Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = terrestrial biological invasion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 687 KiB  
Data Descriptor
A DNA Barcode Dataset for the Aquatic Fauna of the Panama Canal: Novel Resources for Detecting Faunal Change in the Neotropics
by Kristin Saltonstall, Rachel Collin, Celestino Aguilar, Fernando Alda, Laura M. Baldrich-Mora, Victor Bravo, María Fernanda Castillo, Sheril Castro, Luis F. De León, Edgardo Díaz-Ferguson, Humberto A. Garcés, Eyda Gómez, Rigoberto G. González, Maribel A. González-Torres, Hector M. Guzman, Alexandra Hiller, Roberto Ibáñez, César Jaramillo, Klara L. Kaiser, Yulang Kam, Mayra Lemus Peralta, Oscar G. Lopez, Maycol E. Madrid C., Matthew J. Miller, Natalia Ossa-Hernandez, Ruth G. Reina, D. Ross Robertson, Tania E. Romero-Gonzalez, Milton Sandoval, Oris Sanjur, Carmen Schlöder, Ashley E. Sharpe, Diana Sharpe, Jakob Siepmann, David Strasiewsky, Mark E. Torchin, Melany Tumbaco, Marta Vargas, Miryam Venegas-Anaya, Benjamin C. Victor and Gustavo Castellanos-Galindoadd Show full author list remove Hide full author list
Data 2025, 10(7), 108; https://doi.org/10.3390/data10070108 - 2 Jul 2025
Viewed by 609
Abstract
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of [...] Read more.
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of the Panama Canal, a region that connects the Western Atlantic and Eastern Pacific oceans. This unique setting creates opportunities for trans-oceanic dispersal while acting as a modern physical dispersal barrier for some terrestrial organisms. We sequenced 852 specimens from a diverse array of taxa (e.g., fishes, zooplankton, mollusks, arthropods, reptiles, birds, and mammals) using COI, and in some cases, 12S and 16S barcodes. These data were collected for a variety of studies, many of which have sought to understand recent changes in aquatic communities in the Panama Canal. The DNA barcodes presented here are all from captured specimens, which confirms their presence in Panama and, in many cases, inside the Panama Canal. Both native and introduced taxa are included. This dataset represents a valuable resource for environmental DNA (eDNA) work in the Panama Canal region and across the Neotropics aimed at monitoring ecosystem health, tracking non-native and potentially invasive species, and understanding the ecology and distribution of these freshwater and euryhaline taxa. Full article
(This article belongs to the Special Issue Benchmarking Datasets in Bioinformatics, 2nd Edition)
Show Figures

