Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future
Abstract
:1. Introduction
Species | Markers | Populations | Individuals | Primers | GD (Mean ± SE) |
---|---|---|---|---|---|
T. wallichiana. var. wallichiana | RFLP [18] | 50 | 1235 | 19 | 0.2518 (0.0301) |
T. wallichiana. var. mairei | ISSR [54] | 17 | 464 | 12 | 0.2071 (0.0098) |
T. wallichiana. var. wallichiana | AFLP [2] | 9 | 72 | 30 | 0.3193 (0.0120) |
T. wallichiana. var. mairei | ISSR [55] | 15 | 300 | 8 | 0.3685 (0.0045) |
T. wallichiana. var. mairei | ISSR [56] | 7 | 122 | 8 | 0.1666 (0.0118) |
T. wallichiana. var. mairei | AFLP [57] | 5 | 50 | 15 | 0.5188 (0.0098) |
T. wallichiana. var. mairei | SSR [4] | 13 | 130 | 16 | 0.5378 (0.0193) |
T. wallichiana. var. wallichiana | SSR [29] | 3 | 99 | 10 | 0.4483 (0.0833) |
T. wallichiana. var. wallichiana | Haplotype [19] | 48 | 1230 | 19 | 0.2627 (0.0320) |
T. wallichiana. var. mairei | ISSR [58] | 11 | 219 | 13 | 0.2015 (0.0031) |
T. wallichiana. var. wallichiana | SSR [8] | 14 | 288 | 11 | 0.3704 (0.0253) |
T. wallichiana. var. wallichiana & T. wallichiana. var. mairei | SSR [41] | 20 | 330 | 10 | 0.4076 (0.0135) |
T. wallichiana. var. wallichiana | SSR [59] | 2 | 136 | 11 | 0.4850 (0.0320) |
T. wallichiana. var. mairei | RAPD [60] | 6 | NA | 10 | 0.2671 (0.0146) |
T. wallichiana. var. wallichiana & T. wallichiana var. chinensis | SSR [61] | 10 | 297 | 6 | 0.1165 (0.0052) |
T. wallichiana. var. mairei | SSR [6] | 25 | 533 | 13 | 0.4110 (0.0415) |
T. wallichiana. var. mairei | SSR [62] | 22 | 339 | 29 | 0.1452 (0.0420) |
2. Materials and Methods
2.1. Data Collection
2.2. Data Cleaning
2.3. Data Analysis
2.3.1. Ecological Niche Modeling (ENM)
2.3.2. Identifying Long-Term Stable Refugia
2.3.3. Mapping the Genetic Diversity Pattern of T. wallichiana
2.3.4. Identify Geographic Barriers
2.3.5. Statistic Analysis
3. Results
3.1. Potential Suitable Distribution
3.2. Habitat Suitability Change and the Centroid Shifts
3.3. Long-Term Stable Refugia of Taxus wallichiana
3.4. Patterns of Contemporary Genetic Diversity in Taxus wallichiana Complex
3.5. Genetic Barriers and Gene Flow
3.6. The Landscape of Genetic Diversity Response to the Climate Changes
3.7. The Factors Controlling Distribution and Genetic Diversity of Taxus wallichiana
4. Discussion
4.1. Habitat Suitability Altered by Climate Change
4.2. Evolutionary Potential in Climate Change
4.3. Factors Contribution to Species Distribution and Evolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef]
- Mohapatra, K.P.; Sehgal, R.N.; Sharma, R.K.; Mohapatra, T. Genetic analysis and conservation of endangered medicinal tree species Taxus wallichiana in the Himalayan region. New For. 2009, 37, 109–121. [Google Scholar] [CrossRef]
- Anderson, J.T.; Willis, J.H.; Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 2011, 27, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Zhou, N. Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers. Biochem. Syst. Ecol. 2013, 49, 107–114. [Google Scholar] [CrossRef]
- Poudel, R.C.; MÖller, M.; Li, D.Z.; Shah, A.; Gao, L.M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genomes 2014, 10, 653–665. [Google Scholar] [CrossRef]
