Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = terrestrial water load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1191
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

17 pages, 21498 KiB  
Article
Multi-Year Global Oscillations in GNSS Deformation and Surface Loading Contributions
by Songyun Wang, Clark R. Wilson, Jianli Chen, Yuning Fu, Weijia Kuang and Ki-Weon Seo
Remote Sens. 2025, 17(9), 1509; https://doi.org/10.3390/rs17091509 - 24 Apr 2025
Viewed by 509
Abstract
Recent studies have identified a near six-year oscillation (SYO) in Global Navigation Satellite Systems (GNSS) surface displacements, with a degree 2, order 2 spherical harmonic (SH) pattern and retrograde motion. The cause is uncertain, with proposals ranging from deep Earth to near-surface sources. [...] Read more.
Recent studies have identified a near six-year oscillation (SYO) in Global Navigation Satellite Systems (GNSS) surface displacements, with a degree 2, order 2 spherical harmonic (SH) pattern and retrograde motion. The cause is uncertain, with proposals ranging from deep Earth to near-surface sources. This study investigates the SYO and possible causes from surface loading. Considering the irregular spatiotemporal distribution of GNSS data and the variety of contributors to surface displacements, we used synthetic experiments to identify optimal techniques for estimating low degree SH patterns. We confirm a reported retrograde SH degree 2, order 2 displacement using GNSS data from the same 35 stations used in a previous study for the 1995–2015 period. We also note that its amplitude diminished when the time span of observations was extended to 2023, and the retrograde dominance became less significant using a larger 271-station set. Surface loading estimates showed that terrestrial water storage (TWS) loads contributed much more to the GNSS degree 2, order 2 SYO, than atmospheric and oceanic loads, but TWS load estimates were highly variable. Four TWS sources—European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5), Modern-Era Retrospective analysis for Research and Applications (MERRA), Global Land Data Assimilation System (GLDAS), and Gravity Recovery and Climate Experiment (GRACE/GRACE Follow-On)—yielded a wide range (24% to 93%) of predicted TWS contributions with GRACE/GRACE Follow-On being the largest. This suggests that TWS may be largely responsible for SYO variations in GNSS observations. Variations in SYO GNSS amplitudes in the extended period (1995–2023) were also consistent with near surface sources. Full article
Show Figures

