability analysis method is implemented to calculate the GGM of this
loop to establish the bijective relationship between the GGM and the sliding mode control
law parameters.

To impose regular perturbations on closed-loop aircraft, a subsystem with regular
perturbation parameters, commonly referred to as a GGM-gauge [7], needs to be added to
the structure of Figure 3. The resulting regular perturbation system structure is shown in
Figure 5.
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Since regular perturbation does not change the order of the original closed-loop aircraft
model, the GGM-gauge takes the general form of a proportional component with a constant
gain value k.

Regular perturbation on the closed-loop aircraft model is imposed in this paper by
changing the tracking error of the command signal in the forward path. At this time, the
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error signal received by the sliding mode controller changes from e to ke, and the control
law u also changes from Equation (4) to Equation (16).

u = G−1(x)
[
−F(x, t)− .

s +
.
xc + kc(xc − x)

]
(16)

By substituting Equation (16) into the aircraft dynamics in Equation (3), the motion
form of the state variables when regular perturbation exists can be written as follows:

.
x = − .

s +
.
xc + kc(xc − x) (17)

According to Equation (17), the motion characteristics of a regular perturbation system
depend on the design of the regular perturbation parameter k, the error integral gain c, and
the sliding mode reaching law

·
s and are also independent of the motion characteristics or

scales of the controlled plant.
By letting

·
x = 0, the equilibrium point of Equation (17) is determined to be x = xc. To

move this equilibrium point to the origin, a variable substitution of
∼
e = x − xc is used, and

Equation (17) is rewritten in the form of
∼
e .

.
ẽ = − .

s − kcẽ (18)

According to the sliding surface and reaching law designed via Equation (1), the
expression of

·
s under regular perturbation can be obtained as follows:

.
s = −∆sgn(ks)− ω

(
ke + c

∫ t

0
kedt

)
= −∆sgn(s) + ωkẽ + ωkc

∫ t

0
ẽdt (19)

Letting e1 =
∫ t

0
∼
edt and e2 =

∼
e , and then substituting Equation (19) into Equation (18),

the state equation of the system in Figure 5 can be obtained as follows:{ .
e1 = e2.
e2 = −ωkce1 − k(ω + c)e2 + ∆sgn(s)

(20)

The following is based on the Lyapunov stability analysis method to derive the range
of regular perturbation parameters for maintaining System (20) stability.

Equation (21) is selected as an alternative Lyapunov function for System (20).

υ = 0.5e2
1 + e1e2 + e2

2 = 0.5[e1, e2]

[
1 1
1 2

][
e1
e2

]
(21)

Then, the derivative of υ along the system’s trajectory can be expressed as

.
υ = e1

.
e1 +

.
e1e2 + e1

.
e2 + 2e2

.
e2 (22)

where e1
·
e2 and e2

·
e2 satisfy the following inequality:
e1

.
e2 = −ωkc · e2

1 − k(ω + c)e1e2 + ∆|e1|
≤ −(1 − θ4)ωkc · e2

1 − k(ω + c)e1e2, ∀|e1| ≥ ∆
ωkcθ4

e2
.
e2 = −k(ω + c)e2

2 − ωkc · e1e2 + ∆|e2|
≤ −(1 − θ5)k(ω + c)e2

2 − ωkc · e1e2, ∀|e2| ≥ ∆
k(ω+c)θ5

(23)

where θ4, θ5 ∈ (0,1), whose values affect the final convergence accuracy of the state variables
e1, e2. To reduce the complexity of calculating the stability margin, θ4 and θ5 can be taken



Aerospace 2024, 11, 366 10 of 20

as constants. By substituting the Inequality (23) into Equation (22), we determine that
·
υ

satisfies the following inequality:

.
υ ≤ −[|e1|, |e2|]

[
(1 − θ4)ωkc 0.5(k(ω + c) + 2ωkc − 1)

0.5(k(ω + c) + 2ωkc − 1) 2(1 − θ5)k(ω + c)− 1

][
|e1|
|e2|

]
(24)

When
·
υ is negative, the system in Figure 5 is stable. At this time, the quadratic coeffi-

cient matrix in Equation (24) must be positive definite. The first- and second-order principal
minor determinants of the coefficient matrix are set to be positive, and θ4 = θ5 = 0.5 is
taken. Then, the inequality relationship satisfied by the regular perturbation parameter k
can be determined as follows:

(4n1 − n3)k2 + (−4n2 + 2n3)k − 1 > 0 (25)

where n1 = 0.5ωc(ω + c), n2 = 0.5ωc and n3 = ω + c + 2ωc. To place the solution of
Inequality (25) within a bounded interval of positive real numbers, its quadratic coefficients
and discriminant should satisfy the following expression:{

4n1 − n3 < 0
Ω = (−4n2 + 2n3)

2 + 4(4n1 − n3) > 0
(26)

The solution to inequality (26) is k ∈ [kmin, kmax], where the expressions for kmin and
kmax are as follows:  kmin = −(−4n2+2n3)+

√
Ω

2(4n1−n3)

kmax = −(−4n2+2n3)−
√

Ω
2(4n1−n3)

(27)

Equation (27) provides the analytical expression of the generalized gain margins kmin
and kmax, which are influenced mainly by the parameters (ω,c) of the sliding mode control
law. Once the measurement value of the tracking error in the forward path is less than
kmin times the nominal value or larger than kmax times the nominal value, the motion of
closed-loop aircraft will exhibit a divergent trend.

5. Design Requirements for the Sliding Mode Control Law Parameters
5.1. Stability Margin Design Requirements for the Closed-Loop Aircraft Model

Wing skewing can cause changes in the flow field around an aircraft, which in turn
generates nonlinear interference with fuselage components, resulting in complex unsteady
aerodynamics. During the wing skewing process, the OWA is essentially a time-varying
system. This is because there is relative motion between the wing and the fuselage, and
configuration parameters such as the center of gravity position, moment of inertia, and
product of inertia will change with the wing skewing angle. In terms of aerodynamic
characteristics, wing skewing not only produces changes in lift, drag, and pitch moment
but also produces side forces, roll moments, and yaw moments that are not present when
the wing is symmetrical. These forces and moments will change in real time with the
skewing angle and skewing rate.

However, there is currently a lack of mature and universal stability metrics for time-
varying systems, and there is no reference that provides a design requirement for the
stability margin of time-varying systems from theoretical or engineering practice. This
paper does not study the case of time-varying systems, but based on the research results of
reference [1], considers the OWA with a low wing skewing rate as a linear time-invariant
system and uses the design specifications of linear time-invariant systems for stability
margin to constrain the design values of the sliding mode control law parameters.

Reference [1] provides an unsteady aerodynamic modeling method for OWA, which
is the quasi-steady assumption. This assumption ignores the unsteady aerodynamic forces
caused by the wing skew rate and assumes that during the configuration changing process
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with smaller skew rates, the aerodynamic forces of the OWA at each moment are equal to
those of the static configuration under the same flight conditions. The resulting modeling
errors can be eliminated through the robustness of sliding mode control. Based on the quasi-
steady assumption, a closed-loop aircraft model with a low wing skew rate is considered in
this paper as a linear time-invariant system. The design requirements for the PM and GM
of the linear time-invariant system are transformed into limiting requirements for the SPM
and GGM, respectively, as the basis for determining the values of the sliding mode control
law parameters.

According to the design specification MIL-F-9490D for aircraft flight control systems,
all control loops of linearized flight control systems should meet the following stability
margin requirements [27]:

|PM| ≥ 45◦ |GM| ≥ 10dB (28)

In Equation (28), the PM is the phase margin and the GM is the gain margin. PM > 0
represents the open-loop phase lag, and PM < 0 represents the open-loop phase lead.
GM > 0 represents an increase in open-loop gain, while GM >0 represents a decrease
in open-loop gain. It has been proven in reference [7] that when SPM-gauge is selected
as the first-order all-pass filter, as shown in Equation (6), the SPM and PM of a linear
time-invariant system will have the following functional correspondence:

PM = arctan

(
2ε∗

1 − (ε∗)2

)
, 0 < ε∗ < 1 (29)

Since the focus of this paper is only on the case of phase lag in feedback signals, by
substituting PM ≥ 45◦ into Equation (29), the design requirements for the SPM in a linear
time-invariant system can be obtained as follows:

0.414 ≤ ε∗ < 1 (30)

By taking the design value of the filter constant ω0 a as 2 rad/s in Equation (6) [9] and
setting ε* ≥ 0.414 in Equation (15), the range of values for the reaching law index and error
integral gain that meets the requirements of SPM can be obtained, as shown in the region
enclosed by the blue dashed line in Figure 6.
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In Figure 6, each point located on the blue dashed line represents a combination of
control law parameter values that make the SPM of a single loop exactly equal to 0.414.
The control law parameter values corresponding to each point inside the blue dashed line
can increase the SPM of a single loop to greater than 0.414. When the values of the control
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law parameters are outside the region enclosed by the blue dashed line, the SPM of a single
loop will be smaller than 0.414.

