Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Phosphorus Data
2.2. Land Use and Land Cover
2.3. Soil Data
2.4. Data Processing
2.4.1. Soil-Type Aggregation
2.4.2. Data Analysis and Modeling
Kriging
Soil–Land Use Ordination
Bagging
2.4.3. Model Evaluation
3. Results
3.1. Long-Term Changes of Topsoil Phosphorus in Agricultural Soils
3.2. Dependence of Topsoil P on Soil Parameters in Agricultural Lands
3.3. Topsoil Phosphorous Modeling
3.3.1. Soil–Land Use Ordination Model
3.3.2. Kriging Model
3.3.3. Bagging Model
3.3.4. Hybrid Map of Topsoil Phosphorus
3.3.5. Validation of Topsoil P Prediction Models
- Ordination validation
- Kriging validation
- Bagging validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, A.F. Soil Organic Phosphorous: A Review of World Literature; CAB International: Singapore, 1987. [Google Scholar]
- Bardgett, R. The Biology of Soil: A Community and Ecosystem Approach; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Van der Wal, A.; de Boer, W.; Lubbers, I.M.; van Veen, J.A. Concentration and vertical distribution of total soil phosphorus in relation to time of abandonment of arable fields. Nutr. Cycl. Agroecosys. 2007, 79, 73–79. [Google Scholar] [CrossRef]
- Batjes, N.H. Global Distribution of Soil Phosphorus Retention Potential; ISRIC: Wageningen, The Netherlands, 2011. [Google Scholar]
- Penn, C.; Camberato, J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Soil Organic Matter. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Tarafdar, J.C.; Claassen, N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils 1988, 5, 308–312. [Google Scholar] [CrossRef]
- Beckett, P.H.T.; White, R.E. Studies on the Phosphate Potentials of Soils: Part III: The Pool of Labile Inorganic Phosphate. Plant Soil 1964, 21, 253–282. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef]
- Nelson, L.; Cade-Menun, B.J.; Walker, I.J.; Sanborn, P. Soil Phosphorus Dynamics Across a Holocene Chronosequence of Aeolian Sand Dunes in a Hypermaritime Environment on Calvert Island, BC, Canada. Front. For. Glob. Chang. 2020, 3, 83. [Google Scholar] [CrossRef]
- Tian, J.; Dong, G.; Karthikeyan, R.; Li, L.; Harmel, R. Phosphorus Dynamics in Long-Term Flooded, Drained, and Reflooded Soils. Water 2017, 9, 531. [Google Scholar] [CrossRef]
- Roger, A.; Libohova, Z.; Rossier, N.; Joost, S.; Maltas, A.; Frossard, E.; Sinaj, S. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma 2014, 217, 26–36. [Google Scholar] [CrossRef]
- Mondal, B.P.; Sekhon, B.S.; Sadhukhan, R.; Singh, R.K.; Hasanain, M.; Mridha, N.; Das, B.; Dhyay, A.C.; Banerjee, K. Spatial variability assessment of soil available phosphorus using geostatistical approach. Indian J. Agric. Sci. 2020, 90, 1170–1175. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive soil mapping: A review. Prog. Phys. Geogr. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Rivero, R.G.; Grunwald, S.; Bruland, G.L. Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland. Geoderma 2007, 140, 428–443. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef] [PubMed]
