A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China
Abstract
:1. Introduction
2. Methodology
2.1. Calculate the Regional Gravity Disturbance Field Based on the Global Gravity Field Model
2.2. Refrain Gibbs Phenomenon Using Window Function and Regional Eigenvalue Constraint
2.3. Construct a Regional Gravity Disturbance Field Based on Terrestrial Gravity Data
3. Datasets
3.1. Global Gravity Field Model
3.2. Spherical Harmonic Model of Topographic Gravity Field Model
3.3. Terrestrial Gravity Data
4. Results
4.1. Gibbs Phenomenon
4.2. TM-RGD in North China with Gibbs Phenomenon Suppression
4.3. Validation of the TM-RGDF with TGD-RGDF
5. Discussions
5.1. Effects on Removing and Restoring Global Medium-Long Wave Signals in Different Degrees
5.2. The Impact of Insufficient Stations’ Distribution on Constructing Regional Gravity Disturbance Field
5.3. Differences of the Filtered Results by Using Various Window Functions
5.4. Differences of TM-RGDFs from Various GGMs in North China
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008): THE EGM2008 EARTH GRAVITATIONAL MODEL. J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Bruinsma, S.; Abrykosov, O.; Lemoine, J.M. The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4). In Proceedings of the 5th GOCE User Workshop, Paris, France, 25–28 November 2014; pp. 25–28. [Google Scholar]
- Liang, W.; Li, J.; Xu, X.; Zhang, S.; Zhao, Y. A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Kenyon, S.C.; Factor, J.K.; Trimmer, R.G.; Pavlis, N.K.; Chinn, D.S.; Cox, C.M.; Klosko, S.M.; Luthcke, S.B.; Torrence, M.H. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; NASA: Washington, DC, USA, 1998. [Google Scholar]
- Reigber, C.; Schwintzer, P.; Stubenvoll, R.; Schmidt, R.; Flechtner, F.; Meyer, U.; König, R.; Neumayer, K.-H.; Förste, C.; Barthelmes, F. A High Resolution Global Gravity Field Model Combining CHAMP and GRACE Satellite Mission and Surface Data: EIGEN-CG01C; Deutsches Geo Forschungs Zentrum GFZ: Potsdam, Germany, 2006. [Google Scholar]
- Bomfim, E.; Braitenberg, C.; Molina, E.C. Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys. J. Int. 2013, 195, 870–882. [Google Scholar] [CrossRef]
- Yahaya, S.I.; El Azzab, D. Assessment of recent GOCE-based global geopotential models and EGM2008 in Niger Republic. Geod. Cartogr. 2019, 45, 116–125. [Google Scholar] [CrossRef]
- Hirt, C.; Marti, U.; Bürki, B.; Featherstone, W.E. Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006. 0 residual terrain model data. J. Geophys. Res. Solid Earth 2010, 115, B10404. [Google Scholar] [CrossRef]
- Godah, W.; Krynski, J.; Szelachowska, M. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models. J. Appl. Geophys. 2018, 152, 38–47. [Google Scholar] [CrossRef]
- Novák, P.; Kostelecký, J.; Klokočník, J. Testing global geopotential models through comparison of a local quasi-geoid model with GPS/leveling data. Stud. Geophys. Geod. 2009, 53, 39–60. [Google Scholar] [CrossRef]
- Odumosu, J.O.; Nnam, V.C.; Nwadialor, I.J. An assessment of spatial methods for merging terrestrial with GGM-derived gravity anomaly data. J. Afr. Earth Sci. 2021, 179, 104202. [Google Scholar] [CrossRef]
- Varga, M.; Pitoňák, M.; Novák, P.; Bašić, T. Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. J. Geod. 2021, 95, 53. [Google Scholar] [CrossRef]
- Nyoka, C.J.; Din, A.H.M.; Pa’suya, M.F.; Omar, A.H. Rigorous evaluation of global geopotential models for geoid modelling: A case study in Kenya. J. Afr. Earth Sci. 2022, 194, 104612. [Google Scholar] [CrossRef]
- Voigt, C.; Denker, H. Validation of GOCE gravity field models in Germany. Newton’s Bull. 2015, 5, 37–49. [Google Scholar]
- Zhao, D.J.; Zhang, M.L.; Wang, Q.; Cheng, Y.X. Accuacy analyses of EIGEN-6C2 Geopotential model in China mainland. J. Geod. Geodyn. 2014, 34, 21–24. [Google Scholar]
- Hirt, C.; Gruber, T.; Featherstone, W. Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J. Geod. 2011, 85, 723–740. [Google Scholar] [CrossRef]
- Sjüberg, L. Quality estimates in geoid computation by EGM08. J. Geod. Sci. 2011, 1, 361–366. [Google Scholar] [CrossRef]
