Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = the central Himalaya

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11309 KiB  
Article
Quantifying the Added Values of a Merged Precipitation Product in Streamflow Prediction over the Central Himalayas
by Shrija Guragain, Suraj Shah, Raffaele Albano, Seokhyeon Kim, Muhammad Hammad and Muhammad Asif
Remote Sens. 2025, 17(13), 2170; https://doi.org/10.3390/rs17132170 - 24 Jun 2025
Viewed by 408
Abstract
Gridded precipitation datasets (GPDs) have complemented gauge-based measurements in global hydrology by providing spatiotemporally continuous rainfall estimates for streamflow prediction. However, these datasets suffer from uncertainties in space and time, particularly in complex terrains like the Himalayas. Merging multi-GPDs offers a potential solution [...] Read more.
Gridded precipitation datasets (GPDs) have complemented gauge-based measurements in global hydrology by providing spatiotemporally continuous rainfall estimates for streamflow prediction. However, these datasets suffer from uncertainties in space and time, particularly in complex terrains like the Himalayas. Merging multi-GPDs offers a potential solution to reduce such uncertainties, but the actual contribution of the merged product to hydrological modeling remains underexplored in data-scarce and topographically complex regions. Here, we applied a gauge-independent merging technique called Signal-to-Noise Ratio optimization (SNR-opt) to merge three precipitation products: ERA5, SM2RAIN, and IMERG-late. The resulting Merged Gridded Precipitation Dataset (MGPD) was evaluated using the hydrological model (HYMOD) across three major river basins in the Central Himalayas (Koshi, Narayani, and Karnali). The results show that MGPD significantly outperforms the individual GPDs in streamflow simulation. This is evidenced by higher Nash–Sutcliffe Efficiency (NSE) values, 0.87 (Narayani) and 0.86 (Karnali), compared to ERA5 (0.83, 0.82), SM2RAIN (0.83, 0.85), and IMERG-Late (0.82, 0.78). In Koshi, the merged product (NSE = 0.80) showed slightly lower performance than SM2RAIN (NSE = 0.82) and ERA5 (NSE = 0.81), likely due to the poor performance of IMERG-Late (NSE = 0.69) in this basin. These findings underscore the value of merging precipitation datasets to enhance the accuracy and reliability of hydrological modeling, especially in ungauged or data-scarce mountainous regions, offering important implications for water resource management and forecasting. Full article
Show Figures

Graphical abstract

24 pages, 4268 KiB  
Article
Zoning of the Disaster-Inducing Environment and Driving Factors for Landslides, Collapses, and Debris Flows on the Qinghai–Tibet Plateau
by Qiuyang Zhang, Weidong Ma, Yuan Gao, Tengyue Zhang, Xiaoyan Ma, Long Li, Qiang Zhou and Fenggui Liu
Appl. Sci. 2025, 15(12), 6569; https://doi.org/10.3390/app15126569 - 11 Jun 2025
Viewed by 428
Abstract
The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological characteristics contributes to the pronounced [...] Read more.
The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological characteristics contributes to the pronounced spatial heterogeneity of the disaster-inducing environment. Identifying key controlling factors and their driving mechanisms is crucial for effective regional disaster prevention and mitigation. This study adopts a systematic framework based on regional disaster systems theory, integrating tectonic activity, engineering geology, topography, and precipitation to construct a multi-factor zoning system. Using the Random Forest model, we quantify factor contributions and delineate eight distinct disaster-inducing environment zones. Zones I–III (Himalayas–Hengduan Mountains–Qilian Mountains) are characterized by a dominant coupling mechanism of “tectonic fragmentation—topographic relief—precipitation erosion” and account for the majority of large-scale disasters. In contrast, Zones IV–VIII, primarily located in the central–western Plateau basins, are constrained by limited material sources, resulting in lower disaster densities. The findings indicate that geological structures and lithological fragmentation provide the material foundation for hazard occurrence, while topographic potential and hydrodynamic forces serve as critical triggering conditions. This nonlinear coupling of factors shapes a disaster geographic pattern characterized by “dense in the east and sparse in the west”. Based on these results, the targeted recommendations proposed offer valuable theoretical insights and methodological guidance for disaster mitigation and region-specific management across the Qinghai–Tibet Plateau. Full article
Show Figures