Figure 1

23 pages, 5082 KiB  
Article
Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon
by Coleen Mumbang, Gordon N. Ajonina and George B. Chuyong
Forests 2025, 16(4), 555; https://doi.org/10.3390/f16040555 - 21 Mar 2025
Viewed by 642
Abstract
This Study delves on changes in the extent of mangroves over a 42 years span in the Douala-Edea NP, Cameroon. Mangroves are valuable ecosystems that provide significant biological, environmental, ecological, and cultural functions. To inform the development of management plans for the ecosystem’s [...] Read more.
This Study delves on changes in the extent of mangroves over a 42 years span in the Douala-Edea NP, Cameroon. Mangroves are valuable ecosystems that provide significant biological, environmental, ecological, and cultural functions. To inform the development of management plans for the ecosystem’s sustainability, it is crucial to evaluate how their land cover, levels of degradation, and phases of restitution have changed. GIS and remote sensing techniques were used to classify and analyze Landsat images from 1980 to 2022 categorized into nine classes: bare ground, Nypa palms, settlements, coastal sedimentation, river sedimentation, regeneration, matured mangroves, dense forest, and water body. Using the Markovian chain approach, the changes noted during the period were utilized to forecast future trends up to 2052. Findings demonstrated that the mature mangrove area decreased throughout the study. The surface area covered by mature mangroves was 80,628.78 hectares in 1980, which decreased by 7.31%, 1.51%, 3.70%, and by 17% for the overall period of 42 years. Additionally, a gain of 6.84% from 1980 to 2022 was observed, probably from artificial mangrove regeneration. Settlements, invasive Nypa palms, bare ground (resulting from over-exploitation), and the sedimentation of rivers and coast primarily replaced mangroves. The prediction derived indicated the continuous decline in mangroves if not fully protected by law. The gazettement to National Park and recent promulgation of two laws are steps in providing the needed protection. These results provide vital information to direct future mangrove conservation actions in the recently gazetted Douala-Edea National Terrestrial and Marine Park and other mangrove blocks along the Gulf of Guinea. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 7828 KiB  
Article
De Novo Hybrid Assembly Unveils Multi-Chromosomal Mitochondrial Genomes in Ludwigia Species, Highlighting Genomic Recombination, Gene Transfer, and RNA Editing Events
by Guillaume Doré, Dominique Barloy and Frédérique Barloy-Hubler
Int. J. Mol. Sci. 2024, 25(13), 7283; https://doi.org/10.3390/ijms25137283 - 2 Jul 2024
Cited by 1 | Viewed by 1548
Abstract
Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed [...] Read more.
Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 622 KiB  
Review
Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool
by Dian Udugamasuriyage, Gayan Kahandawa and Kushan U. Tennakoon
Plants 2024, 13(8), 1052; https://doi.org/10.3390/plants13081052 - 9 Apr 2024
Cited by 4 | Viewed by 2428
Abstract
Aquatic weeds, including invasive species, are a worldwide problem. The presence of aquatic weeds poses several critical issues, such as hindering the continuous flow of water in irrigation channels and preventing the proper distribution of adequate water quantities. Therefore, effective control measures are [...] Read more.
Aquatic weeds, including invasive species, are a worldwide problem. The presence of aquatic weeds poses several critical issues, such as hindering the continuous flow of water in irrigation channels and preventing the proper distribution of adequate water quantities. Therefore, effective control measures are vital for agriculture and numerous downstream industries. Numerous methods for controlling aquatic weeds have emerged over time, with herbicide application being a widely used established method of weed management, although it imposes significant environmental risks. Therefore, it is important to explore nonchemical alternative methods to control existing and emerging aquatic weeds, potentially posing fewer environmental hazards compared with conventional chemical methods. In this review, we focus on nonchemical methods, encompassing mechanical, physical, biological, and other alternative approaches. We primarily evaluated the different nonchemical control methods discussed in this review based on two main criteria: (1) efficiency in alleviating aquatic weed problems in location-specified scenarios and (2) impacts on the environment, as well as potential health and safety risks. We compared the nonchemical treatments with the UV-C-radiation-mediated aquatic weed control method, which is considered a potential novel technique. Since there is limited published literature available on the application of UV-C radiation used exclusively for aquatic weed control, our review is based on previous reports of UV-C radiation used to successfully control terrestrial weeds and algal populations. In order to compare the mechanisms involved with nonchemical weed control methods, we reviewed respective pathways leading to plant cell death, plant growth inhibition, and diminishing reemergence to justify the potential use of UV-C treatment in aquatic habitats as a viable novel source for aquatic weed control. Full article
(This article belongs to the Special Issue Bioherbicide Development for Weed Control II)
Show Figures