Figure 1

20 pages, 10346 KiB  
Article
Investigating Source Mechanisms for Nonlinear Displacement of GNSS Using Environmental Loads
by Jian Wang, Wenlan Fan, Weiping Jiang, Zhao Li, Tianjun Liu and Qusen Chen
Remote Sens. 2025, 17(6), 989; https://doi.org/10.3390/rs17060989 - 12 Mar 2025
Cited by 1 | Viewed by 538
Abstract
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study [...] Read more.
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study analyzes GNSS coordinate time series data from 186 ITRF reference stations worldwide over a 10-year period, thoroughly examining the magnitude, spatial distribution, and impact of hydrological, atmospheric, and non-tidal oceanic loading on nonlinear motion. The results indicate that the atmospheric loading effects had a magnitude of approximately ±5 mm in the up (U) direction and ±1 mm in the east (E) and north (N) directions. Moreover, the impact of atmospheric loading on station displacements was more pronounced in high-latitude regions compared with mid- and low-latitude regions. Secondly, the hydrological loading showed a magnitude of approximately ±5 mm in the U direction and ±0.8 mm in the E and N directions, with inland areas causing larger displacements than coastal regions. Furthermore, the non-tidal oceanic loading induced displacements with magnitudes of approximately ±0.5 mm in the E and N directions and ±2 mm in the U direction, significantly affecting stations in the nearshore areas more than inland stations. Subsequently, this study analyzes the corrective effects of environmental loads on the coordinate time series. The average correlation coefficients between the E, N, and U directions and the coordinate time series were 0.35, 0.31, and 0.52, respectively. After removing the displacements caused by environmental loads, the root mean square (RMS) values of the coordinate time series decreased by 85.5% in the E direction, 77.4% in the N direction, and 89.8% in the U direction, with average reductions of 6.2%, 4.4%, and 16.7%, respectively. Lastly, it also comprehensively assesses the consistency between environmental loads and coordinate time series from the perspectives of the optimal noise model, velocity and uncertainty, and amplitude and phase. This study demonstrates that the geographic location of a station is closely related to the impact of environmental loads, with a significantly greater effect in the vertical direction than that in the horizontal direction. By correcting for environmental loads, the accuracy of the coordinate time series can be significantly enhanced. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 4717 KiB  
Article
Bi-Level Operation Optimization and Performance Analysis for a Distributed Energy System with Energy Network
by Yuhua Tan and Nuo Yu
Processes 2024, 12(10), 2194; https://doi.org/10.3390/pr12102194 - 9 Oct 2024
Viewed by 1157
Abstract
The increasing energy crisis and environmental problems promote the development of distributed energy systems (DESs) that utilize combined heat and power technology, renewable energy technology, and waste heat recovery technology to meet various load requirements. Although there is existing work and research on [...] Read more.
The increasing energy crisis and environmental problems promote the development of distributed energy systems (DESs) that utilize combined heat and power technology, renewable energy technology, and waste heat recovery technology to meet various load requirements. Although there is existing work and research on a variety of DESs, most previous studies tend to focus on energy production with little consideration of a distributed energy network and its energy loss, which results in large errors in energy-efficiency calculations and performance analyses. In this paper, a new DES model is proposed with full consideration of an energy network and the full use of solar energy, terrestrial heat, and exhaust gases. At the same time, an effective bi-level optimization method is also proposed for the daily operation of the DES in order to improve the system performance and benefits in the energy, the economy, and the environment. Specifically, the co-generation energy station and water heating network in the DES are optimized separately with two different optimization models. The first-level optimization model is used to seek the optimal values of water mass flow rate and water temperature of the water heating network, and the second-level optimization model is built to determine the optimal energy purchasing strategy and the optimal energy outputs of the co-generation energy station. In order to verify the advantages and effectiveness of the proposed system and method, a contrastive simulation study is undertaken to provide a comparison of the global optimization method. Simulation results show that energy loss, energy cost, and energy consumption of the DES using the bi-level optimization operation strategy only account for 22.51%, 33.42%, and 51.31% of the quantities of the global optimization method, respectively. The hourly curves of the optimal operating variables also demonstrate that the proposed bi-level optimization method can improve the operating stability of the DES better than the global optimization method. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 8263 KiB  
Article
Inversion Method for Monitoring Daily Variations in Terrestrial Water Storage Changes in the Yellow River Basin Based on GNSS
by Wenqing Zhang and Xiaoping Lu
Water 2024, 16(13), 1919; https://doi.org/10.3390/w16131919 - 5 Jul 2024
Cited by 2 | Viewed by 1319
Abstract
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to [...] Read more.
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to invert terrestrial water storage changes (TWSCs). To achieve the inversion of water reserves in the Yellow River Basin using unevenly distributed GNSS continuous station data, in this study, we employed the Tikhonov regularization method to invert the terrestrial water storage (TWS) in the Yellow River Basin using vertical displacement data from network engineering and the Crustal Movement Observation Network of China (CMONOC) GNSS continuous stations from 2011 to 2022. In addition, we applied an inverse distance weighting smoothing factor, which was designed to account for the GNSS station distribution density, to smooth the inversion results. Consequently, a gridded product of the TWS in the Yellow River Basin with a spatial resolution of 0.5 degrees on a daily scale was obtained. To validate the effectiveness of the proposed method, a correlation analysis was conducted between the inversion results and the daily TWS from the Global Land Data Assimilation System (GLDAS), yielding a correlation coefficient of 0.68, indicating a strong correlation, which verifies the effectiveness of the method proposed in this paper. Based on the inversion results, we analyzed the spatial–temporal distribution trends and patterns in the Yellow River Basin and found that the average TWS decreased at a rate of 0.027 mm/d from 2011 to 2017, and then increased at a rate of 0.010 mm/d from 2017 to 2022. The TWS decreased from the lower-middle to lower reaches, while it increased from the upper-middle to upper reaches. Furthermore, an attribution analysis of the terrestrial water storage changes in the Yellow River Basin was conducted, and the correlation coefficients between the monthly average water storage changes inverted from the results and the monthly average precipitation, evapotranspiration, and surface temperature (AvgSurfT) from the GLDAS were 0.63, −0.65, and −0.69, respectively. This indicates that precipitation, evapotranspiration, and surface temperature were significant factors affecting the TWSCs in the Yellow River Basin. Full article
Show Figures

