Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = tetrafluoroethylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2896 KiB  
Article
Low-Temperature Uniaxial Orientation Effect on the Structure and Piezoelectric Properties of the Vinylidene Fluoride-Tetrafluoroethylene Copolymer Films
by Stanislav V. Kondrashov, Evgeniya L. Buryanskaya, Aleksey S. Osipkov, Vladimir S. Kirkin, Maria V. Butina, Pavel A. Mikhalev, Dmitry S. Ryzhenko and Mstislav O. Makeev
Int. J. Mol. Sci. 2025, 26(13), 6309; https://doi.org/10.3390/ijms26136309 - 30 Jun 2025
Viewed by 263
Abstract
This paper considers the uniaxial orientation effect on the structure and piezoelectric properties of vinylidene fluoride-tetrafluoroethylene copolymer ferroelectric films. The films were exposed to uniaxial orientation stretching in a temperature range from 20 °C to 60 °C; then, they were contact polarized under [...] Read more.
This paper considers the uniaxial orientation effect on the structure and piezoelectric properties of vinylidene fluoride-tetrafluoroethylene copolymer ferroelectric films. The films were exposed to uniaxial orientation stretching in a temperature range from 20 °C to 60 °C; then, they were contact polarized under normal conditions. The temperature dependence of the electric strength was determined. The longitudinal piezoelectric coefficient d33 values were measured by the quasi-static Berlincourt method. The piezoresponse force microscopy (PFM) method was used to investigate the film domain structure before and after polarization, and the local piezoelectric coefficient values were also calculated. Phase composition was studied using differential scanning calorimetry and infrared spectroscopy with the Fourier transform. It was found that uniaxial orientation stretching contributed to an increase in the piezoelectric coefficient d33 from 5 pC/N to 16–20 pC/N. The results obtained indicate the importance of the amorphous phase contribution to the formation of the piezoelectric properties in polymeric materials. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 495
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 4156 KiB  
Article
Influence of P(V3D3-co-TFE) Copolymer Coverage on Hydrogen Detection Performance of a TiO2 Sensor at Different Relative Humidity for Industrial and Biomedical Applications
by Mihai Brinza, Lynn Schwäke, Lukas Zimoch, Thomas Strunskus, Thierry Pauporté, Bruno Viana, Tayebeh Ameri, Rainer Adelung, Franz Faupel, Stefan Schröder and Oleg Lupan
Chemosensors 2025, 13(4), 150; https://doi.org/10.3390/chemosensors13040150 - 19 Apr 2025
Viewed by 732
Abstract
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively [...] Read more.
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively affected by external factors such as humidity. Therefore, a strategy is required to mitigate these influences. The utilization of organic–inorganic hybrid gas sensors, specifically metal oxide gas sensors coated with ultra-thin copolymer films, is a relatively novel approach in this field. In this study, we examined the performance and long-term stability of novel TiO2-based sensors that were coated with poly(trivinyltrimethylcyclotrisiloxane-co-tetrafluoroethylene) (P(V3D3-co-TFE)) co-polymers. The P(V3D3-co-TFE)/TiO2 hybrid sensors exhibit high reliability even for more than 427 days. They exhibit excellent hydrogen selectivity, particularly in environments with high humidity. An optimum operating temperature of 300 °C to 350 °C was determined. The highest recorded response to H2 was approximately 153% during the initial set of measurements at a relative humidity of 10%. The developed organic–inorganic hybrid structures open wide opportunities for gas sensor tuning and customization, paving the way for innovative applications in industry and biomedical fields, such as exhaled breath analysis, etc. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