Figure 1

14 pages, 3148 KiB  
Article
Climate and Wolbachia Impacts on Anoplolepis gracilipes (Hymenoptera: Formicidae)
by Yu-Jen Lin, Ching-Hong Yeh, Chen-Zhe Wu and Li-Hsin Wu
Biology 2023, 12(12), 1482; https://doi.org/10.3390/biology12121482 - 2 Dec 2023
Cited by 1 | Viewed by 2252
Abstract
The yellow crazy ant (Anoplolepis gracilipes (Smith, 1857)) is a prominent invasive species exhibiting variable population dynamics. Through collecting long-term climate data and validating field surveys with MaxEnt SDM projections, our results indicated that winter temperature and precipitation accumulation strongly influence the [...] Read more.
The yellow crazy ant (Anoplolepis gracilipes (Smith, 1857)) is a prominent invasive species exhibiting variable population dynamics. Through collecting long-term climate data and validating field surveys with MaxEnt SDM projections, our results indicated that winter temperature and precipitation accumulation strongly influence the population dynamics. An aggression analysis showed that A. gracilipes nests with higher aggression levels (over 2.5 scores) experienced a higher mean maximum temperature (31.84 ± 0.43 °C) and lower prevalence of wAgra (84.8 ± 4.70%) in A. gracilipes from June to October. The nest manipulation and aggression experiments confirmed that temperature increases aggression (1.3 to 2.8 scores) among A. gracilipes workers due to the reduced prevalence of wAgra. To the best of our knowledge, this is the first case of a notable reduction in the prevalence of Wolbachia (100 to 66%) within a colony of A. gracilipes while maintaining stable nests for further experiments. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

14 pages, 4069 KiB  
Article
Top-Down Effect of Arthropod Predator Chinese Mitten Crab on Freshwater Nutrient Cycling
by Lin Wang, Hongjun Liu, Francisco Carvalho, Yunru Chen, Linshiyu Lai, Jiachun Ge, Xingjun Tian and Yunchao Luo
Animals 2023, 13(14), 2342; https://doi.org/10.3390/ani13142342 - 18 Jul 2023
Cited by 5 | Viewed by 1959
Abstract
Aquatic litter decomposition is highly dependent on contributions and interactions at different trophic levels. The invasion of alien aquatic organisms like the channeled apple snail (Pomacea canaliculata) might lead to changes in the decomposition process through new species interactions in the [...] Read more.
Aquatic litter decomposition is highly dependent on contributions and interactions at different trophic levels. The invasion of alien aquatic organisms like the channeled apple snail (Pomacea canaliculata) might lead to changes in the decomposition process through new species interactions in the invaded wetland. However, it is not clear how aquatic macroinvertebrate predators like the Chinese mitten crab (Eriocheir sinensis) will affect the nutrient cycle in freshwater ecosystems in the face of new benthic invasion. We used the litter bag method to explore the top-down effect of crabs on the freshwater nutrient cycle with the help of soil zymography (a technology previously used in terrestrial ecosystems). The results showed significant feeding effects of crabs and snails on lotus leaf litter and cotton strips. Crabs significantly inhibited the intake of lotus litter and cotton strips and the ability to transform the environment of snails by predation. Crabs promoted the decomposition of various litter substrates by affecting the microbial community structure in the sediment. These results suggest that arthropod predators increase the complexity of detrital food webs through direct and indirect interactions, and consequently have an important impact on the material cycle and stability of freshwater ecosystems. This top-down effect makes macrobenthos play a key role in the biological control and engineering construction of freshwater ecosystems. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Graphical abstract