- Wen, Y.F.; Uchiyama, K.; Ueno, S.; Han, W.J.; Xie, W.D.; Tsumura, Y. Assessment of the genetic diversity and population structure of Maire yew (Taxus chinensis var. mairei) for conservation purposes. Can. J. For. Res. 2018, 48, 589–598. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. B. 1996, 351, 1291–1298. [Google Scholar]
- Miao, Y.C.; Su, J.R.; Zhang, Z.J.; Lang, X.D.; Liu, W.D.; Li, S.F. Microsatellite markers indicate genetic differences between cultivated and natural populations of endangered Taxus yunnanensis. Bot. J. Linn. Soc. 2015, 177, 450–461. [Google Scholar] [CrossRef]
- Wang, J.M.; Wang, Y.; Feng, J.M.; Chen, C.; Chen, J.; Long, T.; Li, J.Q.; Zang, R.G.; Li, J.W. Differential Responses to Climate and Land-Use Changes in Threatened Chinese Taxus Species. Forests 2019, 10, 766. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Quintero, I.; Wiens, J.J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 2013, 16, 1095–1103. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef]
- Gao, L.M.; Moeller, M.; Zhang, X.M.; Hollingsworth, M.L.; Liu, J.; Mill, R.R.; Gibby, M.; Li, D.Z. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol. Ecol. 2007, 16, 4684–4698. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Zhang, Y.L.; Gao, J.G.; Qi, W. Visualizing patterns of genetic landscapes and species distribution of Taxus wallichiana (Taxaceae), based on GIS and ecological niche models. J. Resour. Ecol. 2014, 5, 193–202. [Google Scholar]
- Yu, H.B.; Zhang, Y.L.; Li, S.C. Predicting the dispersal routes of alpine plant Pedicularis longiflora (Orobanchaceae) based on GIS and species distribution models. Chin. J. Appl. Ecol. 2014, 25, 1669–1673. (In Chinese) [Google Scholar]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.F.; Momohara, A.; HerrandoMoraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T.; et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018, 9, 4488. [Google Scholar] [CrossRef]
- Wang, W.T.; Guo, W.Y.; Jarvie, S.; Svenning, J.C. The fate of Meconopsis species in the Tibeto-Himalayan region under future climate change. Ecol. Evol. 2021, 11, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.; Roy, A.; Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Tcological Indic. 2019, 102, 199–207. [Google Scholar] [CrossRef]
- Jennings, M.D.; Harris, G.M. Climate change and ecosystem composition across large landscapes. Landsc. Ecol. 2017, 32, 195–207. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Möller, M.; Liu, J.; Li, Y.; Li, J.H.; Ye, L.J.; Mill, R.; Thomas, P.; Li, D.Z.; Gao, L.M. Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.). Mol. Phylogenetics Evol. 2020, 153, 106952. [Google Scholar] [CrossRef]
- Jia, X.; Feng, S.; Zhang, H.; Liu, X. Plastome phylogenomics provide insight into the evolution of Taxus. Forests 2022, 13, 1590. [Google Scholar] [CrossRef]
- Thomas, P.; Farjon, A. Taxus wallichiana. In IUCN 2011. IUCN Red List of Threatened Species. 2011. Available online: http://www.iucnredlist.Org (accessed on 13 June 2024).
