Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements
Abstract
:1. Introduction
2. Data and Methods
2.1. GNSS and Data Processing
2.2. GRACE and Data Processing
2.3. Leveling and Data Processing
3. Results
3.1. Spatio-Temporal Characteristics of Changes of Terrestrial Water Storage
3.2. Characteristics of Land Subsidence
4. Discussion
4.1. The Relationship between Land Subsidence and Groundwater Changes
4.2. Variation Characteristics of Land Subsidence in the NCP
4.3. The Influence of SNWD-C on Changes of Terrestrial Water Storage and Land Subsidence
5. Conclusions
- (1)
- Between 2011 and 2015, the GRACE-derived EWH results exhibited a noticeable decline in mean EWH across the NCP. This reduction was more pronounced from north to south, highlighting substantial losses. However, after the implementation of SNWD-C, the provision of water resources has alleviated losses attributed to agricultural irrigation in the southern part of the NCP and has provided supplementary effects on the water reserves in other regions.
- (2)
- The GNSS-derived land subsidence rate indicates no significant change in land subsidence velocity before and after the implementation of SNWD-C, particularly in the middle east of the NCP. This suggests that short-term water supply might not immediately alleviate land subsidence resulting from excessive exploitation of groundwater. Areas far away from SNWD-C, such as central Heibei province, continue to experience serious land subsidence due to limited recharge from water resources. However, there is a discernible uplift in the southern part of NCP affected by the SNWD-C. Therefore, GNSS observations provide valuable insights into groundwater changes in the NCP and offer a reference point for understanding these variations.
- (3)
- By combining the leveling data of the last 50 years, we analyzed the vertical changes of the land in the landscape over the past decade. Between 1960 and 2010, the land subsidence area in the central and eastern NCP progressively expanded, accompanied by an increasing subsidence rate. Nevertheless, the results calculated from GNSS and GRACE data demonstrate that the magnitude and trend of the sedimentation rate in this area are comparable to those of the leveling results from 1990 to 2010. This suggests that the intensification of land sedimentation rate has been restrained by controlling groundwater exploitation and water resource supply such as SNWD-C over the last decade. For regions where the subsidence is not obvious, the SNWD-C appears effective in counteracting the influence of excessive utilization of water resources in the early stage. However, for regions experiencing severe subsidence, the extent to which the subsidence rate can be significantly decelerated still requires verification through observational data on a more extended time scale.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, H.; Cao, G.; Kristensen, M.; Refsgaard, J.C.; Rasmussen, M.O.; He, X.; Liu, J.; Shu, Y.; Zheng, C. Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrol. Earth Syst. Sci. 2013, 17, 3759–3778. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Liu, J.; Wu, J.; Zheng, C. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain. J. Contam. Hydrol. 2015, 179, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.; Zheng, G.; Loáiciga, H.A.; Guo, W.; Zhou, H.; Chai, J. Long-term groundwater level changes and land subsidence in Tianjin, China. Acta Geotech. 2021, 16, 1303–1314. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Scanlon, B.R.; Burek, P.; Zhang, C.; Han, Z.; Butler, J.J., Jr.; Pan, Y.; Lei, X.; Wada, Y. Human intervention will stabilize groundwater storage across the North China Plain. Water Resour. Res. 2022, 58, e2021WR030884. [Google Scholar] [CrossRef]
- Yi, L.X.; Wang, J.; Shao, C.Q.; Guo, J.W.; Jiang, Y.X.; Bo, L. Land Subsidence Disaster Survey and Its Economic Loss Assessment in Tianjin, China. Nat. Hazards Rev. 2010, 11, 35–41. [Google Scholar] [CrossRef]
- Ortega-Guerrero, A.; Rudolph, D.L.; Cherry, J.A. Analysis of long term land subsidence near Mexico City: Field investigations and predicitive modelling. Water Resour. Res. 1999, 35, 3327–3341. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, Q.; Yeh, P.J.-F.; Pan, Y.; Gong, H.; Moradkhani, H.; Gong, W.; Lei, X.; Liao, W.; Xu, L. Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. J. Hydrol. 2021, 597, 126156. [Google Scholar] [CrossRef]