Figure 1

16 pages, 3640 KiB  
Article
Integration of Full-Size Graywater Membrane-Aerated Biological Reactor with Reverse Osmosis System for Space-Based Wastewater Treatment
by Ghaem Hooshyari, Arpita Bose and W. Andrew Jackson
Membranes 2024, 14(6), 127; https://doi.org/10.3390/membranes14060127 - 30 May 2024
Cited by 3 | Viewed by 1685
Abstract
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity [...] Read more.
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity habitats reduces the required complexity of treatment systems compared with those operating in micro-gravity, and the likely addition of large-volume wastewaters with surfactant loads (e.g., laundry and shower) makes the current ISS wastewater treatment system inappropriate due to the foaming potential from surfactants, increased consumable requirements due to the use of non-regenerative systems (e.g., mixed adsorbent beds), the complexity of the system, and sensitivity to failures from precipitation and/or biological fouling. Hybrid systems that combine simple biological reactors with desalination (e.g., Reverse Osmosis (RO)) could reduce system and consumable mass and complexity. Our objective was to evaluate a system composed of a membrane-aerated bioreactor (MABR) coupled to a low-pressure commercial RO system to process partial gravity habitat wastewater. The MABR was able to serve as the only wastewater collection tank (variable volume), receiving all wastewaters as they were produced. The MABR treated more than 20,750 L of graywater and was able to remove more than 90% of dissolved organic carbon (DOC), producing an effluent with DOC < 14 mg/L and BOD < 12 mg/L and oxidizing >90% of the ammoniacal nitrogen into NOx. A single RO membrane (260 g) was able to process >3000 L of MABR effluent and produced a RO permeate with DOC < 5 mg/L, TN < 2 mg/L, and TDS < 10 mg/L, which would essentially meet ISS potable water standards after disinfection. The system has an un-optimized mass and volume of 128.5 kg. Consumables include oxygen (~4 g/crew-day), RO membranes, and a prefilter (1.7 g/crew-day). For a one-year mission with four crew, the total system + consumable mass are ~141 kg, which would produce ~15,150 kg of treated water, resulting in a pay-back period of 13.4 days (3.35 days for a crew of four). Given that the MABR in this study operated for 500 days, while in previous studies, similar systems operated for more than 3 years, the total system costs would be exceedingly low. These results highlight the potential application of hybrid treatment systems for space habitats, which may also have a direct application to terrestrial applications where source-separated systems are employed. Full article
(This article belongs to the Special Issue Developing Membrane Bioreactors for Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 3782 KiB  
Article
Investigating the Impact of Wildfires on Lake Water Quality Using Earth Observation Satellites
by Rossana Caroni, Monica Pinardi, Gary Free, Daniela Stroppiana, Lorenzo Parigi, Giulio Tellina, Mariano Bresciani, Clément Albergel and Claudia Giardino
Appl. Sci. 2024, 14(6), 2626; https://doi.org/10.3390/app14062626 - 21 Mar 2024
Viewed by 2566
Abstract
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and a Source Pathway Receptor approach [...] Read more.
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and a Source Pathway Receptor approach applied which was conceptually represented by fires (burned area) as a source, precipitation/drought representing transport dynamics, and lakes as the ultimate receptor. This identified 106 lakes worldwide that are likely prone to be impacted by wildfires via a terrestrial pathway. Satellite-derived chlorophyll-a (Chl-a) and turbidity variables were used as indicators to detect changes in lake water quality potentially induced by wildfires over a four-year period. The lakes with the largest catchment areas burned and characterized by regular annual fires were located in Africa. Evidence for a strong influence of wildfires was not found across the dataset examined, although clearer responses were seen for some individual lakes. However, among the hydro-morphological characteristics examined, lake depth was found to be significant in determining Chl-a concentration peaks which were higher in shallow and lower in deep lakes. Lake turbidity responses indicated a dependence on lake catchment and weather conditions. While wildfires are likely to contribute to the nutrient load of lakes as found in previous studies, it is possible that in many cases it is not a dominant pressure and that its manifestation as a signal in lake Chl-a or turbidity values depends to a large part on lake typology and catchment characteristics. Assessment of lake water quality changes six months after a fire showed that Chl-a concentrations either increased, decreased, or showed no changes in a similar number of lakes, indicating that a lake specific ecological and hydro-morphological context is important for understanding lake responses to wildfires. Full article
Show Figures