15 pages, 4450 KiB  
Article
Numerical Simulation of the Flow Field in a Tubular Thermal Cracking Reactor for Water Vapor and Difluoromonochloromethane
by Limin Yang, Hongxing Dou, Yongwen Cui, Xiaolai Zhang and Li Wang
Processes 2025, 13(4), 1170; https://doi.org/10.3390/pr13041170 - 12 Apr 2025
Viewed by 365
Abstract
Tetrafluoroethylene (TFE), as a key basic chemical raw material, has an irreplaceable position in strategic emerging industries involving high-end materials, electronics, chemicals, and pharmaceuticals. Currently, TFE is industrially produced via the vapor cracking of difluoromonochloromethane (R22). However, there is a gap between China [...] Read more.
Tetrafluoroethylene (TFE), as a key basic chemical raw material, has an irreplaceable position in strategic emerging industries involving high-end materials, electronics, chemicals, and pharmaceuticals. Currently, TFE is industrially produced via the vapor cracking of difluoromonochloromethane (R22). However, there is a gap between China and the developed countries in the high-end tetrafluoroethylene monomer, the purity of tetrafluoroethylene monomer is difficult to reach the high purity requirement of 99.999%, and the content of the key impurities that determine the nature of the functional materials is high, which leads to a series of problems of instability in the performance of the high-end and special products and high media loss. To enhance the purity of TFE monomers produced by the pyrolysis reactor of R22 and water vapor, the fluid dynamics simulations of the reactor model were conducted using Ansys Fluent. The reactor model was initially constructed using Space Claim, followed by mesh generation with Fluent Meshing and other relevant configurations. Both cold-state and thermal-state simulations were performed. The cold-state simulation analyzed the effects of temperature, flow velocity, and turbulence models on the turbulent gas flow and mixing processes within the reactor model. The thermal-state simulation examined the impacts of reaction process variations on internal temperature, turbulence, component distribution, and outlet component concentrations during the actual reaction process. Finally, the inlet flow rate and structure of the reactor were optimized. The results indicated that the optimal inlet flow rates for R22 and water vapor were 0.2–0.3 kg/s and 0.4–0.5 kg/s, respectively. In practical production, the internal fluid mixing achieved an optimal value after modifying the inlet structure to a T shape. This study provides new insights into the pyrolysis reaction and lays the foundation for further improving the purity of TFE monomers. Full article
(This article belongs to the Special Issue Fluid Dynamics and Processes of Heat Transfer Enhancement)
Show Figures

Figure 1

20 pages, 10222 KiB  
Article
Preparation and Characterization of Novel Nanofibrous Composites Prepared by Electrospinning as Multifunctional Platforms for Guided Bone Regeneration Procedures
by Aleksandra Sierakowska-Byczek, Julia Radwan-Pragłowska, Łukasz Janus, Tomasz Galek, Natalia Radwan-Pragłowska, Karol Łysiak, Piotr Radomski and Mirosław Tupaj
Appl. Sci. 2025, 15(5), 2578; https://doi.org/10.3390/app15052578 - 27 Feb 2025
Cited by 1 | Viewed by 549
Abstract
Prosthetics, a rapidly advancing field in dentistry, aims to improve patient comfort and aesthetics by addressing the challenge of replacing missing teeth. A critical obstacle in dental implantation is the condition of the jawbone, which often necessitates reconstruction prior to implant placement. Guided [...] Read more.
Prosthetics, a rapidly advancing field in dentistry, aims to improve patient comfort and aesthetics by addressing the challenge of replacing missing teeth. A critical obstacle in dental implantation is the condition of the jawbone, which often necessitates reconstruction prior to implant placement. Guided bone regeneration (GBR) and guided tissue regeneration (GTR) techniques utilize membranes that act as scaffolds for bone and tissue growth while serving as barriers against rapidly proliferating cells and pathogens. Commonly used membranes, such as poly(tetrafluoroethylene) (PTFE) and collagen, have significant limitations—PTFE is non-bioresorbable and requires secondary removal, while collagen lacks adequate mechanical strength and exhibits unpredictable degradation rates. To overcome these challenges, nanofiber membranes produced via electrospinning using polylactic acid (PLA) were developed. The novel composites were functionalized with bioactive additives, including periclase (MgO) nanoparticles and polydopamine (PDA), to enhance osteoblast adhesion, antibacterial properties, and tissue regeneration. This study comprehensively evaluated the biological, mechanical, and physicochemical properties of the prepared nanofibrous scaffolds. Experimental results revealed controlled degradation rates and improved hydrophilicity due to surface modifications with PDA and MgO. Moreover, the nanofibers exhibited enhanced swelling behavior, which promoted nutrient exchange while maintaining structural integrity over prolonged periods. The incorporation of bioactive additives contributed to superior osteoblast proliferation, antibacterial activity, and growth factor immobilization, supporting bone tissue regeneration. These findings suggest that the developed nanofibrous composites are a promising candidate for GBR and GTR applications, offering a balanced combination of biological activity, mechanical performance, and degradation behavior tailored for clinical use. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Prosthodontics and Dental Implants)
Show Figures