Figure 1

20 pages, 5757 KiB  
Article
Temporal and Spatial Variation Characteristics of Precipitation Isohyets on the Qinghai–Tibet Plateau from 1961 to 2023
by Xuan Liu, Qiang Zhou, Yonggui Ma, Zemin Zhi, Rui Liu and Weidong Ma
Atmosphere 2025, 16(6), 698; https://doi.org/10.3390/atmos16060698 - 10 Jun 2025
Viewed by 1008
Abstract
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate [...] Read more.
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate propensity rates and centroid center migration. The results show: (1) precipitation increased significantly (4.17 mm/decade), decreasing spatially from southeast to northwest. Regionally, it increased in areas like the southern Qinghai Plateau region, but declined in the southern Himalayas and central–southern Altyn−Tagh Mountains. (2) The 200 mm line migrated northward in southern Qiangtang, shrank around Qaidam Basin, with an overall northeastward shift; the 400 mm line moved westward in eastern Qiangtang and Hehuang Valley, northward in southern Qinghai, trending northwest. (3) From 1961 to 1990 and 1991 to 2023, the 200 mm isohyet’s centroid shifted 49 km north and 17 km east, while the 400 mm isohyet moved 22 km north and 19 km west. (4) Vertically, the 200 mm isohyet ascended by 7.11 m/decade, while the 400 mm line rose more slowly (2.61 m/decade). These changes indicate a significant shift in precipitation distribution, impacting regional hydrological processes. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 11792 KiB  
Article
Quantifying Long Term (2000–2020) Water Balances Across Nepal by Integrating Remote Sensing and an Ecohydrological Model
by Kailun Jin, Ning Liu, Run Tang, Ge Sun and Lu Hao
Remote Sens. 2025, 17(11), 1819; https://doi.org/10.3390/rs17111819 - 23 May 2025
Viewed by 859
Abstract
Nepal is known for its complex terrain, climate, and vegetation dynamics, resulting in tremendous hydrologic variability and complexity. Accurately quantifying the water balances at the national level in Nepal is extremely challenging and is currently not available. This study constructed long-term (2000–2022) water [...] Read more.
Nepal is known for its complex terrain, climate, and vegetation dynamics, resulting in tremendous hydrologic variability and complexity. Accurately quantifying the water balances at the national level in Nepal is extremely challenging and is currently not available. This study constructed long-term (2000–2022) water balances for 358 watersheds across Nepal by integrating watershed hydrometeorological monitoring data, remote sensing products including Leaf Area Index and land use and land cover data, with an existing ecohydrological model, Water Supply Stress Index (WaSSI). The WaSSI model’s performance is assessed at both watershed and national levels using observed water yield (Q) and evapotranspiration (ET) products derived from remote sensing (ETMonitor, PEW, SSEBop) and eddy flux network (i.e., FLUXCOM). We show that the WaSSI model captured the seasonal dynamics of ET and Q, providing new insights about climatic controls on ET and Q across Nepal. At the national scale, the simulated long-term (2000–2020) mean annual Q and ET was about half of the precipitation (1567 mm), but both Q and ET varied tremendously in space and time as influenced by a monsoon climate and mountainous terrain. We found that watersheds in the central Gandaki River basin had the highest Q (up to 1600 mm yr−1) and ET (up to 1000 mm yr−1). This study offers a validated ecohydrological modeling tool for the Himalaya region and a national benchmark dataset of the water balances for Nepal. These products are useful for quantitative assessment of ecosystem services and science-based watershed management at the national scale. Future studies are needed to improve the WaSSI model and remote sensing ET products by conducting ecohydrological research on key hydrologic processes (i.e., forest ET, streamflow generations of small watersheds) across physiographic gradients to better answer emerging questions about the impacts of environmental change in Nepal. Full article
Show Figures