- Sun, D.; Li, J.; Li, H.; Liu, Q.; Zhao, S.; Huang, Y.; Wu, Q.; Xie, X. Evolution of groundwater salinity and fluoride in the deep confined aquifers of Cangzhou in the North China plain after the South-to-North Water Diversion Project. Appl. Geochem. 2022, 147, 105485. [Google Scholar] [CrossRef]
- Jiang, Z.; Hsu, Y.J.; Yuan, L.; Yang, X.; Ding, Y.; Tang, M.; Chen, C. Characterizing spatiotemporal patterns of terrestrial water storage variations using GNSS vertical data in Sichuan, China. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022398. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, W.-B.; Shum, C.; Chen, R. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth Planet. Sci. Lett. 2018, 502, 12–22. [Google Scholar] [CrossRef]
- Wang, N.; Dong, J.; Wang, Z.G.; Lei, J.F.; Zhang, L.; Liao, M.S. Monitoring Large-Scale Hydraulic Engineering Using Sentinel-1 InSAR: A Case Study of China’s South-to-North Water Diversion Middle Route Project. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 739–750. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Xue, L.; Shen, Z.; Zhao, B.; Hu, L. Characterization of Aquifer System and Groundwater Storage Change Due to South-to-North Water Diversion Project at Huairou Groundwater Reserve Site, Beijing, China, Using Geodetic and Hydrological Data. Remote Sens. 2022, 14, 3549. [Google Scholar] [CrossRef]
- Feng, W.; Wang, C.; Mu, D.; Zhong, M.; Zhong, Y.; Xu, H. Groundwater storage variations in the North China Plain from GRACE with spatial constraints. Chin. J. Geophsics 2017, 60, 1630–1642. [Google Scholar]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.F.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L.; Zhao, Y.; Cao, G.; Wang, H.; Sun, Q. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain. Water Resour. Res. 2018, 54, 8234–8252. [Google Scholar] [CrossRef]
- Wang, L.S.; Chen, C.; Du, J.S.; Wang, T.Q. Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS. Hydrol. Earth Syst. Sci. 2017, 21, 2905–2922. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Li, X.; Lei, K.; Zhang, Y.; Li, J.; Gu, Z.; Dang, Y. Spatial-temporal characteristics of land subsidence corresponding to dynamic groundwater funnel in Beijing Municipality, China. Chin. Geogr. Sci. 2011, 21, 753–764. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Zhao, Y.; Li, Z.; Cao, G.; Zhao, C.; Liu, R.; Wang, H. Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the North China Plain using InSAR measurements. J. Hydrol. 2022, 605, 127368. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H. Numerical simulations of global-scale high-resolution hydrological crustal deformations. J. Geophys. Res. Solid Earth 2013, 118, 5008–5017. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG 9-1–ETG 9-11. [Google Scholar] [CrossRef]
- Agnieszka, W.; Dawid, K. Modeling seasonal oscillations in GNSS time series with Complementary Ensemble Empirical Mode Decomposition. GPS Solut. 2022, 26, 101. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A new global mode of Earth deformation: Seasonal cycle detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef]
- Sośnica, K.; Thaller, D.; Dach, R.; Jäggi, A.; Beutler, G. Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J. Geod. 2013, 87, 751–769. [Google Scholar] [CrossRef]
- Jiao, J.; Pan, Y.; Zhang, X.; Shum, C.K.; Zhang, Y.; Ding, H. Spatially heterogeneous nonlinear signal in Antarctic ice-sheet mass loss revealed by GRACE and GPS. Geophys. J. Int. 2022, 233, 826–838. [Google Scholar] [CrossRef]
- Chambers, D.P.; Bonin, J.A. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci. 2012, 8, 859–868. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef]
- Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Fu, Y.; Freymueller, J.T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res. Solid Earth 2012, 117, B03470. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Shen, Z.; Cui, D.; Ji, L.; Li, Y.; Qin, S. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics 2014, 632, 281–292. [Google Scholar] [CrossRef]