- Albertella, A.; Sansò, F.; Sneeuw, N. Band-limited functions on a bounded spherical domain: The Slepian problem on the sphere. J. Geod. 1999, 73, 436–447. [Google Scholar] [CrossRef]
- Simons, F.J.; Dahlen, F.; Wieczorek, M.A. Spatiospectral concentration on a sphere. SIAM Rev. 2006, 48, 504–536. [Google Scholar] [CrossRef]
- Slepian, D. Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 1964, 43, 3009–3057. [Google Scholar] [CrossRef]
- Jiang, Z.; Hsu, Y.-J.; Yuan, L.; Cheng, S.; Li, Q.; Li, M. Estimation of daily hydrological mass changes using continuous GNSS measurements in mainland China. J. Hydrol. 2021, 598, 126349. [Google Scholar] [CrossRef]
- Han, S.C.; Mahdiyeh Razeghi, S. GPS recovery of daily hydrologic and atmospheric mass variation: A methodology and results from the Australian continent. J. Geophys. Res. Solid Earth 2017, 122, 9328–9343. [Google Scholar] [CrossRef]
- Han, J.C.; Chen, S.; Lu, H.Y.; Jia, L.L.; Wang, L.H.; Xu, W.M.; Zhang, H.; Sun, H.P. A high-resolution time-variable terrestrial gravity field model of continental North China. Commun. Earth Environ. 2024, 5, 44. [Google Scholar] [CrossRef]
- Shim, H.-T.; Volkmer, H.; Walter, G.G. Gibbs’ phenomenon in higher dimensions. J. Approx. Theory 2007, 145, 20–32. [Google Scholar] [CrossRef]
- Jerri, A.J. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; Volume 446. [Google Scholar]
- Sloan, P.-P. Stupid spherical harmonics (sh) tricks. In Proceedings of the Game Developers Conference, San Francisco, CA, USA, 18–22 February 2008; p. 42. [Google Scholar]
- Klees, R.; Tenzer, R.; Prutkin, I.; Wittwer, T. A data-driven approach to local gravity field modelling using spherical radial basis functions. J. Geod. 2008, 82, 457–471. [Google Scholar] [CrossRef]
- Hwang, C.; Hsu, H.-J.; Chang, E.T.; Featherstone, W.; Tenzer, R.; Lien, T.; Hsiao, Y.-S.; Shih, H.-C.; Jai, P.-H. New free-air and Bouguer gravity fields of Taiwan from multiple platforms and sensors. Tectonophysics 2014, 611, 83–93. [Google Scholar] [CrossRef]
- Han, J.C.; Chen, S.; Lu, H.Y.; Xu, W.M. Time-variable gravity field determination using Slepian functions and terrestrial measurements: A case study in North China with data from 2011 to 2013. Chin. J. Geophys. 2021, 64, 1542–1557. [Google Scholar]
- O’Leary, D.P.; Hansen, P.C. The use of the L-Curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar]
- Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E. Integration of satellite geodetic observations for regional geoid modeling using remove-compute-restore technique. Earth Sci. Inform. 2022, 15, 233–251. [Google Scholar] [CrossRef]
- Sjöberg, L.E. Unbiased least-squares modification of Stokes’ formula. J. Geod. 2020, 94, 92–94. [Google Scholar] [CrossRef]
- Yildiz, H.; Forsberg, R.; Ågren, J.; Tscherning, C.; Sjöberg, L. Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J. Geod. Sci. 2012, 2, 53–64. [Google Scholar] [CrossRef]
- Hirt, C.; Rexer, M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models–Available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 103–112. [Google Scholar] [CrossRef]
- Rexer, M.; Hirt, C.; Claessens, S.; Tenzer, R. Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surv. Geophys. 2016, 37, 1035–1074. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Chambers, D.P. Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res. Ocean. 2006, 111, C03010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Feng, W.; Yang, M.; Zhong, M.; Tian, W.; Xiong, Y.; Jiang, Z. A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China. Remote Sens. 2024, 16, 2756. https://doi.org/10.3390/rs16152756
Shen Y, Feng W, Yang M, Zhong M, Tian W, Xiong Y, Jiang Z. A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China. Remote Sensing. 2024; 16(15):2756. https://doi.org/10.3390/rs16152756
Chicago/Turabian StyleShen, Yingchun, Wei Feng, Meng Yang, Min Zhong, Wei Tian, Yuhao Xiong, and Zhongshan Jiang. 2024. "A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China" Remote Sensing 16, no. 15: 2756. https://doi.org/10.3390/rs16152756
APA StyleShen, Y., Feng, W., Yang, M., Zhong, M., Tian, W., Xiong, Y., & Jiang, Z. (2024). A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China. Remote Sensing, 16(15), 2756. https://doi.org/10.3390/rs16152756