21 pages, 331 KiB  
Article
Risk Assessment Model System for Aquatic Animal Introduction Based on Analytic Hierarchy Process (AHP)
by Xuxin Zhang, Hehe Du, Zhouzhou Zhao, Ying Wu, Zhenjie Cao, Yongcan Zhou and Yun Sun
Animals 2023, 13(12), 2035; https://doi.org/10.3390/ani13122035 - 19 Jun 2023
Cited by 4 | Viewed by 2256
Abstract
The spread of invasive species (IS) has the potential to upset ecosystem balances. In extreme cases, this can hinder economical utilization of both aquatic (fisheries) and terrestrial (agricultural) systems. As a result, many countries regard risk assessment of IS as an important process [...] Read more.
The spread of invasive species (IS) has the potential to upset ecosystem balances. In extreme cases, this can hinder economical utilization of both aquatic (fisheries) and terrestrial (agricultural) systems. As a result, many countries regard risk assessment of IS as an important process for solving the problem of biological invasion. Yet, some IS are purposefully introduced for what is seen as their potential economic benefits. Thus, conducting IS risk assessments and then formulating policies based on scientific information will allow protocols to be developed that can reduce problems associated with IS incursions, whether occurring purposefully or not. However, the risk assessment methods currently adopted by most countries use qualitative or semiquantitative methodologies. Currently, there is a mismatch between qualitative and quantitative assessments. Moreover, most assessment systems are for terrestrial animals. What is needed is an assessment system for aquatic animals; however, those currently available are relatively rudimentary. To fill this gap, we used the analytic hierarchy process (AHP) to build a risk assessment model system for aquatic IS. Our AHP has four primary indexes, twelve secondary indexes, and sixty tertiary indexes. We used this AHP to conduct quantitative risk assessments on five aquatic animals that are typically introduced in China, which have distinct biological characteristics, specific introduction purposes, and can represent different types of aquatic animals. The assessment results show that the risk grade for Pterygoplichthys pardalis is high; the risk grade for Macrobrachium rosenbergii, Crassostrea gigas, and Trachemys scripta elegans is medium; and the grade risk for Ambystoma mexicanum is low. Risk assessment of the introduction of aquatic animals using our AHP is effective, and it provides support for the introduction and healthy breeding of aquatic animals. Thus, the AHP model can provide a basis for decision-making risk management concerning the introduction of species. Full article
(This article belongs to the Section Aquatic Animals)
14 pages, 1659 KiB  
Article
Aliens on the Road: Surveying Wildlife Roadkill to Assess the Risk of Biological Invasion
by Andrea Viviano, Marcello D’Amico and Emiliano Mori
Biology 2023, 12(6), 850; https://doi.org/10.3390/biology12060850 - 13 Jun 2023
Cited by 3 | Viewed by 2277
Abstract
Monitoring the presence and distribution of alien species is pivotal to assessing the risk of biological invasion. In our study, we carried out a worldwide review of roadkill data to investigate geographical patterns of biological invasions. We hypothesise that roadkill data from published [...] Read more.
Monitoring the presence and distribution of alien species is pivotal to assessing the risk of biological invasion. In our study, we carried out a worldwide review of roadkill data to investigate geographical patterns of biological invasions. We hypothesise that roadkill data from published literature can turn out to be a valuable resource for researchers and wildlife managers, especially when more focused surveys cannot be performed. We retrieved a total of 2314 works published until January 2022. Among those, only 41 (including our original data) fitted our requirements (i.e., including a total list of roadkilled terrestrial vertebrates, with a number of affected individuals for each species) and were included in our analysis. All roadkilled species from retrieved studies were classified as native or introduced (domestic, paleo-introduced, or recently released). We found that a higher number of introduced species would be recorded among roadkill in Mediterranean and Temperate areas with respect to Tropical and Desert biomes. This is definitely in line with the current knowledge on alien species distribution at the global scale, thus confirming that roadkill datasets can be used beyond the study of road impacts, such as for an assessment of different levels of biological invasions among different countries. Full article
(This article belongs to the Special Issue Risk Assessment for Biological Invasions)
Show Figures