Figure 1

17 pages, 1718 KiB  
Perspective
Balancing Development and Sustainability: Lessons from Roadbuilding in Mountainous Asia
by Roy C. Sidle and Alan D. Ziegler
Sustainability 2025, 17(7), 3156; https://doi.org/10.3390/su17073156 - 2 Apr 2025
Viewed by 790
Abstract
Managing land-use activities sustainably in mountainous regions requires addressing the interconnected impacts of geophysical, socioeconomic, cultural, and geopolitical stressors. This complexity is exemplified in roadbuilding across highland Asia, where insufficient planning, incomplete environmental impact assessments (EIAs), and governance gaps often result in lasting [...] Read more.
Managing land-use activities sustainably in mountainous regions requires addressing the interconnected impacts of geophysical, socioeconomic, cultural, and geopolitical stressors. This complexity is exemplified in roadbuilding across highland Asia, where insufficient planning, incomplete environmental impact assessments (EIAs), and governance gaps often result in lasting “toeprints”—subtle yet significant unintended consequences. Drawing on specific case studies within Yunnan, China; Central Asia’s Belt and Road Initiative (BRI); and the Kedarnath Disaster in India, this perspective highlights the risks of rapid infrastructure development without holistic, long-term planning and explores the underlying issues of these problems. While mountain roads enhance connectivity, mobility, and short-term economic prosperity, they frequently impose environmental and social costs that offset their intended benefits. Poorly designed roads in the mountains of northwest Yunnan and Central Asia have triggered landslides, sedimentation, habitat fragmentation, and disruptions to local livelihoods and cultural practices. In contrast, road improvements to the remote Kedarnath Temple in the Himalaya led to the overcrowding of religious pilgrims who were killed and stranded during a major flood and sediment disaster in 2013. These case studies emphasize the need for transdisciplinary research, community engagement, and regulatory frameworks that integrate disaster risk reduction, climate resilience, and sustainability for the benefit of all stakeholders. By aligning infrastructure projects with robust planning frameworks, development practitioners and policymakers can better balance economic, environmental, and social priorities, minimizing unintended impacts while fostering resilient and equitable outcomes in fragile mountain landscapes. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

31 pages, 64570 KiB  
Article
Growing Season Normalized Difference Vegetation Index in the Nepal Himalaya and Adjacent Areas, 2000–2019: Sensitivity to Climate Change and Terrain Factors
by Mst Umme Salma Nila, Maria Bobrowski and Udo Schickhoff
Land 2025, 14(4), 749; https://doi.org/10.3390/land14040749 - 1 Apr 2025
Viewed by 994
Abstract
Precisely detecting and attributing changes in vegetation greenness is crucial for sustainable ecosystem management. The normalized difference vegetation index (NDVI) is highly responsive to changes in vegetation cover and is essential for assessing vegetation dynamics. This study integrates a digital elevation model (DEM) [...] Read more.
Precisely detecting and attributing changes in vegetation greenness is crucial for sustainable ecosystem management. The normalized difference vegetation index (NDVI) is highly responsive to changes in vegetation cover and is essential for assessing vegetation dynamics. This study integrates a digital elevation model (DEM) with climate data (temperature, precipitation, evapotranspiration, and solar radiation) and MODIS-NDVI imagery (2000–2019) to investigate NDVI fluctuations and their correlation with climate change in the central Himalaya. Trend analysis of NDVI time-series data examined vegetation response influenced by elevation, aspect, and slope. The results revealed significant spatial and temporal NDVI variations, with an overall increase of 0.01 per decade (p < 0.05), indicating gradual vegetation improvement, though 26.3% of the area (107,138 km2) showed a decreasing trend. NDVI trends increased with elevation, peaking at 2000–2500 m, and then declined up to 4000 m, where they stabilized. While trends varied across slopes, they were independent of the aspect. Spearman correlation analysis revealed elevation-dependent vegetation responses to climate. Below 1000 masl, the NDVI was negatively correlated with temperature and evapotranspiration and positively with precipitation. At higher elevations (>4000 masl), temperature and evapotranspiration positively correlated with the NDVI, suggesting warming supports growth. These findings highlight complex interactions between vegetation, climate, and topography that are crucial for targeted ecosystem management. Full article
Show Figures

