A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model
Abstract
:1. Introduction
2. Methodology
2.1. SHs and SRBFs
2.2. Direct Approach
2.3. Indirect Approach
3. Experiment Settings
3.1. Datasets
3.2. Classical RCR Approach
3.3. Direct Approach
3.4. Indirect Approach
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Two-Scale SRBF Model
Appendix B. Experimental Settings of the Indirect Approach
Extension | SRBFs | Data Points | STD (cm) | Max (cm) | Min (cm) | Mean (cm) | |
---|---|---|---|---|---|---|---|
1 | 92 | 92 | 1.09 | 4.20 | −3.73 | −0.15 | |
148 | 92 | 0.99 | 3.69 | −3.65 | −0.01 | ||
264 | 92 | 0.96 | 3.45 | −3.50 | 0.02 | ||
450 | 92 | 0.96 | 3.46 | −3.46 | −0.02 | ||
1.5 | 92 | 199 | 1.20 | 4.30 | −3.79 | 0.04 | |
148 | 199 | 0.38 | 1.49 | −2.28 | −0.05 | ||
264 | 199 | 0.37 | 1.42 | −2.11 | 0.04 | ||
450 | 199 | 0.38 | 1.51 | −2.05 | 0.05 | ||
2 | 92 | 364 | 1.53 | 5.66 | −5.51 | −0.03 | |
148 | 364 | 0.38 | 1.44 | −1.96 | −0.06 | ||
264 | 364 | 0.36 | 1.29 | −1.78 | −0.03 | ||
450 | 364 | 0.34 | 1.63 | −1.73 | 0.03 | ||
3 | 92 | 793 | 1.34 | 3.48 | −4.61 | −0.16 | |
148 | 793 | 0.37 | 1.53 | −2.11 | −0.02 | ||
264 | 793 | 0.34 | 1.53 | −1.84 | 0.03 | ||
5° | 450 | 793 | 0.33 | 1.41 | −1.68 | −0.01 |
References
- Ihde, J.; Sanchez, L.; Barzaghi, R.; Drewes, H.; Foerste, C.; Gruber, T.; Liebsch, G.; Marti, U.; Pail, R.; Sideris, M. Definition and Proposed Realization of the International Height Reference System (IHRS). Surv. Geophys. 2017, 38, 549–570. [Google Scholar] [CrossRef]
- Wang, Y.M.; Sanchez, L.; Agren, J.; Huang, J.L.; Forsberg, R.; Abd-Elmotaal, H.A.; Ahlgren, K.; Barzaghi, R.; Basic, T.; Carrion, D.; et al. Colorado geoid computation experiment: Overview and summary. J. Geod. 2021, 95, 127. [Google Scholar] [CrossRef]
- Farahani, H.H.; Ditmar, P.; Klees, R.; Liu, X.; Zhao, Q.; Guo, J. The static gravity field model DGM-1S from GRACE and GOCE data: Computation, validation and an analysis of GOCE mission’s added value. J. Geod. 2013, 87, 843–867. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Pail, R.; Gruber, T.; Fecher, T.; Rexer, M.; Schuh, W.D.; Kusche, J.; Brockmann, J.M.; Rieser, D.; Zehentner, N.; et al. The combined satellite gravity field model GOCO05s. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015. [Google Scholar] [CrossRef]
- Kvas, A.; Brockmann, J.M.; Krauss, S.; Schubert, T.; Gruber, T.; Meyer, U.; Mayer-Gurr, T.; Schuh, W.D.; Jaggi, A.; Pail, R. GOCO06s-a satellite-only global gravity field model. Earth Syst. Sci. Data 2021, 13, 99–118. [Google Scholar] [CrossRef]
- Forsberg, R.; Tscherning, C.C. The use of height data in gravity field approximation by collocation. J. Geophys. Res. Solid Earth 1981, 86, 7843–7854. [Google Scholar] [CrossRef]
- Klees, R.; Slobbe, D.C.; Farahani, H.H. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. J. Geod. 2018, 92, 431–442. [Google Scholar] [CrossRef]
- Lin, M.; Denker, H.; Muller, J. A comparison of fixed- and free-positioned point mass methods for regional gravity field modeling. J. Geodyn. 2019, 125, 32–47. [Google Scholar] [CrossRef]
- Liu, Q.; Schmidt, M.; Sanchez, L.; Willberg, M. Regional gravity field refinement for (quasi-) geoid determination based on spherical radial basis functions in Colorado. J. Geod. 2020, 94, 99. [Google Scholar] [CrossRef]
- Li, X.P. Using radial basis functions in airborne gravimetry for local geoid improvement. J. Geod. 2018, 92, 471–485. [Google Scholar] [CrossRef]
- Denker, H. Regional Gravity Field Modeling: Theory and Practical Results. In Sciences of Geodesy—II: Innovations and Future Developments; Xu, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 185–291. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.M. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation. J. Geod. 2016, 90, 1405–1418. [Google Scholar] [CrossRef]
- Jiang, T.; Dang, Y.; Zhang, C. Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: A case study in the mountainous area, Colorado. Earth Planets Space 2020, 72, 189. [Google Scholar] [CrossRef]
- Willberg, M.; Zingerle, P.; Pail, R. Residual least-squares collocation: Use of covariance matrices from high-resolution global geopotential models. J. Geod. 2019, 93, 1739–1757. [Google Scholar] [CrossRef]