Figure 1

13 pages, 7087 KiB  
Article
Numerical Analysis on Static Performances of Graphene Platelet-Reinforced Ethylene-Tetrafluoroethylene (ETFE) Composite Membrane Under Wind Loading
by Yu Wang, Jiajun Gu, Xin Zhang, Jian Fan, Wenbin Ji and Chuang Feng
J. Compos. Sci. 2024, 8(11), 478; https://doi.org/10.3390/jcs8110478 - 18 Nov 2024
Viewed by 850
Abstract
This study examines the static performances of a graphene platelet (GPL)-reinforced ethylene tetrafluoroethylene (ETFE) composite membrane under wind loadings. The wind pressure distribution on a periodic tensile membrane unit was analyzed by using CFD simulations, which considered various wind velocities and directions. A [...] Read more.
This study examines the static performances of a graphene platelet (GPL)-reinforced ethylene tetrafluoroethylene (ETFE) composite membrane under wind loadings. The wind pressure distribution on a periodic tensile membrane unit was analyzed by using CFD simulations, which considered various wind velocities and directions. A one-way fluid–structure interaction (FSI) analysis incorporating geometric nonlinearity was performed in ANSYS to evaluate the static performances of the composite membrane. The novelty of this research lies in the integration of graphene platelets (GPLs) into ETFE membranes to enhance their static performance under wind loading and the combination of micromechanical modelling for obtaining material properties of the composites and finite element simulation for examining structural behaviors, which is not commonly explored in the existing literature. The elastic properties required for the structural analysis were determined using effective medium theory (EMT), while Poisson’s ratio and mass density were evaluated using rule of mixtures. Parametric studies were carried out to explore the effects of a number of influencing factors, including pre-strain, attributes of wind, and GPL reinforcement. It is demonstrated that higher initial strain effectively reduced deformation under wind loads at the cost of increased stress level. The deformation and stress significantly increased with the increase in wind velocity. The deflection and stress level vary with the wind direction, and the maximum values were observed when the wind comes at 15° and 45°, respectively. Introducing GPLs with a larger surface area into membrane material has proven to be an effective way to control membrane deformation, though it also results in a higher stress level, indicating a trade-off between deformation management and stress management. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

12 pages, 3526 KiB  
Article
A Numerical Study of Dynamic Behaviors of Graphene-Platelet-Reinforced ETFE Tensile Membrane Structures Subjected to Harmonic Excitation
by Yu Wang, Jiajun Gu, Xin Zhang, Jian Fan, Wenbin Ji and Chuang Feng
Buildings 2024, 14(11), 3597; https://doi.org/10.3390/buildings14113597 - 12 Nov 2024
Viewed by 950
Abstract
This study presents a numerical investigation of the dynamic behavior of graphene platelet (GPL)-reinforced ethylene tetrafluoroethylene (ETFE) tensile membrane structures subjected to harmonic excitation. Modal and harmonic response analyses were performed to assess both the natural frequencies and the dynamic responses of the [...] Read more.
This study presents a numerical investigation of the dynamic behavior of graphene platelet (GPL)-reinforced ethylene tetrafluoroethylene (ETFE) tensile membrane structures subjected to harmonic excitation. Modal and harmonic response analyses were performed to assess both the natural frequencies and the dynamic responses of the ETFE membrane. GPLs were employed as the reinforcements to enhance the mechanical properties of the membrane materials, whose Young’s modulus was predicted through the effective medium theory (EMT). Parametric studies were conducted to examine the impact of pre-strain and the attributes of the GPL reinforcements, including weight fraction and aspect ratio, on the natural frequencies and amplitude–frequency response curves of the membrane structure. The first natural frequency substantially increased from 5.46 Hz without initial strain to 31.0 Hz with the application of 0.1% initial strain, resulting in a frequency shift that moved the natural frequency out of the range of typical wind-induced pulsations. Embedding GPL fillers into ETFE membrane was another potential solution to enhance the dynamic stability of the membrane structure, with a 1% addition of GPLs resulting in a 48.6% increase in the natural frequency and a 45.1% reduction in resonance amplitude. GPLs with larger aspect ratios provided better reinforcement, offering a means to fine-tune the membrane’s dynamic response. These results underscore that by strategically adjusting both pre-strain levels and GPL characteristics, the membrane’s dynamic behavior can be optimized, offering a promising approach for improving the stability of structures subjected to wind-induced loads. Full article
(This article belongs to the Special Issue Research on Structural Analysis and Design of Civil Structures)
Show Figures