- Gajurel, P.J.; Cornejo, C.; Werth, S.; Shrestha, K.K.; Scheidegger, C. Development and characterization of microsatellite loci in the endangered species Taxus wallichiana (Taxaceae). Appl. Plant Sci. 2013, 1, 1200281. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Raven, P.H. Flora of China. Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; Volume 4, pp. 89–91. [Google Scholar]
- Li, N.; Fu, L.K. Notes on gymnosperms I. Taxonomic treatments of some Chinese conifers. Novon 1997, 261–264. [Google Scholar]
- Möller, M.; Gao, L.M.; Mill, R.R.; Li, D.Z.; Hollingsworth, M.L.; Gibby, M. Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Bot. J. Linn. Soc. 2007, 155, 307–335. [Google Scholar] [CrossRef]
- Liu, J.; Möller, M.; Gao, L.M.; Zhang, D.Q.; Li, D.Z. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 2011, 11, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Gao, L.M.; Mill, R.R.; Liu, J.; Zhang, D.Q.; Poudel, R.C.; Li, D.Z. A multidisciplinary approach reveals hidden taxonomic diversity in the morphologically challenging Taxus wallichiana complex. Taxon 2013, 62, 1161–1177. [Google Scholar] [CrossRef]
- Yang, Y. An updated red list assessment of gymnosperms from China (Version 2021). Biodivers. Sci. 2021, 29, 1599–1606. (In Chinese) [Google Scholar] [CrossRef]
- Li, P.X.; Zhu, W.Q.; Xie, Z.Y.; Qian, K. Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya-Hengduan Mountain region. J. For. Res. 2020, 31, 2255–2272. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Q.; Ohashi, H.; Matsui, T.; Herrando-Moraira, S.; Dong, Y.F.; Li, S.; Han, P.B.; Huang, D.S.; Shen, L.Q.; Li, Y.F.; et al. Effects of climate change on the potential distribution of the threatened relict Dipentodon sinicus of subtropical forests in East Asia: Recommendations for management and conservation. Glob. Ecol. Conserv. 2020, 23, e01192. [Google Scholar] [CrossRef]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Nualart, N.; Herrando-Moraira, S.; Dong, Y.F.; Grote, P.J.; Ngoc, N.V.; Sam, H.V.; Li, S.F.; et al. Identifying long-term stable refugia for dominant Castanopsis species of evergreen broad-leaved forests in East Asia: A tool for ensuring their conservation. Biol. Conserv. 2022, 273, 109663. [Google Scholar] [CrossRef]
- Poudel, R.C.; MÖller, M.; Liu, J.; Gao, L.M.; Baral, S.R.; Li, D.Z. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: Implications for conservation of their highly fragmented populations. Divers. Distrib. 2014, 20, 1270–1284. [Google Scholar] [CrossRef]
- Kerr, R.A. The IPCC Gains Confidence in Key Forecast. Science 2013, 342, 23–24. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Herrando-Moraira, S.; Nualart, N.; Galbany-Casals, M.; Garcia-Jacas, N.; Ohashi, H.; Matsui, T.; Susanna, A.; Tang, C.Q.; López-Pujol, J. Climate Stability Index maps, a global high resolution cartography of climate stability from Pliocene to 2100. Sci. Data 2022, 9, 48. [Google Scholar] [CrossRef]
- Yang, J.B.; Li, H.T.; Li, A.Z.; Liu, J.; Gao, L.M. Isolation and characterization of microsatellite markers in the endangered species Taxus wallichiana using the FIASCO method. HortScience 2009, 44, 2043–2045. [Google Scholar] [CrossRef]
- Liu, J.; Gao, L.M.; Li, D.Z.; Zhang, D.Q.; Möller, M. Cross-species amplification and development of new microsatellite loci for Taxus wallichiana (Taxaceae). Am. J. Bot. 2011, 98, e70–e73. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.C.; Su, J.R.; Zhang, Z.J.; Li, H.; Luo, L.; Zhang, Y.P. Isolation and characterization of microsatellite markers for the endangered Taxus yunnanensis. Conserv. Genet. 2008, 9, 1683–1685. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.P.; Su, Y.J.; Wang, Z.W. Microsatellite loci from Taxus chinensis var. mairei (Taxaceae), an endangered and economically important tree species in China. Front. Biol. 2009, 4, 214–216. [Google Scholar] [CrossRef]
- Perry, W.; Lugo, R.; Hathaway, S.A.; Vandergast, A.G. Genetic Landscapes GIS Toolbox: Tools to create genetic divergence and diversity landscapes in ArcGIS. U.S. Geol. Surv. 2010. Available online: https://www.usgs.gov/products/MGL_toolbox (accessed on 25 June 2021).
- Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N. Are hotspots of evolutionary potential adequately protected in southern California? Biol. Conserv. 2008, 141, 1648–1664. [Google Scholar] [CrossRef]
- Vandergast, A.G.; Perry, W.M.; Lugo, R.V.; Hathaway, S.A. Genetic landscapes GIS Toolbox: Tools to map patterns of genetic divergence and diversity. Mol. Ecol. Resour. 2010, 11, 158–161. [Google Scholar] [CrossRef]
- Laurie, A.; Steven, H.; Beissinger, R. A practical toolbox for design and analysis of landscape genetics studies. Landsc. Ecol. 2014, 29, 1487–1504. [Google Scholar]
- Coughlan, P.; Carolan, J.C.; Hook, I.L.I.; Kilmartin, L.; Hodkinson, T.R. Phylogenetics of Taxus using the internal transcribed spacers of nuclear ribosomal DNA and plastid trnL-F regions. Horticulturae 2020, 6, 19. [Google Scholar] [CrossRef]
- Miller, M.P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 2005, 96, 722–724. [Google Scholar] [CrossRef]
- Zhang, X.M.; Gao, L.M.; Möller, M.; Li, D.Z. Molecular evidence for fragmentation among populations of Taxus wallichiana var. mairei, a highly endangered conifer in China. Can. J. For. Res. 2009, 39, 755–764. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z.C.; Jin, G.Q.; Luo, W.J. Genetic diversity and genetic differentiation of Taxus wallichiana var. mairei provenance. Sci. Silvae Sin. 2009, 45, 50–56. [Google Scholar]
- Li, N.W.; He, S.A.; Shu, X.C.; Wang, Q.; Xia, B.; Peng, F. Genetic diversity and structure analyses of wild and ex-situ conservation populations of Taxus chinensis var. mairei based on ISSR marker. J. Plant Resour. Environ. 2011, 20, 25–30. [Google Scholar]
- Deng, Q.; Su, Y.J.; Wang, T. Microsatellite loci for an old rare species, Pseudotaxus chienii, and transferability in Taxus wallichiana var. mairei (Taxaceae). Appl. Plant Sci. 2013, 1, 1200456. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.J.; Guo, J.; Zhu, Y.G.; Yang, X.L.; Yang, Y.; Cheng, Z.; Li, S. Genetic diversity and taxol content variation in the Chinese yew Taxus mairei. Plant Syst. Evol. 2014, 300, 2191–2198. [Google Scholar] [CrossRef]
- Miao, Y.C.; Zhang, Z.J.; Su, J.R. Low genetic diversity in the endangered Taxus yunnanensis following a population bottleneck, a low effective population size and increased inbreeding. Silvae Genet. 2016, 65, 59–66. [Google Scholar] [CrossRef]
- Xu, W.; Qu, Y.Q.; Zhang, L.L.; Rong, J.D.; He, T.Y.; Zhang, Y.S. Genetic diversity of Taxus chinensis var. mairei from Fujian based on RAPD markers. Chin. Tradit. Herb. Drugs 2017, 48, 2943–2949. [Google Scholar]
- Vu, D.D.; Bui, T.T.X.; Nguyen, M.T.; Vu, D.G.; Nguyen, M.D.; Bui, V.T.; Huang, X.H.; Zhang, Y. Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana. J. For. Res. 2017, 28, 265–272. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Huang, L.J.; Wang, T.; Su, Y.J. Chloroplast population genetics reveals low levels of genetic variation and conformation to the central-marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China. Ecol. Evol. 2019, 9, 11944–11956. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G. Response to Increasing Southern Hemisphere Winds in CCSM4. J. Clim. 2011, 24, 4992–4998. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Shi, M.Z.; Li, J.Y.; Fu, J.W.; Wu, M.X. Prediction of potential distribution area of Praxelis clematidea based on Maxent model. J. Trop. Subtrop. Bot. 2019, 27, 250–260. [Google Scholar]
- Ali, P.J.M.; Faraj, R.H. Data normalization and standardization: A technical report. Mach. Learn. Tech. Rep. 2014, 1, 1–6. [Google Scholar]
- Yu, H.B.; Zhang, Y.L.; Liu, L.S.; Qi, W.; Li, S.C. Combining least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late quaternary in Himalayan hemlock. Ecol. Evol. 2015, 5, 5781–5791. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species’ geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Pyšek, P.; Midgley, G.F.; Hughes, G.O.; Rouget, M. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang. Biol. 2005, 11, 2234–2250. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 2010, 277, 661–671. [Google Scholar] [CrossRef]
- Manni, F.; Guérard, E.; Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s Algorithm. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. R Package Version 4.5-0. 2021. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 16 March 2021).