Figure 1

20 pages, 4032 KiB  
Review
Climatic Influence on Growth Performance of Abies spectabilis in the Himalayas
by Krishna Prasad Pandey, Camilla Wellstein, Achim Bräuning and Dinesh Raj Bhuju
Forests 2025, 16(3), 473; https://doi.org/10.3390/f16030473 - 8 Mar 2025
Cited by 1 | Viewed by 1231
Abstract
Climate change has affected forest ecosystems across the world over the past century. However, its impact is particularly high in the Himalayas due to increasing temperatures, extreme precipitation events, and regional droughts. In this context, a review of the current stage of research [...] Read more.
Climate change has affected forest ecosystems across the world over the past century. However, its impact is particularly high in the Himalayas due to increasing temperatures, extreme precipitation events, and regional droughts. In this context, a review of the current stage of research was deemed necessary to understand the adaptation of a key conifer species to climate variability in the Central Himalayas. Hence, we conducted a systematic review of published peer-reviewed journal articles addressing the growth performance of Abies spectabilis (D. Don) Spach in the Central Himalayas. From this review, three main patterns of climate response have emerged: a positive correlation of radial tree growth with temperature of the current and previous growing seasons, tree growth limitation by winter temperature, and by temperature or moisture in the pre-monsoon season. Overall, results indicate an elevation-dependent temperature sensitivity, a crucial role of moisture availability, and seasonal shifts in climate–growth relationships, reflecting the species’ adaptability to changing climate conditions. Our review revealed that studies on elevation-dependent adaptation of wood anatomical traits by A. spectabilis are still rare. The tree-ring growth of this species shows a complex response to climate variability, with increasing as well as decreasing growth trends across its distribution range. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