Figure 1

9 pages, 6287 KiB  
Article
Chemical Activation Boosted Interface Interaction between Poly(tetrafluoroethylene-co-hexafluoropropylene) Film and Silver Coating
by Hu Wang, Xiuqi Guo, Xuelei Li, Chenliang Gong and Yongqing Zhao
Polymers 2024, 16(19), 2730; https://doi.org/10.3390/polym16192730 - 26 Sep 2024
Viewed by 789
Abstract
To enhance the interfacial adhesion between poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film and functional coatings, such as silver (Ag) coating, among others, the surface activation of FEP film has to be performed. Among various activation strategies, chemical activation, such as using naphthalene sodium system, is one [...] Read more.
To enhance the interfacial adhesion between poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film and functional coatings, such as silver (Ag) coating, among others, the surface activation of FEP film has to be performed. Among various activation strategies, chemical activation, such as using naphthalene sodium system, is one of the most efficient methods. However, the effect of chemical activation on the interface interaction between the activated FEP and functional coating is rarely investigated. Herein, the FEP film was activated by naphthalene sodium solution under different conditions, and then the Ag layer was coated onto its surface by vacuum Ag deposition. Based on experimental results and density function theory (DFT) calculation, it is indicated that oxygen-containing functional groups (such as C=O and C–OH groups), introduced onto the surface of FEP by the chemical activation, play a key role in boosting the interface interaction, which is due to the strong interaction between the oxygen-containing functional groups and Ag atoms. In addition, the concentration of naphthalene sodium solution, activation time, and winding speed of Ag- deposition can have a significant impact on the microstructures of Ag coating and the interfacial adhesion between the activated FEP and Ag coating. Under the conditions of high concentration (0.9 M), medium activation time (15 min), and high winding speed (0.8 m min−1), there is the best interface adhesion. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

16 pages, 2201 KiB  
Article
Hydrogen Generation by Nickel Electrodes Coated with Linear Patterns of PTFE
by Alion Alushi, Atheer Al-Musawi, Kyuman Kim, Chong-Yong Lee, Klaudia Wagner and Gerhard F. Swiegers
J. Compos. Sci. 2024, 8(9), 368; https://doi.org/10.3390/jcs8090368 - 19 Sep 2024
Cited by 1 | Viewed by 1410
Abstract
Previous studies have shown that partially coating electrode surfaces with patterns of ‘islands’ of hydrophobic tetrafluoroethylene (PTFE; Teflon) may lead to more energy efficient gas generation. This occurred because the gas bubbles formed preferentially on the PTFE, thereby freeing up the catalytically active [...] Read more.
Previous studies have shown that partially coating electrode surfaces with patterns of ‘islands’ of hydrophobic tetrafluoroethylene (PTFE; Teflon) may lead to more energy efficient gas generation. This occurred because the gas bubbles formed preferentially on the PTFE, thereby freeing up the catalytically active metallic surfaces to produce the gas more efficiently. This work examined electrochemically induced hydrogen bubble formation on a nickel electrode surface that had been coated with linear patterns of PTFE. The impact of the PTFE line size (width) and degree of coverage was examined and analyzed. No improvement in electrical energy efficiency was observed up to 15 mA/cm2 when comparing the PTFE-coated electrodes with the control bare uncoated electrode. However, increasing PTFE coverage up to 15% generally improved electrolysis performance. Moreover, samples with 50% wider lines performed better (at the equivalent PTFE coverage), yielding an overpotential decline of up to 3.9% depending on the PTFE coverage. A ‘bubble-scavenging’ phenomenon was also observed, wherein bubbles present on the PTFE lines rapidly shrunk until they disappeared. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Graphical abstract