- Salvà-Catarineu, M.; Romo, A.; Mazur, M.; Zielińska, M.; Minissale, P.; Dönmez, A.A.; Boratyńska, K.; Boratyński, A. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol. Evol. 2021, 11, 5075–5095. [Google Scholar] [CrossRef]
- Liu, J.; Möller, M.; Provan, J.; Gao, L.M.; Poudel, R.C.; Li, D.Z. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist. 2013, 199, 1093–1108. [Google Scholar] [CrossRef]
- Petersen, M.J.; Ortiz Cano, H.G.; Gomez, T.; Johnson, R.L.; Anderson, V.J.; Petersen, S.L. Maxent predictive species distribution models and model accuracy assessment for two species of Psilochalcis Kieffer (Hymenoptera: Chalcididae) occurring in the Eastern Great Basin of Utah, USA. Diversity 2024, 16, 348. [Google Scholar] [CrossRef]
- Carnaval, A.C.; Hickerson, M.J.; Haddad, C.F.B.; Rodrigues, M.T.; Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 2009, 323, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.T.; Wen, Y.F. Advances in molecular genetics of Taxus chinensis var. mairei. Nonwood For. Res. 2017, 35, 228–232. [Google Scholar]
Code | Description | Code | Description |
---|---|---|---|
Bio1 | Mean annual temperature | Bio11 | Mean temperature of coldest quarter |
Bio2 | Mean diurnal range [mean of monthly (max temp–min temp)] | Bio12 | Annual precipitation |
Bio3 | Isothermality (Bio2/Bio7) (×100) | Bio13 | Precipitation of wettest month |
Bio4 | Temperature seasonality (standard deviation × 100) | Bio14 | Precipitation of driest month |
Bio5 | Max temperature of warmest month | Bio15 | Precipitation seasonality (coefficient of variation) |
Bio6 | Min temperature of coldest month | Bio16 | Precipitation of wettest quarter |
Bio7 | Temperature annual range (Bio5-Bio6) | Bio17 | Precipitation of driest quarter |
Bio8 | Mean temperature of wettest quarter | Bio18 | Precipitation of warmest quarter |
Bio9 | Mean temperature of driest quarter | Bio19 | Precipitation of coldest quarter |
Bio10 | Mean temperature of warmest quarter |
LIG–LGM | LGM–MH | MH–Present | Present–2070RCP2.6 | Present–2070RCP4.5 | Present–2070RCP8.5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | |
Expansion | 17.92 | 20.35 | 13.88 | 16.88 | 8.74 | 11.82 | 15.89 | 22.10 | 16.30 | 22.54 | 17.03 | 23.31 |
Contraction | 19.72 | 24.63 | 17.28 | 21.01 | 17.92 | 24.24 | 8.29 | 11.53 | 8.58 | 11.87 | 8.44 | 11.55 |
No change (presence) | 50.44 | 62.99 | 51.09 | 62.12 | 47.27 | 63.94 | 47.72 | 66.37 | 47.43 | 65.59 | 47.58 | 65.13 |
Genetic Diversity in Stable Habitats | Genetic Diversity in Unstable Habitats | |
---|---|---|
Min | 0.00020 | 0.00002 |
Max | 0.86700 | 1.00000 |
Mean | 0.41184 | 0.42604 |
SD | 0.07714 | 0.08701 |
CV | 0.18730 | 0.20422 |
LIG | LGM | MH | Present | 2070 RCP 2.6 | 2070 RCP 4.5 | 2070 RCP 8.5 | |
---|---|---|---|---|---|---|---|
r | 0.17481 * | 0.19816 ** | 0.18687 ** | 0.16481 * | 0.19912 ** | 0.19375 ** | 0.19116 ** |
p | 0.01426 | 0.00537 | 0.00873 | 0.02098 | 0.00514 | 0.00651 | 0.00728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, C.; Peng, M.; Meng, W.; Peng, L.; Chen, D. Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future. Diversity 2024, 16, 511. https://doi.org/10.3390/d16090511
Li F, Wang C, Peng M, Meng W, Peng L, Chen D. Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future. Diversity. 2024; 16(9):511. https://doi.org/10.3390/d16090511
Chicago/Turabian StyleLi, Fuli, Chongyun Wang, Mingchun Peng, Wei Meng, Lei Peng, and Dengpeng Chen. 2024. "Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future" Diversity 16, no. 9: 511. https://doi.org/10.3390/d16090511
APA StyleLi, F., Wang, C., Peng, M., Meng, W., Peng, L., & Chen, D. (2024). Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future. Diversity, 16(9), 511. https://doi.org/10.3390/d16090511