25 pages, 3990 KiB  
Article
The Relationship Between Phenological Characteristics and Life Forms Within Temperate Semi-Natural Grassland Ecosystems in the Central Himalaya Region of India
by Archana Fartyal, Ravi Kant Chaturvedi, Surendra Singh Bargali and Kiran Bargali
Plants 2025, 14(6), 835; https://doi.org/10.3390/plants14060835 - 7 Mar 2025
Cited by 2 | Viewed by 873
Abstract
The seasonal phenological segregation observed among various species within a plant community can be interpreted as a form of niche differentiation that facilitates the coexistence of these species. In the present study, life forms and phenological attributes of dominant plant species in temperate [...] Read more.
The seasonal phenological segregation observed among various species within a plant community can be interpreted as a form of niche differentiation that facilitates the coexistence of these species. In the present study, life forms and phenological attributes of dominant plant species in temperate semi-natural grasslands of Central Himalaya, India, were assessed between January 2022 and December 2022. This study was carried out in three sites in different forest zones, viz. oak, cypress and pine. In each site, plots measuring 0.5 hectares were established and phenological assessments were conducted within each of these plots. A total of 50, 36, and 49 herbaceous species were identified in the grasslands of oak, cypress and pine zones, respectively, with these species categorized into five distinct life form classes. In the grasslands of both oak and pine zones, hemicryptophytes emerged as the predominant life form, whereas in the cypress zone grasslands, it was found that chamaephytes take precedence. The differences observed in the classifications of life forms can be ascribed to the geographical distribution and the biotic interactions present in these sites. The three grasslands exhibit comparable climatic conditions and day lengths, resulting in no significant variations in soil temperature, light intensity or overall climatic factors. The majority of species commenced their flowering phase during the monsoon season, attributed to the favorable conditions characterized by warm, humid weather and adequate soil moisture. Various phenological events, including germination, growth, and senescence, are significantly affected by weather and climate, and their timing subsequently influences ecosystem processes in a reciprocal manner. This study provides valuable foundational data for ecological and environmental research, aiding in the comparison and distinction of plant compositions across the Himalayas and its ecosystems. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 5812 KiB  
Article
Significance of Cloud Microphysics and Cumulus Parameterization Schemes in Simulating an Extreme Flood-Producing Precipitation Event in the Central Himalaya
by Ujjwal Tiwari and Andrew B. G. Bush
Atmosphere 2025, 16(3), 298; https://doi.org/10.3390/atmos16030298 - 3 Mar 2025
Viewed by 778
Abstract
Between 11 and 14 August 2017, the southern belt of the central Himalaya experienced extreme precipitation, with some stations recording more than 500 mm of accumulated rainfall, which resulted in widespread, devastating flooding. Precipitation was concentrated over the sub-Himalaya, and the established forecasting [...] Read more.
Between 11 and 14 August 2017, the southern belt of the central Himalaya experienced extreme precipitation, with some stations recording more than 500 mm of accumulated rainfall, which resulted in widespread, devastating flooding. Precipitation was concentrated over the sub-Himalaya, and the established forecasting systems failed to predict the event. In this study, we evaluate the performance of six cloud microphysics schemes in the Weather Research and Forecasting (WRF) model forced with the advanced ERA5 dataset. We also examine the importance of the cumulus scheme in WRF at 3 km horizontal grid spacing in highly convective events like this. Six WRF simulations, each with one of the six different microphysics schemes with the Kain–Fritsch cumulus scheme turned off, all fail to reproduce the spatial variability of accumulated precipitation during this devastating flood-producing precipitation event. In contrast, the simulations exhibit greatly improved performance with the cumulus scheme turned on. In this study, the cumulus scheme helps to initiate convection, after which grid-scale precipitation becomes dominant. Amongst the different simulations, the WRF simulation using the Morrison microphysics scheme with the cumulus turned on displayed the best performance, with the smallest normalized root mean square error (NRMSE) of 0.25 and percentage bias (PBIAS) of −6.99%. The analysis of cloud microphysics using the two best-performing simulations reveals that the event is strongly convective, and it is essential to keep the cumulus scheme on for such convective events and capture all the precipitation characteristics showing that in regions of extreme topography, the cumulus scheme is still necessary even down to the grid spacing of at least 3 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 32077 KiB  
Article
Present-Day Tectonic Deformation Characteristics of the Northeastern Pamir Margin Constrained by InSAR and GPS Observations
by Junjie Zhang, Xiaogang Song, Donglin Wu and Xinjian Shan
Remote Sens. 2024, 16(24), 4771; https://doi.org/10.3390/rs16244771 - 21 Dec 2024
Viewed by 1037
Abstract
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long [...] Read more.
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long east–west extensional fault system, known as the Kongur Shan extensional system (KSES), which has developed a series of faults with different orientations and characteristics, resulting in highly complex structural deformation and lacking sufficient geodetic constraints. We collected Sentinel-1 SAR data from December 2016 to March 2023, obtained high-resolution ascending and descending LOS velocities and 3D deformation fields, and combined them with GPS data to constrain the current motion characteristics of the northeastern Pamirs for the first time. Based on the two-dimensional screw dislocation model and using the Bayesian Markov chain Monte Carlo (MCMC) inversion method, the kinematic parameters of the fault were calculated, revealing the fault kinematic characteristics in this region. Our results demonstrate that the present-day deformation of the KSES is dominated by nearly E–W extension, with maximum extensional motion concentrated in its central segment, reaching peak extension rates of ~7.59 mm/yr corresponding to the Kongur Shan. The right-lateral Muji fault at the northern end exhibits equivalent rates of extensional motion with a relatively shallow locking depth. The strike-slip rate along the Muji fault gradually increases from west to east, ranging approximately between 4 and 6 mm/yr, significantly influenced by the eastern normal fault. The Tahman fault (TKF) at the southernmost end of the KSES shows an extension rate of ~1.5 mm/yr accompanied by minor strike-slip motion. The Kashi anticline is approaching stability, while the Mushi anticline along the eastern Pamir frontal thrust (PFT) remains active with continuous uplift at ~2 mm/yr, indicating that deformation along the Tarim Basin–Tian Shan boundary has propagated southward from the South Tian Shan thrust (STST). Overall, this study demonstrates the effectiveness of integrated InSAR and GPS data in constraining contemporary deformation patterns along the northeastern Pamir margin, contributing to our understanding of the region’s tectonic characteristics. Full article
Show Figures