9 pages, 2039 KiB  
Article
Core–Shell PEDOT-PVDF Nanofiber-Based Ammonia Gas Sensor with Robust Humidity Resistance
by Shenghao Xiao, Mengjie Hu, Yinhui Hong, Mengjia Hu, Tongtong Sun and Dajing Chen
Biosensors 2024, 14(9), 411; https://doi.org/10.3390/bios14090411 - 24 Aug 2024
Cited by 4 | Viewed by 1650
Abstract
Current ammonia sensors exhibit cross-sensitivity to water vapor, leading to false alarms. We developed a core–shell nanofiber (CSNF) structure to address these issues, using conductive poly(3,4-ethylenedioxythiophene) (PEDOT) as the core and hydrophobic polyvinylidene fluoride-tetrafluoroethylene (PVDF-TrFE) as the shell. The PEDOT-PVDF CSNF, with a [...] Read more.
Current ammonia sensors exhibit cross-sensitivity to water vapor, leading to false alarms. We developed a core–shell nanofiber (CSNF) structure to address these issues, using conductive poly(3,4-ethylenedioxythiophene) (PEDOT) as the core and hydrophobic polyvinylidene fluoride-tetrafluoroethylene (PVDF-TrFE) as the shell. The PEDOT-PVDF CSNF, with a diameter of ~500 nm and a 300 nm thick PVDF layer, showed a superior sensitivity and humidity resistance compared to conventional PEDOT membranes for ammonia concentrations of 10–100 ppm. In humid environments, CSNF sensors outperformed membrane sensors, exhibiting a tenfold increase in performance at 51% relative humidity (RH). This study highlights the potential of CSNF sensors for practical ammonia detection, maintaining a high performance under varying humidity levels. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

14 pages, 3961 KiB  
Article
In Vivo Durability of Polyurethane Insulated Implantable Cardioverter Defibrillator (ICD) Leads
by Anmar Salih and Tarun Goswami
Polymers 2024, 16(12), 1722; https://doi.org/10.3390/polym16121722 - 17 Jun 2024
Viewed by 2011
Abstract
The 6935M Sprint Quattro Secure S and 6947M Sprint Quattro Secure are high voltage leads designed to administer a maximum of 40 joules of energy for terminating ventricular tachycardia or ventricular fibrillation. Both leads utilize silicone insulation and a polyurethane outer coating. The [...] Read more.
The 6935M Sprint Quattro Secure S and 6947M Sprint Quattro Secure are high voltage leads designed to administer a maximum of 40 joules of energy for terminating ventricular tachycardia or ventricular fibrillation. Both leads utilize silicone insulation and a polyurethane outer coating. The inner coil is shielded with polytetrafluoroethylene (PTFE) tubing, while other conductors are enveloped in ethylene tetrafluoroethylene (ETFE), contributing to the structural integrity and functionality of these leads. Polyurethane is a preferred material for the outer insulation of cardiac leads due to its flexibility and biocompatibility, while silicone rubber ensures chemical stability within the body, minimizing inflammatory or rejection responses. Thirteen implantable cardioverter defibrillator (ICD) leads were obtained from the Wright State University Anatomical Gift Program. The as-received devices exhibited varied in vivo implantation durations ranging from less than a month to 89 months, with an average in vivo duration of 41 ± 27 months. Tests were conducted using the Test Resources Q series system, ensuring compliance with ASTM Standard D 1708-02a and ASTM Standard D 412-06a. During testing, a load was applied to the intact lead, with careful inspection for surface defects before each test. Results of load to failure, percentage elongation, percentage elongation at 5 N, ultimate tensile strength, and modulus of elasticity were calculated. The findings revealed no significant differences in these parameters across all in vivo exposure durations. The residual properties of these ICD leads demonstrated remarkable stability and performance over a wide range of in vivo exposure durations, with no statistically significant degradation or performance changes observed. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 3719 KiB  
Article
The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory
by Valentin V. Kochervinskii, Evgeniya L. Buryanskaya, Aleksey S. Osipkov, Mstislav O. Makeev, Dmitry A. Kiselev, Margarita A. Gradova, Oleg V. Gradov, Boris V. Lokshin and Alexandr A. Korlyukov
Nanomaterials 2024, 14(12), 1002; https://doi.org/10.3390/nano14121002 - 9 Jun 2024
Cited by 4 | Viewed by 1400
Abstract
Copolymers based on vinylidene fluoride are potential materials for ferroelectric memory elements. The trend in studies showing that a decrease in the degree of crystallinity can lead to an unexpected increase in the electric breakdown field is noted. An analysis of the literature [...] Read more.
Copolymers based on vinylidene fluoride are potential materials for ferroelectric memory elements. The trend in studies showing that a decrease in the degree of crystallinity can lead to an unexpected increase in the electric breakdown field is noted. An analysis of the literature data reveals that in fluorine-containing ferroelectric polymers, when using a bipolar triangular field, the hysteresis loop has an unclosed shape, with each subsequent loop being accompanied by a decrease in the dielectric response. In this work, the effect of the structure of self-polarized films of copolymers of vinylidene fluoride with tetrafluoroethylene and hexafluoropropylene on breakdown processes was studied. The structure of the polymer films was monitored using infrared spectroscopy (IR) and X-ray diffraction. Kelvin probe force microscopy (KPFM) was applied to characterize the local electrical properties of the polymers. For the films of the first copolymer, which crystallize in the polar β-phase, asymmetry in the dielectric response was observed at fields greater than the coercive field. For the films of the copolymers of vinylidene fluoride with hexafluoropropylene, which crystallize predominantly in the nonpolar α-phase, polarization switching processes have also been observed, but at lower electric fields. The noted phenomena will help to identify the influence of the structure of ferroelectric polymers on their electrical properties. Full article
Show Figures