The functional correspondence between the GGM and GM is expressed as follows [7]:{
20lgkmax = |GM|
20lgkmin = −|GM| (31)

By substituting |GM| ≥10 dB into Equation (31), the design requirements for the GGM
of a linear time-invariant system can be obtained as follows:{

kmax ≥ 3.162
0 < kmin ≤ 0.316

(32)

Since the perturbation parameters that satisfy the stability of the system in Figure 5
are located within the interval k ∈ [kmin, kmax], according to Equation (32), this interval
should include at least [0.316, 3.162]. This indicates that when the system in Figure 5 can
continue to maintain stability, its open-loop gain can increase to at least 3.162 times the
nominal value or decrease to at least 0.316 times the nominal value.

By substituting inequality (31) into the expression of GGM (27) and combining it with
the prerequisite for the existence of a solution in Equation (26), the range of values for the
reaching law index and the error integral gain that satisfies the requirements of GGM can
be obtained, as shown in the common region among the purple dotted line, the red solid
line, and the orange dash-dot line in Figure 6.

In Figure 6, since the curve kmax = 3.162 is above the curve kmin = 0.316, the control
law parameter values that satisfy kmax ≥ 3.162 naturally satisfy kmin ≤ 0.316. Therefore,
the range of control law parameter values obtained according to the requirements of the
GGM is determined only by kmax ≥ 3.162 and the quadratic coefficient 4n1 − n3 < 0.

The intersection of the four curves in Figure 6 is selected to obtain the range of sliding
mode control law parameter values that meet both SPM and GGM requirements, as shown
in the shaded area in Figure 6. The shaded area is enclosed by the curves ε* ≥ 0.414,
kmax ≥ 3.162, and 4n1 − n3 < 0. For the blue dashed boundary on both sides of this shaded
area, the control law parameter corresponding to any point on it can make the SPM of a
single loop exactly equal to 0.414 and the GGM kmax greater than 3.162. For the red solid
line boundary, the control law parameter corresponding to any point on it can make the
GGM kmax of a single loop exactly equal to 3.162 and the SPM greater than 0.414. For the
orange dash-dot line boundary, the control law parameter corresponding to any point on
it can make the quadratic coefficient 4n1 − n3 in Equation (25) exactly equal to 0, and the
value of the control law parameter needs to be below this orange dash-dot line to ensure
that 4n1 − n3 is strictly negative. Meanwhile, the control law parameter values near the
lower part of this orange dash-dot line can make the SPM of a single loop greater than 0.414
and the GGM kmax greater than 3.162.

5.2. Parameter Values for the Sliding Mode Control Law

In this paper, the idea for determining the parameter values of the sliding mode flight
control law is to accelerate the response speed and error convergence speed of closed-loop
aircraft while ensuring stability margin design requirements and flight path stability.

The time-domain indicators of the sliding mode control law include the reaching time
and sliding time, and the values of the control law parameters need to be determined based
on their impacts on these two indicators. The reaching time tr refers to the time when
the state variable first reaches the sliding surface from its initial position, representing the
response speed of a system to commands. Sliding time ts refers to the time taken by a state
variable from entering the sliding surface to converging to a steady-state value, reflecting a
system’s ability to regulate the response process. The following derives the influence of the
reaching law index ω and the error integral gain c on tr and ts as the design basis for the
values value of ω and c.
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According to Equation (1), the expression for the exponential reaching law is

.
s =

{
−∆ − ωs s > 0
∆ − ωs s < 0

(33)

Equation (33) is subsequently solved to obtain the following:

s(t) =

{
(s0 + ∆)e−ωt − ∆ s > 0
(s0 − ∆)e−ωt + ∆ s < 0

(34)

where s0 = s(0). When the state variable reaches the sliding surface at time tr, s(tr) = 0.
Therefore, letting s(t) =0 in Equation (34), the reaching time tr is solved as follows:

tr = tr(ω) =

{
1
ω [ln(∆ + s0)− ln ∆] s > 0
1
ω [ln(∆ − s0)− ln ∆] s < 0

(35)

According to Equation (35), increasing the value of ω can accelerate the reaching
process and improve the system’s tracking speed of command signals.