Figure 1

35 pages, 99630 KiB  
Article
Tornadic Storm over the Foothills of Central Nepal Himalaya
by Toshihiro Kitada, Sajan Shrestha, Sangeeta Maharjan, Suresh Bhattarai and Ram Prasad Regmi
Meteorology 2024, 3(4), 412-446; https://doi.org/10.3390/meteorology3040020 - 1 Dec 2024
Viewed by 1862
Abstract
On the evening of 31 March 2019, Parsa and Bara Districts in central Nepal were severely hit by a wind storm which was the first documented tornadic incidence in Nepal.In this paper, we investigate the background of the tornado formation via numerical simulations [...] Read more.
On the evening of 31 March 2019, Parsa and Bara Districts in central Nepal were severely hit by a wind storm which was the first documented tornadic incidence in Nepal.In this paper, we investigate the background of the tornado formation via numerical simulations with the WRF-ARW model. The results show that: (1) a flow situation favorable to the generation of mesocyclones was formed by a combination of local plain-to-mountain winds consisting of warm and humid southwesterly wind in the lower atmosphere and synoptic northwesterly wind aloft over the southern foothills of the Himalayan Mountain range, leading to significant vertical wind shear and strong buoyancy; (2) the generated mesocyclone continuously shed rain-cooled outflow with 600∼800 m depth above the ground into the Chitwan valley while moving southeastward along the Mahabharat Range at the northeastern rim of the Chitwan valley; (3) the cold outflow propagated in the valley, forming a front; and (4) the tornado was generated when this cold outflow passed over the Siwalik Hills bordering the southern rim of the Chitwan valley. At this point, descending flow around a high mountain generated positive vertical vorticity near the ground; blocking by this high mountain and channeling through a mountain pass enhanced updrafts at the front by forming a hydraulic jump. These updrafts amplified the positive vertical vorticity via stretching, and this interaction of the cold outflow with the Siwalik Hills contributed to tornadogenesis. The simulated location and time of the disaster showed generally good agreement with the reported location and time. Full article
Show Figures