Figure 1

16 pages, 5560 KiB  
Article
Spatial-Temporal Dynamic Evolution of Land Deformation Driven by Hydrological Signals around Chaohu Lake
by Tingye Tao, Ju Dai, Zichen Song, Shuiping Li, Xiaochuan Qu, Yongchao Zhu, Zhenxuan Li and Mingming Zhu
Sensors 2024, 24(4), 1198; https://doi.org/10.3390/s24041198 - 12 Feb 2024
Cited by 1 | Viewed by 1408
Abstract
The frequent occurrence of extreme climate events has a significant impact on people’s lives. Heavy rainfall can lead to an increase of regional Terrestrial Water Storage (TWS), which will cause land subsidence due to the influence of hydrological load. At present, regional TWS [...] Read more.
The frequent occurrence of extreme climate events has a significant impact on people’s lives. Heavy rainfall can lead to an increase of regional Terrestrial Water Storage (TWS), which will cause land subsidence due to the influence of hydrological load. At present, regional TWS is mostly obtained from Gravity Recovery and Climate Experiment (GRACE) data, but the method has limitations for small areas. This paper used water level and flow data as hydrological signals to study the land subsidence caused by heavy rainfall in the Chaohu Lake area of East China (June 2016–August 2016). Pearson’s correlation coefficient was used to study the interconnection between water resource changes and Global Navigation Satellites System (GNSS) vertical displacement. Meanwhile, to address the reliability of the research results, combined with the Coefficient of determination method, the research findings were validated by using different institutional models. The results showed that: (1) During heavy rainfall, the vertical displacement caused by atmospheric load was larger than non-tidal oceanic load, and the influence trends of the two were opposite. (2) The rapidly increasing hydrologic load in the Chaohu Lake area resulted in greater subsidence displacement at the closer CORS station (CHCH station) than the more distant CORS station (LALA station). The Pearson correlation coefficients between the vertical displacement and water level were as high as −0.80 and −0.64, respectively. The phenomenon confirmed the elastic deformation principle of disc load. (3) Although there was a systematic bias between the different environmental load deformation models, the deformation trends were generally consistent with the GNSS monitoring results. The average Coefficients of determination between the different models and the GNSS results were 0.63 and 0.77, respectively. The results demonstrated the effectiveness of GNSS in monitoring short-term hydrological load. This study reveals the spatial-temporal evolution of land deformation during heavy rainfall around Chaohu Lake, which is of reference significance for water resource management and infrastructure maintenance in this area. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 2941 KiB  
Article
Effects of Nitrogen Input and Aeration on Greenhouse Gas Emissions and Pollutants in Agricultural Drainage Ditches
by Qisen Zhang, Jingwei Wu, Chenyao Guo, Jing Wang, Yanchao Zhao, Qiangkun Li and Yawei Hu
Agronomy 2024, 14(2), 235; https://doi.org/10.3390/agronomy14020235 - 23 Jan 2024
Cited by 2 | Viewed by 1854
Abstract
Understanding the patterns of greenhouse gas emissions and the changes in pollution load in terrestrial freshwater systems is crucial for accurately assessing the global carbon cycle and overall greenhouse gas emissions. However, current research often focuses on wetlands and rivers, with few studies [...] Read more.
Understanding the patterns of greenhouse gas emissions and the changes in pollution load in terrestrial freshwater systems is crucial for accurately assessing the global carbon cycle and overall greenhouse gas emissions. However, current research often focuses on wetlands and rivers, with few studies on agricultural drainage ditches, which are an important part of the agricultural ecosystem. Investigating the greenhouse gas emission patterns and pollution load changes in agricultural drainage ditches can help accurately assess the greenhouse effect of agricultural systems and improve fertilization measures in farmlands. This study explored the effects of nitrogen input and aeration on the pollution load and greenhouse gas emission processes in paddy field drainage ditches. The results showed that aeration significantly reduced the concentration of ammonium nitrogen (NH4+) in the water, decreased the emissions of nitrous oxide (N2O) and methane (CH4), and slightly increased the emission of carbon dioxide (CO2), resulting in an overall reduction of the global warming potential (GWP) by 34.02%. Nitrogen input significantly increased the concentration of ammonium nitrogen in the water, slightly reduced the emissions of N2O and CH4, and increased the CO2 emissions by 46.60%, thereby increasing the GWP by 15.24%. The drainage ditches reduced the pollution load in both the water and sediment, with the overall GWP downstream being 9.34% lower than upstream. Full article
(This article belongs to the Special Issue Nitrogen Cycle in Farming Systems—2nd Edition)
Show Figures