When the motion of the state variable remains on the sliding surface, s(t) ≡ 0. There-
fore, by letting the sliding mode function in Equation (1) be zero, and the convergence law
of the command tracking error can be obtained as follows:

e(t) = e(0) · exp(−ct) (36)

Reference [28] suggested that when e(t)/xc ≤ 1%, the control system achieved satis-
factory command tracking performance. According to Equation (36), the sliding time is

ts = ts(c) =
1
c

ln
e(0)

0.01xc
(37)

To improve the response speed and error convergence speed of the closed-loop aircraft
motion model, the total time t(ω, c) = tr(ω) + ts(c) is taken as the objective function, and
the value combination of parameter (ω, c) in the shaded area of Figure 6 is determined to
reduce the value of t(ω, c).

The command xc is taken as a 1◦ step signal, and x(0) = 0 is assumed. Then,
e(0) = xc − x(0) =1◦, s0 = e(0) = 1◦. In addition, Equation (15) and Equation (27)
show that the approaching speed ∆ does not affect the SPM or GGM. In this paper, ∆
is taken as a constant value of 0.5 [29], and the expression of the total time is obtained
as follows:

t(ω, c) =
0.034

ω
+

4.605
c

(38)

According to Equation (38), the total time t(ω, c) is inversely proportional to the
values of ω and c, and the influence of the c value on the total time is greater than that of ω.
Therefore, it is recommended to select the control law parameters on the right side of the
shaded area in Figure 6, where the value of ω can be selected within the interval [0.24,0.64]
and the value of c can be selected within the interval [1.40,2.10].

6. Application of the Proposed Flight Control Law Design Requirements
6.1. The Sample OWA

In this section, an OWA is taken as an application example of the flight control law
design requirements. The configuration parameters of this OWA at a 0◦ skew angle are
shown in Table 1, and the control surface of the sample OWA is shown in Figure 7.
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Table 1. Configuration parameters of the sample OWA.

Parameters Values Unit

Takeoff weight 13,000 kg
Wingspan 24.5 m

Wing mean aerodynamic chord (MAC) 2.0 m
Wing area 47.6 m2

Roll axis moment of inertia 100,075 kg·m2

Pitch axis moment of inertia 387,245 kg·m2

Yaw axis moment of inertia 287,238 kg·m2
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Figure 7. Configuration and control surface layout of the sample OWA.

The sample OWA is equipped with three sets of control surfaces: an all-moving
horizontal tail, an aileron, and a rudder. The all-moving horizontal tail consists of two pieces
on the left and right, with their deflection angles represented by δeL and δeR, respectively.
The left and right all-moving horizontal tails control the pitch motion of the aircraft through
linkage deflection and assist rolling motion through differential deflection. An aileron is
used for roll control, and its deflection angle is represented by δa. A rudder is used for yaw
control, and its deflection angle is represented by δr.

The sample OWA adopts a first-order actuator model shown in Figure 8, which consists
of the actuator bandwidth gain, deflection rate limit, integrator, and deflection angle limit.
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The transfer function of the actuator model is shown in Equation (39):

δ =
1

Ts + 1
δcmd −

.
δmin ≤

.
δ ≤

.
δmax, −δmin ≤ δ ≤ δmax (39)

where δcmd is the input command for the actuator model. 1/T is the actuator bandwidth.

eδ is the tracking error of the actuator deflection angle.
·
δmin,

·
δmax is the limit value of the

actuator deflection rate; δmin, δmax is the limit value of the actuator deflection angle, and δ
is the output of the actuator model. The parameters of the actuator models are shown in
Table 2.

Table 2. Parameters of the actuator model of the sample OWA.

Parameters All-Moving Horizontal Tail Aileron Rudder

Bandwidth 20.2 rad/s 20.2 rad/s 20.2 rad/s
Rate limit [−80◦ /s, 80◦/s] [−80◦ /s, 80◦/s] [−80◦ /s, 80◦/s]

Deflection angle limit [−25◦ , 25◦] [−21.5◦ , 21.5◦] [−30◦ , 30◦]
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The sliding mode flight control structure of the sample OWA is shown in Figure 2.
According to the analysis results in Chapter 2, this structure requires the design of 12 sliding
mode control law parameters, which are six reaching law indices ωi and six error integral
gains ci, i = µ,α,β,p,q,r.