- Su, G.; Wu, Y.; Zhan, W.; Zheng, Z.; Chang, L.; Wang, J. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades. J. Hydrol. 2021, 600, 126678. [Google Scholar] [CrossRef]
- Foster, S.; Garduno, H.; Evans, R.; Olson, D.; Tian, Y.; Zhang, W.; Han, Z. Quaternary aquifer of the North China Plain—Assessing and achieving groundwater resource sustainability. Hydrogeol. J. 2004, 12, 81–93. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, D.; Guo, X.; Wang, Y.; Li, M. Land subsidence in Cangzhou over the last decade based on interferometric time series analysis. Shanghai Land Resour. 2014, 35, 72–75. [Google Scholar]
- Zhao, Q.; Zhang, B.; Yao, Y.; Wu, W.; Meng, G.; Chen, Q. Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072. [Google Scholar] [CrossRef]
- Tao, T.; Xie, G.; He, R.; Tao, Z.; Ma, M.; Gao, F.; Zhu, Y.; Qu, X.; Li, S. Groundwater Storage Variation Characteristics in North China before and after the South-to-North Water Diversion Project Based on GRACE and GPS Data. Water Resour. Res. 2023, 50, 58–67. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, J.; Guo, S.; Yin, W.; Rao, W.; Chao, N.; Abhishek. Using GRACE to Detect Groundwater Variation in North China Plain after South–North Water Diversion. Groundwater 2023, 61, 402–420. [Google Scholar] [CrossRef]
- Long, D.; Yang, W.T.; Scanlon, B.R.; Zhao, J.S.; Liu, D.G.; Burek, P.; Pan, Y.; You, L.Z.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, Z.; Cheng, G.; Li, W.; Li, T.; Jiao, J.J. Groundwater-derived land subsidence in the North China Plain. Environ. Earth Sci. 2015, 74, 1415–1427. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, D.; Quan, J.; Wang, P.; Xu, Y. Water quality assessment of Middle Route of South-North Water Diversion Project based on modified Nemerow index method. Water Supply 2021, 21, 1005–1015. [Google Scholar] [CrossRef]
- Lyu, M.; Ke, Y.; Guo, L.; Li, X.; Zhu, L.; Gong, H.; Constantinos, C. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry. Remote Sens. Environ. 2020, 57, 140–156. [Google Scholar] [CrossRef]
Station Name | 2011–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|
EWH cm/yr | SDWM mm/yr | Motion Rate mm/yr | EWH cm/yr | SDWM mm/yr | Motion Rate mm/yr | |
BJFS | −0.18 0.76 | −0.33 0.29 | .08 | 0.35 0.35 | −0.40 0.18 | 1.57 0.72 |
BJSH | 0.03 0.80 | −0.40 0.30 | 0.23 1.12 | 0.44 0.34 | −0.41 0.18 | .92 |
TJBD | −0.15 0.78 | −0.35 0.30 | −0.22 1.04 | 0.43 0.35 | −0.41 0.18 | −0.32 0.76 |
TJBH | −0.34 0.73 | −0.29 0.29 | −13.88 1.60 | 0.38 0.36 | −0.40 0.19 | −14.92 1.44 |
TJWQ | −0.26 0.75 | −0.31 0.29 | −42.11 2.10 | 0.38 0.36 | −0.40 0.18 | −.07 |
HECX | −0.56 0.69 | −0.23 0.27 | −20.93 1.08 | 0.26 0.38 | −0.38 0.19 | −32.27 1.10 |
HELQ | −0.63 0.67 | −0.20 0.26 | 3.46 0.95 | 0.16 0.38 | −0.37 0.18 | 2.85 0.75 |
HELY | −0.94 0.65 | −0.13 0.26 | 0.96 1.08 | 0.07 0.41 | −0.35 0.19 | 2.57 0.72 |
HETS | −0.13 0.78 | −0.36 0.30 | 3.48 1.09 | 0.48 0.35 | −0.42 0.19 | 2.95 0.80 |
HAHB | −1.27 0.69 | −0.05 0.26 | −0.96 0.89 | 0.02 0.46 | −0.35 0.19 | 0.84 0.62 |
SDLL | −0.77 0.65 | −0.17 0.26 | 0.19 0.40 | −0.37 0.19 | −14.49 0.91 | |
SDZH | −0.70 0.64 | −0.23 0.27 | 0.27 0.39 | 0.38 0.20 | −4.55 0.87 | |
HESZ | −0.75 0.66 | −0.18 0.26 | 0.14 0.39 | −0.36 0.19 | −67.94 1.21 | |
HEQY | −0.51 0.69 | −0.23 0.27 | 0.20 0.38 | −0.37 0.18 | 9.3 0.86 | |
HEHD | −1.14 0.65 | −0.08 0.26 | 0.03 0.43 | −0.35 0.19 | 2.48 1.12 | |
HEZD | −0.66 0.67 | −0.19 0.26 | 0.15 0.38 | −0.37 0.18 | −0.98 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ding, K.; Chen, X.; Guo, R.; Sun, H. Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements. Remote Sens. 2024, 16, 162. https://doi.org/10.3390/rs16010162
Wang J, Ding K, Chen X, Guo R, Sun H. Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements. Remote Sensing. 2024; 16(1):162. https://doi.org/10.3390/rs16010162
Chicago/Turabian StyleWang, Jingqi, Kaihua Ding, Xiaodong Chen, Rumeng Guo, and Heping Sun. 2024. "Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements" Remote Sensing 16, no. 1: 162. https://doi.org/10.3390/rs16010162
APA StyleWang, J., Ding, K., Chen, X., Guo, R., & Sun, H. (2024). Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements. Remote Sensing, 16(1), 162. https://doi.org/10.3390/rs16010162