- Matos-Moreira, M.; Lemercier, B.; Dupas, R.; Michot, D.; Viaud, V.; Akkal-Corfini, N.; Louis, B.; Gascuel-Odoux, C. High-resolution mapping of soil phosphorus concentration in agricultural landscapes with readily available or detailed survey data. Eur. J. Soil Sci. 2017, 68, 281–294. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Bui, E.N. A new detailed map of total phosphorus stocks in Australian soil. Sci. Total Environ. 2016, 542, 1040–1049. [Google Scholar] [CrossRef]
- Hosseini, M.; Rajabi Agereh, S.; Khaledian, Y.; Jafarzadeh Zoghalchali, H.; Brevik, E.C.; Movahedi Naeini, S.A.R. Comparison of multiple statistical techniques to predict soil phosphorus. Appl. Soil Ecol. 2017, 114, 123–131. [Google Scholar] [CrossRef]
- Esfandiarpour-Boroujeni, I.; Shahini-Shamsabadi, M.; Shirani, H.; Mosleh, Z.; Bagheri-Bodaghabadi, M.; Salehi, M.H. Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran. Catena 2020, 193, 104648. [Google Scholar] [CrossRef]
- Bogrekci, I.; Lee, W.S. Spectral Phosphorus Mapping using Diffuse Reflectance of Soils and Grass. Biosyst. Eng. 2005, 91, 305–312. [Google Scholar] [CrossRef]
- Yang, X.; Post, W.M.; Thornton, P.E.; Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 2013, 10, 2525–2537. [Google Scholar] [CrossRef]
- Iatrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A. Determination of Soil Available Phosphorus using the Olsen and Mehlich 3 Methods for Greek Soils Having Variable Amounts of Calcium Carbonate. Commun. Soil Sci. Plant Anal. 2014, 45, 2207–2214. [Google Scholar] [CrossRef]
- Szara, E.; Sosulski, T.; Szymańska, M.; Szyszkowska, K. Usefulness of Mehlich-3 test in the monitoring of phosphorus dispersion from Polish arable soils. Environ. Monit. Assess. 2018, 190, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vares, A.; Jõgiste, K.; Kull, E. Early growth of some deciduous tree species on abandoned agricultural lands in Estonia. Balt. For. 2001, 7, 52–58. [Google Scholar]
- Laas, A.; Kull, A. Application Of GIS For Soil Erosion And Nutrient Loss Modelling In A Small River Catchment. WIT Trans. Ecol. Environ. 2003, 67, 525–534. [Google Scholar] [CrossRef]
- Vares, A.; Uri, V.; Tullus, H.; Kanal, A. Height growth of four fast-growing deciduous tree species on former agricultural lands in Estonia. Balt. For. 2003, 9, 2–8. [Google Scholar]
- Kull, A.; Kull, A.; Jaagus, J.; Kuusemets, V.; Mander, U. The effects of fluctuating climatic conditions and weather events on nutrient dynamics in a narrow mosaic riparian peatland. Boreal Environ. Res. 2008, 13, 243–263. [Google Scholar]
- Kund, M.; Vares, A.; Sims, A.; Tullus, H.; Uri, V. Early growth and development of silver birch (Betula pendula Roth.) plantations on abandoned agricultural land. Eur. J. Forest Res. 2010, 129, 679–688. [Google Scholar] [CrossRef]
- Varik, M.; Aosaar, J.; Ostonen, I.; Lõhmus, K.; Uri, V. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. For. Ecol. Manag. 2013, 302, 62–70. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, T.; Tullus, A.; Kanal, A.; Tullus, H. Forest Ecosystem Recovery in 15-Year-Old Hybrid Aspen (Populus tremula L. × p. Tremuloides Michx.) Plantations on a Reclaimed Oil Shale Quarry. Oil Shale 2017, 34, 368–389. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Vares, A.; Tullus, H. Growth development and plant–soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur. J. Forest Res. 2015, 134, 653–667. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Soosaar, K.; Morozov, G.; Ligi, K.; Padari, A.; Ostonen, I.; et al. Carbon budgets in fertile grey alder (Alnus incana (L.) Moench.) stands of different ages. For. Ecol. Manag. 2017, 396, 55–67. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Morozov, G.; Karoles, K. Ecosystems carbon budgets of differently aged downy birch stands growing on well-drained peatlands. For. Ecol. Manag. 2017, 399, 82–93. [Google Scholar] [CrossRef]
- Uri, V.; Aosaar, J.; Varik, M.; Becker, H.; Kukumägi, M.; Ligi, K.; Pärn, L.; Kanal, A. Biomass resource and environmental effects of Norway spruce (Picea abies) stump harvesting: An Estonian case study. For. Ecol. Manag. 2015, 335, 207–215. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Krasnova, A.; Morozov, G.; Ostonen, I.; Mander, Ü.; et al. The carbon balance of a six-year-old Scots pine (Pinus sylvestris L.) ecosystem estimated by different methods. For. Ecol. Manag. 2019, 433, 248–262. [Google Scholar] [CrossRef]
- Varik, M.; Kukumägi, M.; Aosaar, J.; Becker, H.; Ostonen, I.; Lõhmus, K.; Uri, V. Carbon budgets in fertile silver birch (Betula pendula Roth) chronosequence stands. Ecol. Eng. 2015, 77, 284–296. [Google Scholar] [CrossRef]
- Aosaar, J.; Mander, Ü.; Varik, M.; Becker, H.; Morozov, G.; Maddison, M.; Uri, V. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth.) stand in Estonia. Silva Fenn. 2016, 50, 1114. [Google Scholar] [CrossRef]
- Aosaar, J.; Drenkhan, T.; Adamson, K.; Aun, K.; Becker, H.; Buht, M.; Drenkhan, R.; Fjodorov, M.; Jürimaa, K.; Morozov, G.; et al. The effect of stump harvesting on tree growth and the infection of root rot in young Norway spruce stands in hemiboreal Estonia. For. Ecol. Manag. 2020, 475, 118425. [Google Scholar] [CrossRef]
- Aun, K.; Kukumägi, M.; Varik, M.; Becker, H.; Aosaar, J.; Uri, M.; Morozov, G.; Buht, M.; Uri, V. Short-term effect of thinning on the carbon budget of young and middle-aged Scots pine (Pinus sylvestris L.) stands. For. Ecol. Manag. 2021, 492, 119241. [Google Scholar] [CrossRef]
- Becker, H.; Aosaar, J.; Varik, M.; Morozov, G.; Kanal, A.; Uri, V. The effect of Norway spruce stump harvesting on net nitrogen mineralization and nutrient leaching. For. Ecol. Manag. 2016, 377, 150–160. [Google Scholar] [CrossRef]
- Paal, J.; Jürjendal, I.; Suija, A.; Kull, A. Impact of drainage on vegetation of transitional mires in Estonia. Mires Peat 2016, 18, 1–19. [Google Scholar] [CrossRef]
- Tullus, T.; Lutter, R.; Randlane, T.; Saag, A.; Tullus, A.; Oja, E.; Degtjarenko, P.; Pärtel, M.; Tullus, H. The effect of stand age on biodiversity in a 130-year chronosequence of Populus tremula stands. For. Ecol. Manag. 2022, 504, 119833. [Google Scholar] [CrossRef]
- Kull, A. Buffer Zones to Limit and Mitigate Harmful Effects of Long-Term Anthropogenic Influence to Maintain Ecological Functionality of Bogs, Stage II. 2016. Available online: https://4ce0b57b-a630-4e1d-8a88-d1e1a7a51b96.filesusr.com/ugd/6b6658_446958f4118b44a2a68812820c31119b.pdf (accessed on 13 January 2023). (In Estonian).