Figure 1

20 pages, 4829 KiB  
Article
Structural and Kinematic Analysis of the Xipu Dome in the Tingri Area, Southern Tibet, and New Exploration Discoveries
by Songtao Yan, Ailing Ding, Jie Wang, Hao Huang, Hu Li, Song Chen, Tao Liu and Lidong Zhu
Minerals 2024, 14(12), 1188; https://doi.org/10.3390/min14121188 - 22 Nov 2024
Viewed by 945
Abstract
The newly delineated Xipu Dome, located in the central North Himalayan Gneiss Dome (NHGD), exhibits a significant spatiotemporal relationship with Himalayan polymetallic mineralization. Based on field geological surveys and geochronological analyses, this study provides a comprehensive assessment of the lithological assemblage, tectonic deformation, [...] Read more.
The newly delineated Xipu Dome, located in the central North Himalayan Gneiss Dome (NHGD), exhibits a significant spatiotemporal relationship with Himalayan polymetallic mineralization. Based on field geological surveys and geochronological analyses, this study provides a comprehensive assessment of the lithological assemblage, tectonic deformation, and metallogenic processes of the Xipu Dome. The findings reveal a three-tiered structure: the core consists of early Paleozoic granitic gneiss (523 Ma) and Miocene leucogranite (13.5 Ma), overlain by a cover of low-grade metamorphic or unmetamorphosed sedimentary rocks, and a detachment zone composed of heavily deformed schists and phyllites. The Xipu Dome underwent three phases of tectonic deformation: a southward thrust caused by continental collision, northward extensional activity driven by the South Tibet Detachment System (STDS), and gravitational collapse and downslope sliding following the emplacement of the dome. Two types of mineralization were identified: structural hydrothermal Au-Cu polymetallic deposits related to detachment and skarn-type Cu-Ag polymetallic deposits associated with leucogranite intrusion. This study enhances the understanding of the spatial distribution and metallogenic potential within the Himalayan Be-Sn rare metal-Pb-Zn-Sb-Au belt, offering a valuable direction for strategic mineral exploration in the Tethyan Himalaya (TH). Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 5031 KiB  
Article
Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence
by Muhammad Qasim, Junaid Ashraf, Lin Ding, Javed Iqbal Tanoli, Fulong Cai, Iftikhar Ahmed Abbasi and Saif-Ur-Rehman Khan Jadoon
Geosciences 2024, 14(11), 289; https://doi.org/10.3390/geosciences14110289 - 29 Oct 2024
Viewed by 2154
Abstract
Constraining the collision timing of India and Asia requires reliable information from the coeval geological record along the ~2400 km long collisional margin. This study provides insights into the India–Asia collision at the westernmost margin of the Indian Plate using combined U-Pb geochronological [...] Read more.
Constraining the collision timing of India and Asia requires reliable information from the coeval geological record along the ~2400 km long collisional margin. This study provides insights into the India–Asia collision at the westernmost margin of the Indian Plate using combined U-Pb geochronological data and sandstone petrography. The study area is situated in the vicinity of Fort Munro, Pakistan, along the western margin of the Indian Plate, and consists of the Paleocene Dunghan Formation and Eocene Ghazij Formation. The U-Pb ages of detrital zircons from the Dunghan Formation are mainly clustered between ~453 and 1100 Ma with a second minor cluster between ~1600 and 2600 Ma. These ages suggest that the major source contributing to the Dunghan Formation was likely derived from basement rocks and the cover sequence exposed mainly in Tethyan Himalaya (TH), Lesser Himalaya (LH), and Higher Himalayan (HH). Petrographic results suggest that the quartz-rich samples from the Dunghan Formation are mineralogically mature and have likely experienced log-distance transportation, which is possible in the case of an already established and well-developed river system delivering the sediments from the Craton Interior provenance. Samples of the overlying Ghazij Formation show a major detrital zircon age clustered at ~272–600 Ma in the lower part of the formation, comparable to the TH. In the middle part, the major cluster is at ~400–1100 Ma, and a minor cluster at ~1600–2600 Ma similar to the age patterns of TH, LH, and HH. However, in the uppermost part of the Ghazij Formation, ages of <100 Ma are recorded along with 110–166 Ma, ~400–1100 Ma, and ~1600–2600 Ma clusters. The <100 Ma ages were mainly attributed to the northern source, which was the Kohistan-Ladakh arc (KLA). The ~110–166 Ma ages are possibly associated with the TH volcanic rocks, ophiolitic source, and Karakoram block (KB). The Paleozoic to Archean-aged zircons in the Ghazij Formation represent an Indian source. This contrasting provenance shift from India to Asia is also reflected in the sandstone petrography, where the sample KZ-09 is plotted in a dissected arc field. By combining the U-Pb ages of the detrital zircons with sandstone petrography, we attribute this provenance change to the Asia–India collision that caused the provenance shift from the southern (Indian Craton) provenance to the northern (KLA and KB) provenance. In view of the upper age limit of the Ghazij Formation, we suggest the onset of Asian–Indian collision along its western part occurred at ca. 50–48 Ma, which is younger than the collision ages reported from central and northwestern segments of the Indian plate margin with 70–59 Ma and 56 Ma, respectively. Full article
(This article belongs to the Special Issue Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits)
Show Figures