Figure 1

26 pages, 1554 KiB  
Article
Derived Environmental Impacts of Organic Fairtrade Cocoa (Peru) Compared to Its Conventional Equivalent (Ivory Coast) through Life-Cycle Assessment in the Basque Country
by Blanca López del Amo and Ortzi Akizu-Gardoki
Sustainability 2024, 16(2), 493; https://doi.org/10.3390/su16020493 - 5 Jan 2024
Viewed by 3895
Abstract
There is a global need to create an environmentally low-impact and socially fair international food and agriculture system. Specifically, in the case of chocolate, since it is difficult to produce locally in consumer countries, the socio-economic impact and benefits of its production have [...] Read more.
There is a global need to create an environmentally low-impact and socially fair international food and agriculture system. Specifically, in the case of chocolate, since it is difficult to produce locally in consumer countries, the socio-economic impact and benefits of its production have long been unfairly distributed. This research analyses the differences between the global environmental impacts of Fairtrade-certified and organically produced cocoa (from Peru), sold in the form of a chocolate bar purchased in the Basque Country (Europe), and the respective average conventional product made with non-organic cocoa beans (from Ivory Coast). Life-cycle assessment (LCA) methodology was used to calculate five impact categories, while ReCiPe 2016 Midpoint Hierarchist was used to analyse the global warming potential (GWP), terrestrial ecotoxicity (TE), and environmental footprint (ENVF, for land use); AWARE was used to measure the water footprint (WF); and cumulative energy demand (CED) assessed energy footprint (EF). The selected functional unit (FU) is 1 kg of final chocolate bar (72% cocoa), extrapolating the characteristics of a 150 g bar. The system boundaries take into account a cradle-to-gate LCA covering the following phases: the production of ingredients, the processing of cocoa paste, transportation and packaging, the manufacture of the chocolate, and its final retail distribution. The results show that certified Organic Agriculture and Fairtrade (OA&FT) chocolate had an average global warming potential (GWP) of 3.37 kg CO2-eq per kilogram, 57.3% lower than Conventional Agriculture (CA)-based chocolate, with the greatest reduction associated with the production of ingredients, at −71.8%. The OA&FT chocolate studied had an 87.4% lower impact in the category of terrestrial ecotoxicity (TE) than that of the CA-based chocolate, yielding 13.7 and 108.6 kg 1,4-DCB per kilogram, respectively. The greatest reduction in the TE impact category also occurred for the OA&FT chocolate in the ingredient production phase, at 93%. Reductions in energy footprint (EF) and water footprint (WF) were also observed in the OA&FT product (21% and 5%). In contrast, although OA&FT processing drastically reduced the associated environmental loads, an increase in packaging and transport phase impacts was observed in the GWP and TE categories (95% and 107%, respectively). Similarly, an increase of 18.7% was observed in the land use footprint for the OA&FT chocolate. The greater need for cropland is compensated by the reduction of 449.02 kg 1,4-DCB·person−1 year−1 in the TE category. This research shows that replacing the current consumption of CA cocoa with OA&FT cocoa has the potential to reduce the GWP by 21.95 kg CO2-eq·person−1·year−1, reducing the current Basque average emission range of 8.4 tCO2-eq·year−1 by 0.26%. As a future subject to study, it was also found that the impact of long-distance maritime transportation and packaging could still have the potential to be reduced, it currently being the cause of up to 11% of the GWP from OA&FT cocoa. Full article
Show Figures