- Asi, E.; Timmusk, T. Greenhouse Gas Emissions Inventory Studies for the National Reporting on Forest Litter and Soil; Ministry of the Environment: Tallinn, Estonia, 2018. (In Estonian)
- Kulhánek, M.; Balík, J.; Černý, J.; Vaněk, V. Evaluation of phosphorus mobility in soil using different extraction methods. Plant Soil Environ. 2009, 55, 267–272. [Google Scholar] [CrossRef]
- Wolf, A.M.; Baker, D.E. Comparisons of soil test phosphorus by Olsen, Bray P1, Mehlich I and Mehlich III methods. Commun. Soil Sci. Plant Anal. 1985, 16, 467–484. [Google Scholar] [CrossRef]
- Kmoch, A.; Kanal, A.; Astover, A.; Kull, A.; Virro, H.; Helm, A.; Pärtel, M.; Ostonen, I.; Uuemaa, E. EstSoil-EH: A high-resolution eco-hydrological modelling parameters dataset for Estonia. Earth Syst. Sci. Data 2021, 13, 83–97. [Google Scholar] [CrossRef]
- Kachinsky, N. Soil Physics; Nauka Publishing House: Moscow, Russia, 1965; 320p. (In Russian) [Google Scholar]
- Abd-Elsamad, A.; Abdelmoein, N.M.; Mahmoud, A.H.; Rostom, M.; Hassan, S.M.; Gazni, R. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Res. J. Biol. Sci. 2009, 4, 93–102. [Google Scholar]
- Sahu, B.; Ghosh, A.K. Seema Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg. 2021, 26, e00413. [Google Scholar] [CrossRef]
- Xue, W.; Pangara, C.; Aung, A.M.; Yu, S.; Tabucanon, A.S.; Hong, B.; Kurniawan, T.A. Spatial changes of nutrients and metallic contaminants in topsoil with multi-geostatistical approaches in a large-size watershed. Sci. Total Environ. 2022, 824, 153888. [Google Scholar] [CrossRef] [PubMed]
- Peet, R.K. Ordination as a tool for analyzing complex data sets. Vegetatio 1980, 42, 171–174. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Prentice, I.C. A Theory of Gradient Analysis. In Advances in Ecological Research; Elsevier Science & Technology: Amsterdam, The Netherlands, 2004; Volume 34, pp. 235–282. [Google Scholar]
- Breiman, L. Bagging predictors. Mach Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines. In An Introduction to Recursive Partitioning Using the RPART Routines; Mayo Foundation: Rochester, MN, USA, 2022; p. 61. [Google Scholar]
- Petersell, V.; Ressar, H.; Carlsson, M.; Mõttus, V.; Enel, M.; Mardla, A.; Täht, K. Geochemical atlas of Estonian agricultural soil. Eest. Geol. Sver. Geol. Undersökning. Tallinn Upps. Seletuskiri 1997, 75, 171. [Google Scholar]
- Werner, F.; Mueller, C.W.; Thieme, J.; Gianoncelli, A.; Rivard, C.; Höschen, C.; Prietzel, J. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth. Sci. Rep. 2017, 7, 3203–3209. [Google Scholar] [CrossRef]
- Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. ERL 2017, 12, 124007. [Google Scholar] [CrossRef]
- Schillaci, C.; Saia, S.; Lipani, A.; Perego, A.; Zaccone, C.; Acutis, M. Validating the regional estimates of changes in soil organic carbon by using the data from paired-sites: The case study of Mediterranean arable lands. Carbon Balance Manag. 2021, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, A.; Omran, E.E.; Bateni, S.M.; Pradhan, B.; Vasu, D.; Bagherzadeh, A. Modeling of available soil phosphorus (ASP) using multi-objective group method of data handling. Model. Earth Syst. Environ. 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef]
- Dipak, S.; Abhijit, H. Physical and Chemical Methods in Soil Analysis; New Age International Ltd.: New Delhi, India, 2005; 193p. [Google Scholar]
- Tóth, B.; Weynants, M.; Pásztor, L.; Hengl, T. 3D soil hydraulic database of Europe at 250 m resolution. Hydrol Process 2017, 31, 2662–2666. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process 1991, 5, 3–30. [Google Scholar] [CrossRef]
Model | MAE | RMSE | R2 | Explanation |
---|---|---|---|---|
Ordination vs. P | 42.9 | 66.8 | 0.15 | Soil–land use ordination model results validated against measured P samples (all P samples used for validation). |
Ordination vs. poly MedP | 36.7 | 56.5 | 0.2 | Soil–land use ordination model results validated against polygon median P values (all P samples used for validation). |