Figure 1

16 pages, 8011 KiB  
Article
Polymer System Based on Polyethylene Glycol and TFE Telomers for Producing Films with Switchable Wettability
by Evgeniy Belov, Konstantine Nadaraia, Igor Imshinetskiy, Dmitry Mashtalyar, Lidia Ignatieva, Yurii Marchenko, Ivan Osmushko, Maria Gerasimenko, Sergey Sinebruykhov and Sergey Gnedenkov
Int. J. Mol. Sci. 2024, 25(9), 4904; https://doi.org/10.3390/ijms25094904 - 30 Apr 2024
Cited by 1 | Viewed by 1414
Abstract
Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper [...] Read more.
Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc. Full article
Show Figures

Figure 1

14 pages, 1674 KiB  
Article
The Simulation and Optimization of the Tetrafluoroethylene Rectification Process
by Limin Yang, Yue Chen, Jinzhi Wang, Yongzhen Luo, Pengfei Zhou and Xiaolai Zhang
Separations 2024, 11(2), 37; https://doi.org/10.3390/separations11020037 - 25 Jan 2024
Cited by 1 | Viewed by 3102
Abstract
In the R22 (chlorodifuoromethane) steam-cracking process, which is used to produce a TFE (tetrafluoroethylene) monomer, distillation is employed to separate the high-purity TFE monomer from the cracked gas generated during this procedure. Traditionally, this distillation process is carried out using five towers. In [...] Read more.
In the R22 (chlorodifuoromethane) steam-cracking process, which is used to produce a TFE (tetrafluoroethylene) monomer, distillation is employed to separate the high-purity TFE monomer from the cracked gas generated during this procedure. Traditionally, this distillation process is carried out using five towers. In this study, the traditional five-tower distillation method was transformed into a four-tower distillation method through the Aspen Plus simulation software, and this process was simulated and optimized. Meanwhile, a double-effect distillation process was designed for the transformed four-tower distillation process. The transformed distillation process not only meets the requirements of 99.999% purity for the TFE monomer and 99.99% purity for R22 recycling, but it also reduces the footprint by eliminating one distillation tower and saves 112.9002 kW of tower load, thus reducing the operating costs. This research provides valuable guidance for practical production. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

13 pages, 2269 KiB  
Article
Near-Plasma Chemical Surface Engineering
by Paula Navascués, Urs Schütz, Barbara Hanselmann and Dirk Hegemann
Nanomaterials 2024, 14(2), 195; https://doi.org/10.3390/nano14020195 - 15 Jan 2024
Cited by 4 | Viewed by 2065
Abstract
As a new trend in plasma surface engineering, plasma conditions that allow more-defined chemical reactions at the surface are being increasingly investigated. This is achieved by avoiding high energy deposition via ion bombardment during direct plasma exposure (DPE) causing destruction, densification, and a [...] Read more.
As a new trend in plasma surface engineering, plasma conditions that allow more-defined chemical reactions at the surface are being increasingly investigated. This is achieved by avoiding high energy deposition via ion bombardment during direct plasma exposure (DPE) causing destruction, densification, and a broad variety of chemical reactions. In this work, a novel approach is introduced by placing a polymer mesh with large open area close to the plasma–sheath boundary above the plasma-treated sample, thus enabling near-plasma chemistry (NPC). The mesh size effectively extracts ions, while reactive neutrals, electrons, and photons still reach the sample surface. The beneficial impact of this on the plasma activation of poly (tetrafluoroethylene) (PTFE) to enhance wettability and on the plasma polymerization of siloxanes, combined with the etching of residual hydrocarbons to obtain highly porous SiOx coatings at low temperatures, is discussed. Characterization of the treated samples indicates a predominant chemical modification yielding enhanced film structures and durability. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Figure 1

Back to TopTop