Graphical abstract

16 pages, 7218 KiB  
Article
Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements
by Jingqi Wang, Kaihua Ding, Xiaodong Chen, Rumeng Guo and Heping Sun
Remote Sens. 2024, 16(1), 162; https://doi.org/10.3390/rs16010162 - 30 Dec 2023
Cited by 2 | Viewed by 1896
Abstract
As a major grain-producing region in China, the North China Plain (NCP) faces serious challenges such as water shortage and land subsidence. In late 2014, the Central Route of the South-to-North Water Diversion Project (SNWD-C) began to provide NCP with water resources. However, [...] Read more.
As a major grain-producing region in China, the North China Plain (NCP) faces serious challenges such as water shortage and land subsidence. In late 2014, the Central Route of the South-to-North Water Diversion Project (SNWD-C) began to provide NCP with water resources. However, the effectiveness of this supply in mitigating land subsidence remains a pivotal and yet unassessed aspect. In this paper, we utilized various geodetic datasets, including the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO), Global Navigation Satellite System (GNSS) and leveling data, to conduct a spatial-temporal analysis of the equivalent water height (EWH) and vertical ground movement in the NCP. The results reveal a noteworthy decline in EWH from 2011 to 2015, followed by a slight increase with minor fluctuations from 2015 to 2020, demonstrating a strong correlation with the water resources supplied by the SNWD-C. The GRACE-derived surface deformation rate induced by hydrological loading is estimated to be <1 mm/yr. In comparison, GNSS-derived vertical ground movements exhibit considerable regional differences during the 2011–2020 period. Substantial surface subsidence is evident in the central and eastern NCP, contrasting with a gradual uplift in the front plain of the Taihang Mountains. Three-stage leveling results indicate that the rate of subsidence in the central and eastern plains is gradually increasing with the depression area expanding from 1960 to 2010. Based on these geodetic results, it can be inferred that the SNWD-C’s operation since 2014 has effectively mitigated the reduction in terrestrial water storage in the NCP. However, land subsidence in the NCP persists, as the subsidence rate does not turn around in sync with the change in EWH following the operation of SNWD-C. Consequently, it’s necessary to maintain and enforce existing policies, including controlling groundwater exploitation and water resources supply (e.g., SNWD-C) to curtail the exacerbation of land subsidence in the NCP. Additionally, continuous monitoring of land subsidence by GRACE, GNSS, leveling and other geodetic techniques is crucial to enable timely policy adjustments based on monitoring results. Full article
Show Figures

Figure 1

27 pages, 5532 KiB  
Article
Sea Ice as a Factor of Primary Production in the European Arctic: Phytoplankton Size Classes and Carbon Fluxes
by Elena Kudryavtseva, Marina Kravchishina, Larisa Pautova, Igor Rusanov, Dmitry Glukhovets, Alexander Shchuka, Ivan Zamyatin, Nadezhda Torgunova, Anna Chultsova, Nadezhda Politova and Alexander Savvichev
J. Mar. Sci. Eng. 2023, 11(11), 2131; https://doi.org/10.3390/jmse11112131 - 8 Nov 2023
Cited by 5 | Viewed by 1684
Abstract
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and [...] Read more.
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and carbon fixation rates in the dark were obtained in the marginal ice zone (MIZ) of the Barents Sea, Nansen Basin and Greenland Sea to better understand the response of Arctic ecosystems to ongoing climate changes. Four different situations were observed in the study region: (i) a bloom of the large-cell diatom Podosira glacialis, whose biomass was trapped in a strong halocline at the edge of a dense ice cover; (ii) a bloom of the chain-like colonies of Thalassiosira diatoms on the shelf in mixed waters in fields of shallow ice that could be supported by “fresh” elements in the polynya condition, as well as by terrestrial run-off and drifting ices; at the late stage, this bloom was accompanied by intensive growth of Phaeocystis pouchetti; (iii) dominance of small-cell phytoplankton under weakened stratification and the significant influence of the Atlantic water, depleted of microelements and silicates; (iv) dominance of dinoflagellates of eutrophic water in the contact zone between the water masses of Arctic origin and Atlantic origin in clear water under conditions of increased light intensity. The >10 µm phytoplankton cell size group increased its relative contribution to PP as a response to stratification, light and nutrient load associated with sea ice conditions. Small phytoplankton with sizes < 2 µm formed the basis of total PP in the MIZ regardless of the state of the sea ice. Full article
(This article belongs to the Special Issue Phytoplankton Dynamics and Biogeochemistry of Marine Ecosystems)
Show Figures