Ordination vs. P 2021 | 46.2 | 73.4 | 0.17 | Soil–land use ordination model results validated against P data collected in 2021 and not used for model building. |
Ordination + polygon MedP vs. P 2021 | 34.5 | 57.4 | 0.48 | Soil–land use ordination model values replaced with soil–land use polygon median P values in polygons where P sample points measured in 2005–2020 exist, and evaluated against P samples collected in 2021. |
Model | MAE | RMSE | R2 | Explanation |
---|---|---|---|---|
Kriging1 CV vs. P | 27.1 | 43.1 | 0.63 | Kriging1 (all sample points used for interpolation) cross-validation (by leaving-one-out method). |
Kriging1 vs. P | 19.8 | 31.3 | 0.82 | Kriging1 (all sample points used for interpolation) validation against all measured P samples (same points that were used for interpolation). |
Kriging1 vs. poly MedP | 15.6 | 25.1 | 0.84 | Kriging1 (all sample points used for interpolation) validation against polygon median P values (if there was only one P sample in the polygon, then the same values were used for interpolation). |
Kriging1 vs. P 2021 | 30.7 | 49.6 | 0.59 | Kriging1 (all sample points used for interpolation) validation against P samples (collected in 2021) not used for model building. |
Kriging2_test vs. P | 27.7 | 44.4 | 0.62 | Kriging2 model (surface was interpolated by using only 75% of P sample data) validated against test data (25% of data). Only 25% of data were used to calculate these metrics. |
Kriging2_test vs. poly MedP | 19.7 | 31.6 | 0.75 | Kriging2 model (surface was interpolated by using only 75% of P sample data) validated against test data (25% of data) polygon median P values. Only 25% of data were used to calculate these metrics. |
Model | MAE | RMSE | R2 | Explanation |
---|---|---|---|---|
Bagging vs. P | 30.4 | 47.3 | 0.56 | Bagging prediction results validated against measured P values (all P samples used for validation). |
Bagging vs. poly MedP | 20.9 | 33.6 | 0.72 | Bagging prediction results validated against polygon median P values (all P samples used for validation). |
Bagging vs. P 2021 | 36.9 | 58.3 | 0.43 | Bagging prediction results validated against P samples collected in 2021 and not used for model building. |
Bagging + polygon MedP vs. P 2021 | 34.3 | 56.5 | 0.49 | Bagging model values replaced with soil–land use polygon median P values in polygons where P sample points measured in 2005–2020 exist, and evaluated against P samples collected in 2021. |
Bagging_test vs. P | 30.8 | 48.6 | 0.54 | Bagging model results validated on test dataset (25% of data not used for model building). |
Bagging 10-fold CV | 31.3 | 49.1 | 0.52 | Bagging model performance evaluation by using a random 10-fold cross-validation dataset (75% of data used for model building). |
Bagging OOB error | 50.3 | Bagging model performance evaluation by using out-of-bag (OOB) samples. From the training dataset (75% of data) selected randomly for each bagged predictor, approximately 63% of data were used for training, and the remaining 37% were used as OOB samples. | ||
Poly MedP vs. P | 18.8 | 36.4 | 0.74 | Polygon median P values compared to P values measured in 2005–2020 (polygon median P value was calculated based on the same sample). |
Poly MedP vs. P2021 | 32.6 | 54.6 | 0.53 | Polygon median P values (calculated based on P sample values in 2005–2020) compared to P values measured in 2021. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kull, A.; Kikas, T.; Penu, P.; Kull, A. Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping. Agronomy 2023, 13, 1183. https://doi.org/10.3390/agronomy13051183
Kull A, Kikas T, Penu P, Kull A. Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping. Agronomy. 2023; 13(5):1183. https://doi.org/10.3390/agronomy13051183
Chicago/Turabian StyleKull, Anne, Tambet Kikas, Priit Penu, and Ain Kull. 2023. "Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping" Agronomy 13, no. 5: 1183. https://doi.org/10.3390/agronomy13051183
APA StyleKull, A., Kikas, T., Penu, P., & Kull, A. (2023). Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping. Agronomy, 13(5), 1183. https://doi.org/10.3390/agronomy13051183