- Willberg, M.; Zingerle, P.; Pail, R. Integration of airborne gravimetry data filtering into residual least-squares collocation: Example from the 1 cm geoid experiment. J. Geod. 2020, 94, 75. [Google Scholar] [CrossRef]
- Lieb, V.; Schmidt, M.; Dettmering, D.; Boerger, K. Combination of various observation techniques for regional modeling of the gravity field. J. Geophys. Res. Solid Earth 2016, 121, 3825–3845. [Google Scholar] [CrossRef]
- Klees, R.; Slobbe, D.C.; Farahani, H.H. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model? J. Geod. 2019, 93, 29–44. [Google Scholar] [CrossRef]
- Slobbe, C.; Klees, R.; Farahani, H.H.; Huisman, L.; Alberts, B.; Voet, P.; De Doncker, F. The Impact of Noise in a GRACE/GOCE Global Gravity Model on a Local Quasi-Geoid. J. Geophys. Res. Solid Earth 2019, 124, 3219–3237. [Google Scholar] [CrossRef]
- Schmidt, M.; Fengler, M.; Mayer-Gurr, T.; Eicker, A.; Kusche, J.; Sanchez, L.; Han, S.C. Regional gravity modeling in terms of spherical base functions. J. Geod. 2007, 81, 17–38. [Google Scholar] [CrossRef]
- Eicker, A. Gravity Field Refinement by Radial Basis Functions from In-Situ Satellite Data. Ph.D. Thesis, Bonn University, Bonn, Germany, 2008. [Google Scholar]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; W.H. Freeman and Company: San Francisco, CA, USA, 1967. [Google Scholar]
- Bucha, B.; Janak, J.; Papco, J.; Bezdek, A. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys. J. Int. 2016, 207, 949–966. [Google Scholar] [CrossRef]
- Wittwer, T. Regional Gravity Field Modelling with Radial Basis Functions. Ph.D. Thesis, Delft University of Technology, Delft, The Nederland, 2009. [Google Scholar]
- Förste, C.; Bruinsma, S.L.; Abrikosov, O.; Lemoine, J.M.; Marty, J.C.; Flechtner, F.; Balmino, G.; Barthelmes, F.; Biancale, R. EIGEN-6C4 the Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, 2014. [Google Scholar] [CrossRef]
- Pail, R.; Fecher, T.; Barnes, D.; Factor, J.F.; Holmes, S.A.; Gruber, T.; Zingerle, P. Short note: The experimental geopotential model XGM2016. J. Geod. 2018, 92, 443–451. [Google Scholar] [CrossRef]
- Yu, H.P.; Chang, G.B.; Zhang, S.B.; Zhu, Y.H.; Yu, Y.J. Application of Sparse Regularization in Spherical Radial Basis Functions-Based Regional Geoid Modeling in Colorado. Remote Sens. 2023, 15, 4870. [Google Scholar] [CrossRef]
- Rexer, M.; Hirt, C.; Claessens, S.; Tenzer, R. Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation. Surv. Geophys. 2016, 37, 1035–1074. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, M.; Liu, J. Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado. Remote Sens. 2023, 15, 4515. [Google Scholar] [CrossRef]
- Reuter, R. Über Integralformeln der Einheitssphäre und Harmonische Splinefunktionen. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1982. [Google Scholar]
- Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963, 4, 1035–1038. [Google Scholar]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophy. Geosy. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory; Pearson Education: New York, NY, USA, 2013. [Google Scholar]
- Grafarend, E.W.; Schaffrin, B. Ausgleichungsrechnung in Linearen Modellen; BI-Wissenschaftsverlag: Mannheim, Germany, 1993. [Google Scholar]
Approach | RMS | STD | Max | Min | Mean |
---|---|---|---|---|---|
approach-1 | 1.82 | 1.70 | 6.60 | −10.21 | −0.66 |
approach-2 | 1.49 | 1.49 | 7.39 | −8.31 | −0.04 |
approach-3 | 1.73 | 1.73 | 7.71 | −8.95 | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Chang, G.; Yu, Y.; Zhang, S. A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model. Remote Sens. 2024, 16, 1731. https://doi.org/10.3390/rs16101731
Yu H, Chang G, Yu Y, Zhang S. A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model. Remote Sensing. 2024; 16(10):1731. https://doi.org/10.3390/rs16101731
Chicago/Turabian StyleYu, Haipeng, Guobin Chang, Yajie Yu, and Shubi Zhang. 2024. "A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model" Remote Sensing 16, no. 10: 1731. https://doi.org/10.3390/rs16101731
APA StyleYu, H., Chang, G., Yu, Y., & Zhang, S. (2024). A Direct Approach for Local Quasi-Geoid Modeling Based on Spherical Radial Basis Functions Using a Noisy Satellite-Only Global Gravity Field Model. Remote Sensing, 16(10), 1731. https://doi.org/10.3390/rs16101731