Figure 1

22 pages, 3292 KiB  
Article
Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping
by Anne Kull, Tambet Kikas, Priit Penu and Ain Kull
Agronomy 2023, 13(5), 1183; https://doi.org/10.3390/agronomy13051183 - 22 Apr 2023
Cited by 4 | Viewed by 2395
Abstract
Phosphorus (P) is a macronutrient that often limits the productivity and growth of terrestrial ecosystems, but it is also one of the main causes of eutrophication in aquatic systems at both local and global levels. P content in soils can vary largely, but [...] Read more.
Phosphorus (P) is a macronutrient that often limits the productivity and growth of terrestrial ecosystems, but it is also one of the main causes of eutrophication in aquatic systems at both local and global levels. P content in soils can vary largely, but usually, only a small fraction is plant-available or in an organic form for biological utilization because it is bound in incompletely weathered mineral particles or adsorbed on mineral surfaces. Furthermore, in agricultural ecosystems, plant-available P content in topsoil is mainly controlled by fertilization and land management. To understand, model, and predict P dynamics at the landscape level, the availability of detailed observation-based P data is extremely valuable. We used more than 388,000 topsoil plant-available P samples from the period 2005 to 2021 to study spatial and temporal variability and land-use effect on soil P. We developed a mapping approach based on existing databases of soil, land-use, and fragmentary soil P measurements by land-use classes to provide spatially explicit high-resolution estimates of topsoil P at the national level. The modeled spatially detailed (1:10,000 scale) GIS dataset of topsoil P is useful for precision farming to optimize nutrient application and to increase productivity; it can also be used as input for biogeochemical models and to assess P load in inland waters and sea. Full article
Show Figures

Figure 1

20 pages, 52705 KiB  
Article
Inversion of Regional Groundwater Storage Changes Based on the Fusion of GNSS and GRACE Data: A Case Study of Shaanxi–Gansu–Ningxia
by Wanqiu Li, Chuanyin Zhang, Wei Wang, Jinyun Guo, Yingchun Shen, Zhiwei Wang, Jingxue Bi, Qiuying Guo, Yulong Zhong, Wei Li, Chengcheng Zhu and Pengfei Xu
Remote Sens. 2023, 15(2), 520; https://doi.org/10.3390/rs15020520 - 15 Jan 2023
Cited by 8 | Viewed by 3239
Abstract
This paper aims to address the limitations of the distribution number and uniformity of Continuously Operating Reference Stations (CORS) and their impact on the reliability of inverting regional groundwater storage (GWS) based on Green’s function method and using global navigation satellite system (GNSS) [...] Read more.
This paper aims to address the limitations of the distribution number and uniformity of Continuously Operating Reference Stations (CORS) and their impact on the reliability of inverting regional groundwater storage (GWS) based on Green’s function method and using global navigation satellite system (GNSS) data. A fusion method on the inversion of regional GWS changes from GNSS and the Gravity Recovery and Climate Experiment (GRACE) was proposed in this paper. Taking the Shaanxi–Gansu–Ningxia (SGN) region as an example, the in situ groundwater level data from ten CORS stations and eight wells were used for test analyses. In this paper, an atmospheric pressure model from the European Centre for Medium-Range Weather Forecasts (ECMWF), a global land data assimilation system (GLDAS), a WaterGAP global hydrology model (WGHM), and mean sea level anomaly (MSLA) data were used to quantitatively monitor the influence of vertical deformation caused by non-tidal environmental load. After deducing these loading deformations from the filtered time series of non-linear monthly geodetic height from the GNSS, the GWS changes in the SGN region from 2011 to 2014 were inverted. Meanwhile, the change in surface water storage from the GLDAS and WGHM models were removed from the terrestrial water storage (TWS) changes derived from GRACE. On this basis, the remove–restore theory in the Earth’s gravity field was introduced to both fuse the inversion results and obtain the regional GWS changes based on the fusion method. The results showed the following: (1) The local characteristics from the fusion results were more prominent than those of GRACE on the spatial scale, such as in the southwest and northeast in the study area. In addition, the fusion results were more uniform than those from GNSS, especially for the sparse and missing areas in which CORS stations were located, and the local effect was weakened. (2) On the time scale, compared with GRACE, the trends in GWS changes obtained from the fusion method and from GNSS inversion were roughly the same as the in situ groundwater level changes. (3) For the in situ groundwater wells “6105010031” and “6101260010”, the correlation coefficients of the fusion result were 0.53 and 0.56, respectively. The accuracy of the fusion method was slightly higher than that from GNSS, which indicates that the fusion method may be more effective for areas where CORS stations are missing or sparsely distributed. The methods in this paper can provide significant reference material for hydrodynamic research, sustainable management of water resources, and the dynamic maintenance of height data. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods)
Show Figures