According to the time-scale separation method in references [1,22], the dynamic
response of the inner loop fast variable is ignored when designing the outer loop of the
sample OWA. Therefore, the inner loop is regarded as the controlled plant of the outer loop,
achieving the goal of designing the inner and outer loop control law parameters separately,
as shown in Figure 9.
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As shown in Figure 9, when using the time-scale separation method for flight control
design, the inner and outer loop sliding mode control structures are the same as the closed-
loop control structure of a single-state variable in Figure 3. Therefore, in the control loops
of the six state variables µ,α,β and p,q,r, the SPM and GGM of any loop can be calculated
using Equations (15) and (27).

According to the design requirements of the sliding mode control law parameters
in Section 5.1, this paper selects the design points for the reaching law index and error
integral gain as the intersection points of the blue dashed line and the red solid line in the
lower right corner of Figure 6, that is, (ω, c) = (0.24, 1.47), corresponding to ε* = 0.414,
kmax = 3.162, and kmin = 0.263. On this basis, the design values of the six reaching law
indices are all set to ωi =0.24, and the design values of the six error integral gains are
all set to ci =1.47, i = µ,α,β,p,q,r. Because the control loops of the six state variables in
the inner and outer loops all adopt the same control law parameter values, according to
Equations (15) and (27), the six control loops should have the same theoretical value of
the stability margin, and the stability margin of the closed-loop aircraft should be equal
to the stability margin of any of these control loops, also ε* = 0.414, kmax = 3.162 and
kmin = 0.263.

In the following subsection, singular and regular perturbations are imposed on the
sample OWA through mathematical simulation, and the designed reaching law index and
error integral gain are examined to determine whether they can meet the stability margin
design requirements in Equations (30) and (32).

6.2. Verification of SPM and GGM

To verify the SPM and GGM of the closed-loop aircraft shown in Figure 2, considering
the most severe case of disturbance imposition, six SPM-gauges, as shown in Equation (6),
are added to the p,q,r and µ,α,β feedback paths of the inner and outer sliding mode control
loops, and six GGM-gauges are added to the p,q,r and µ,α,β forward paths of the inner and
outer control loops. The resulting simulation model structure is shown in Figure 10.

Since the OWA is usually skewed during the transition flight phase from hypersonic
to supersonic speeds, the initial flight states are chosen as H = 8 km and Ma = 0.8, and
the sample OWA is initially in the straight wing configuration. The wing skewing rate is

chosen to be
·

Λ = 3◦/s. According to the research results in reference [1], a skewing rate of
3◦/s can satisfy the quasi-steady assumption. In this case, the closed-loop aircraft can be
regarded as a linear time-invariant system, and the corresponding relationship between
the stability margins in Equations (29) and (31) also applies accordingly.
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Figure 10. Structure of closed-loop aircraft simulation model containing both SPM-gauge and
GGM-gauge.

When the oblique wing rotates from 0◦ to 30◦ at a rate of 3◦/s, the response curves
of the system in Figure 10 under zero perturbation “ε = 0, k = 1”, critical perturbation
“ε = 0.414, k = 3.162”, and beyond critical perturbation “ε = 0.42, k = 3.2” are plotted, as
shown in Figure 11.

As shown in Figure 11, when no perturbation is imposed on the closed-loop aircraft,
the flight altitude deviation is less than 7 m, and the flight speed deviation is less than
1.6 m/s, indicating that the designed reaching law index and error integral gain can ensure
trajectory stability during the configuration transition process. When critical perturbation
that can theoretically maintain system stability is imposed on this closed-loop aircraft,
both the outer loop state variables µ,α,β and the inner loop state variables p,q,r generate a
certain degree of oscillation based on zero-perturbation response, but this oscillation can
eventually decay and disappear within a finite time. When perturbation that exceeds the
critical stable value is imposed on this closed-loop aircraft, both the outer and inner loop
state variables and the deflection angles of each control surface generate intense oscillations
on the basis of the zero-perturbation response, and the motion of the closed-loop aircraft
shows a divergent trend.

The above simulation results indicate that under the design values of ωi = 0.24 and
ci = 1.47, the actual SPM of the six control loops are all between ε* ∈ [0.414, 0.42), and the
GGM kmax are all between kmax∈[3.162, 3.2), meeting the design requirements of ε* ≥ 0.414
in Equation (30) and kmax ≥ 3.162 in Equation (32).