Figure 1

18 pages, 8742 KiB  
Article
Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future
by Fuli Li, Chongyun Wang, Mingchun Peng, Wei Meng, Lei Peng and Dengpeng Chen
Diversity 2024, 16(9), 511; https://doi.org/10.3390/d16090511 - 23 Aug 2024
Viewed by 1233
Abstract
Climate change is altering the geographical distribution and abundance of species. Abundant genetic variation generally indicates a stronger adaptability and evolutionary potentiality, especially in case of sharply changing climates or environments. With the past global climate fluctuations, especially the climate oscillation since the [...] Read more.
Climate change is altering the geographical distribution and abundance of species. Abundant genetic variation generally indicates a stronger adaptability and evolutionary potentiality, especially in case of sharply changing climates or environments. With the past global climate fluctuations, especially the climate oscillation since the Quaternary, the global temperature changes related to glaciation, many relict plant species have formed possible refugia in humid subtropical/warm temperate forests, thus retaining a high level of genetic diversity patterns. Based on the contraction and expansion of the geographical distribution of Taxus wallichiana Zucc. in the past driven by climate change, combined with the contemporary genetic diversity modeling, the distribution performance of Taxus wallichiana Zucc. in future climate change was predicted. The areas of highly suitable habitat will increase with climate change in the future. There were continuous and stable high suitable areas of T. wallichiana in the southeastern Tibet and northwestern Yunnan as long-term stable climate refugia. We made the genetic landscape surface of T. wallichiana complex and discovered geographical barriers against gene flow. Genetic barriers spatially isolated the center of genetic diversity into three regions: west (east Himalaya), middle (Yunnan plateau, Sichuan basin, Shennongjia, and the junction of Guizhou and Guangxi provinces), and east (Mt. Huangshan and Fujian). Southern Tibet was isolated from other populations. The central and western Yunnan, the Sichuan basin, and surrounding mountains were isolated from the southern China populations. We found that the positive correlationships between the present species genetic diversity and suitability index during LGM, MH, and 2070. This infers that T. wallichiana has provisioned certain genetic diversity and has strong evolutionary potential under conditions of climate change. Full article
Show Figures

Figure 1

19 pages, 10843 KiB  
Article
Development of a Daily Cloud-Free Snow-Cover Dataset Using MODIS-Based Snow-Cover Probability for High Mountain Asia during 2000–2020
by Dajiang Yan, Yinsheng Zhang and Haifeng Gao
Remote Sens. 2024, 16(16), 2956; https://doi.org/10.3390/rs16162956 - 12 Aug 2024
Cited by 1 | Viewed by 1253
Abstract
Investigating the changes in snow cover caused by climate change is extremely important and has attracted increasing attention in cryosphere and climate research. Optimal remote sensing-based snow datasets can provide long-term daily and global spatial-temporal snow-cover distribution at regional and global scales. However, [...] Read more.
Investigating the changes in snow cover caused by climate change is extremely important and has attracted increasing attention in cryosphere and climate research. Optimal remote sensing-based snow datasets can provide long-term daily and global spatial-temporal snow-cover distribution at regional and global scales. However, the application of these snow-cover products is inevitably limited because of the space–time discontinuities caused by cloud obscuration, which poses a significant challenge in snowpack-related studies, especially in High Mountain Asia (HMA), an area that has high-elevation mountains, complex terrain, and harsh environments and has fewer observation stations. To address this issue, we developed an improved five-step hybrid cloud removal strategy by integrating the daily merged snow-cover probability (SCP) algorithm, eight-day merged SCP algorithm, decision tree algorithm, temporal downscaling algorithm, and optimal threshold segmentation algorithm to produce a 21-year, daily cloud-free snow-cover dataset using two daily MODIS snow-cover products over the HMA. The accuracy assessment demonstrated that the newly developed cloud-free snow-cover product achieved a mean overall accuracy of 93.80%, based on daily classified snow depth observations from 86 meteorological stations over 10 years. The time series of the daily percentage of binary snow-cover over HMA was analyzed during this period, indicating that the maximum snow cover tended to change more dramatically than the minimum snow cover. The annual snow-cover duration (SCD) experienced an insignificantly increasing trend over most of the northeastern and southwestern HMA (e.g., Qilian, eastern Kun Lun, the east of Inner Tibet, the western Himalayas, the central Himalayas, and the Hindu Kush) and an insignificant declining trend over most of the northwestern and southeastern HMA (e.g., the eastern Himalayas, Hengduan, the west of Inner Tibet, Pamir, Hissar Alay, and Tien). This new high-quality snow-cover dataset will promote studies on climate systems, hydrological modeling, and water resource management in this remote and cold region. Full article
Show Figures

Figure 1

Back to TopTop