Figure 1

14 pages, 407 KiB  
Article
Cadmium (Cd) and Copper (Cu) Exposure and Bioaccumulation Arrays in Farm Ruminants: Impact of Forage Ecotypes, Ecological Sites and Body Organs
by Muhammad Iftikhar Hussain, Majida Naeem, Zafar Iqbal Khan, Shahzad Akhtar, Muhammad Nadeem, Maha Abdallah Alnuwaiser, Kafeel Ahmad, Oscar Vicente and Hsi-Hsien Yang
Sustainability 2022, 14(19), 12595; https://doi.org/10.3390/su141912595 - 3 Oct 2022
Cited by 5 | Viewed by 2615
Abstract
Copper (Cu) and cadmium (Cd) metal distribution in soil–plant ecosystems and their public health risk impact on ruminants (cows, buffalo, and sheep) are explored in the present investigation. Five different forage crops were selected, and the foraging responses of three types of ruminants [...] Read more.
Copper (Cu) and cadmium (Cd) metal distribution in soil–plant ecosystems and their public health risk impact on ruminants (cows, buffalo, and sheep) are explored in the present investigation. Five different forage crops were selected, and the foraging responses of three types of ruminants (cows, buffalo, and sheep) at three ecological sites were evaluated. The soil of these three ecological sites was metal polluted (due to wastewater irrigation) and was studied to evaluate the metal contamination and pollution load index. For the assessment of Cd and Cu, soil, vegetation, blood, hair, and feces samples were collected and analysed using an atomic absorption spectrophotometer. High consumption of fodder crops (Sorghum bicolor Kuntze, Sesbania bispinosa (Jacq.) W. Wight, Cynodon dactylon (L.) Pers., Suaeda fruticosa (L.) Forssk., and Tribulus terrestris L.) by cows and buffalo at site-III resulted in an increase in daily Cu and Cd intake. The pollution load index was higher at site-II and site-III, indicating a severe health risk scenario for local inhabitants. Cd and Cu were at their maximum levels in fodder crops. A significant increase in the concentrations of Cd and Cu was found in the blood, hair, and feces of cows and buffalo at site-III. Ecological indicators such as the bioaccumulation factor, the pollution load index, and the enrichment factor were found to be higher in buffalo than cows. The Cd level in forages was highest at the site-III Cd level and in the order of S. bispinosa > S. fruticosa > T. terresteris > C. dactylon > S. bicolor. Although these levels were lower than the permissible maximum limit, they were generally higher in the forage crops. Exposure of local inhabitants to the consumption of milk and meat from these cattle showed the serious health risks consequences. This situation can be properly managed by general monitoring of soil and vegetation pollution, avoiding metal contamination in the soil and food chain components, and using treated waste water and other alternate water sources for forage irrigation. Full article
Show Figures

Figure 1

Back to TopTop