Similarly, to verify that the GGM kmin of this closed-loop aircraft can meet the design
requirements, the response curves of the system in Figure 10 under zero perturbation
“ε = 0, k = 1”, critical perturbation “ε = 0.414, k = 0.263”, and beyond critical perturbation
“ε = 0.42, k = 0.25” are plotted under the same wing skewing process, as shown in
Figure 12.

Figure 12 shows that when critical perturbation is applied to the closed-loop aircraft,
both the inner and outer loop state variables and the deflection angles of each control
surface generate oscillations on the basis of the zero-perturbation response. However, this
oscillation can decay and disappear within a finite time, and the response of the closed-loop
aircraft still converges. When the singular perturbation increases from a critical value
of 0.414 to 0.42, and the regularization perturbation decreases from a critical value of
0.263 to 0.25, due to the large deviation between the tracking error signal received by the
sliding mode controller and its true value, precise control commands cannot be generated.
Therefore, the above state variables exhibit increasingly high-frequency oscillations, and
the response of closed-loop aircraft shows a divergent trend.

The above simulation results indicate that under the design values of ωi = 0.24 and
ci = 1.47, the actual SPM of the six control loops are all between ε* ∈ [0.414, 0.42), and
the GGM kmin are all between kmin ∈ (0.25, 0.263], meeting the design requirements of
ε* ≥ 0.414 in Equation (30) and kmin ≤ 0.316 in Equation (32).
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7. Conclusions

The main work of this paper is to propose sliding mode flight control law design
requirements for OWA based on perturbation theory. These design requirements represent
the constraints on parameter values of the sliding mode control law, considering stability
margin and command tracking speed, which can help designers select a combination of
control law parameter values that can make the closed-loop aircraft have appropriate
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stability margin, faster response speed, and faster error convergence speed from a variety
of control law parameter values that only meet the accuracy of flight command tracking.
The proposal of this design requirement can provide a theoretical basis for the values of
control law parameters, greatly shortening the design cycle of the sliding mode controller.

(1) The composition and function of the sliding mode flight control structure of an OWA
were introduced, and 12 design parameters of the sliding mode flight control law,
including 6 reaching law indices and 6 error integral gains, were summarized. In
the closed-loop aircraft model composed of an OWA and sliding mode controller,
SPM-gauge and GGM-gauge were added, respectively, and the expressions for SPM
and GGM were derived to establish the correspondence between the sliding mode
control law parameters and the stability margin of this closed-loop aircraft model.
The derivation results show that for a given SPM, the reaching law index and error
integral gain form a closed curve in the first quadrant. For a given GGM, the reaching
law index and error integral gain form three nonclosed curves with a monotonic
decreasing trend in the first quadrant.

(2) Based on the quasi-steady assumption, the closed-loop aircraft model with a small
wing skewing rate was regarded as a linear time-invariant system. The design require-
ments for the PM and GM of the linear time-invariant system were converted into
limiting requirements for the SPM and GGM, respectively, and the value intervals
of the sliding mode control law parameters were obtained. To ensure that the PM
satisfies |PM| ≥ 45◦, the design requirement for the SPM should be ε*≥ 0.414. To en-
sure that the GM satisfies |GM| ≥ 10 dB, the design requirement for the GGM should
be kmax ≥ 3.162 and 0< kmin ≤ 0.316. The value range of the sliding mode control
law that meets the stability margin requirement is a two-dimensional closed region
surrounded by curves ε* ≥ 0.414, kmax ≥ 3.162, and 4n1 − n3 < 0, where 4n1 − n3 < 0
is a prerequisite for the existence of GGM.

(3) With the goal of reducing the sum of the reaching time and sliding time, the design
values of the reaching law index and error integral gain were determined within the
above value intervals. The design value of the reaching law index is recommended to
be selected within the interval [0.24, 0.64], and the design value of the error integral
gain is recommended to be selected within the interval [1.4, 2.1].

(4) The simulation results of the wing skewing process show that when the design values
of the six reaching law indices are all selected as 0.24 and the design values of the six
error integral gains are all selected as 1.47, the sample OWA can maintain trajectory
stability during the wing skewing process. At this moment, the actual SPM of the six
control loops are all between ε* ∈ [0.414, 0.42), and the GGM kmax, kmin are all between
kmax ∈ [3.162, 3.2), kmin ∈ (0.25, 0.263], meeting the design requirements of ε* ≥ 0.414,
kmax ≥ 3.162 and 0< kmin ≤ 0.316.
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