Graphical abstract

24 pages, 2908 KiB  
Article
An Overview of Marine Non-Indigenous Species Found in Three Contrasting Biogeographic Metropolitan French Regions: Insights on Distribution, Origins and Pathways of Introduction
by Cécile Massé, Frédérique Viard, Suzie Humbert, Elvire Antajan, Isabelle Auby, Guy Bachelet, Guillaume Bernard, Vincent M. P. Bouchet, Thomas Burel, Jean-Claude Dauvin, Alice Delegrange, Sandrine Derrien-Courtel, Gabin Droual, Benoit Gouillieux, Philippe Goulletquer, Laurent Guérin, Anne-Laure Janson, Jérôme Jourde, Céline Labrune, Nicolas Lavesque, Jean-Charles Leclerc, Michel Le Duff, Vincent Le Garrec, Pierre Noël, Antoine Nowaczyk, Christine Pergent-Martini, Jean-Philippe Pezy, Aurore Raoux, Virginie Raybaud, Sandrine Ruitton, Pierre-Guy Sauriau, Nicolas Spilmont, Delphine Thibault, Dorothée Vincent and Amelia Curdadd Show full author list remove Hide full author list
Diversity 2023, 15(2), 161; https://doi.org/10.3390/d15020161 - 23 Jan 2023
Cited by 23 | Viewed by 6353
Abstract
Biological invasions are one of the main global threats to biodiversity in terrestrial, freshwater and marine ecosystems worldwide, requiring effective inventorying and monitoring programs. Here, we present an updated list of non-indigenous species in French marine and transitional waters. Focused on eukaryote pluricellular [...] Read more.
Biological invasions are one of the main global threats to biodiversity in terrestrial, freshwater and marine ecosystems worldwide, requiring effective inventorying and monitoring programs. Here, we present an updated list of non-indigenous species in French marine and transitional waters. Focused on eukaryote pluricellular species found throughout the three metropolitan French marine regions (Western Mediterranean Sea, Bay of Biscay and the Northern Seas), a total of 342 non-indigenous, including 42 cryptogenic, species are listed as having been introduced since the 13th century. The majority of the species originated from the temperate Northern Pacific. They mainly arrived through both ballast and hull fouling and also are associated with shellfish farming activities. Most of them have been introduced since the 1970s, a time when maritime and aquaculture trade intensified. Despite important human-aided opportunities for species transfer between the three marine regions (for instance, via recreational boating or aquaculture transfers), only a third of these NIS are common to all regions, as expected due to their environmental specificities. Full article
Show Figures

Figure 1

11 pages, 1223 KiB  
Perspective
The COVID-19 Restrictions and Biological Invasion: A Global Terrestrial Ecosystem Perspective on Propagule Pressure and Invasion Trajectory
by Michael Opoku Adomako, Sergio Roiloa and Fei-Hai Yu
Sustainability 2022, 14(22), 14783; https://doi.org/10.3390/su142214783 - 9 Nov 2022
Viewed by 2368
Abstract
Biological invasions driven by climate change, transportation, and intercontinental trade, as well as land-use change and tourism, pose severe threats to biodiversity and ecosystem services worldwide. However, the COVID-19-induced shutdowns and cross-border restrictions could have significantly impacted some of these drivers. Thus, COVID-19-induced [...] Read more.
Biological invasions driven by climate change, transportation, and intercontinental trade, as well as land-use change and tourism, pose severe threats to biodiversity and ecosystem services worldwide. However, the COVID-19-induced shutdowns and cross-border restrictions could have significantly impacted some of these drivers. Thus, COVID-19-induced restrictions may potentially alter the invasion trajectories and propagule pressure of invasive alien species, yet very few studies have examined this possibility. Here, we provide a unique conceptual framework to examine how COVID-19-induced restrictions may influence the rate, magnitude, and trajectories of biological invasions. We also discuss the similarities between the high-hit regions of COVID-19 and the global hotspot of biological invasions. Additionally, we assessed whether previous predictions of biological invasions still hold despite the strong impact of COVID-19 on the drivers of invasions. Finally, we emphasize the possibility of harnessing such restrictive measures to manage invasive species, nature reserves, and national parks. The present study is a significant addition to the current understanding of the interplay between pandemic outbreaks and biological invasions in the context of both direct and indirect effects of global ecosystem change. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

16 pages, 1953 KiB  
Review
Roles of Arbuscular mycorrhizal Fungi as a Biocontrol Agent in the Control of Plant Diseases
by Wenfeng Weng, Jun Yan, Meiliang Zhou, Xin Yao, Aning Gao, Chao Ma, Jianping Cheng and Jingjun Ruan
Microorganisms 2022, 10(7), 1266; https://doi.org/10.3390/microorganisms10071266 - 22 Jun 2022
Cited by 110 | Viewed by 10609
Abstract
Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to [...] Read more.
Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to antagonize soil-borne pathogens has received increasing interest from phytopathologists and ecologists. In this paper, the mechanisms of resistance to diseases induced by AMF and the application of AMF to plant fungal, bacterial, and nematode diseases have been summarized. This study aimed to enhance the potential use of AMF as a biological control method to prevent plant diseases in the future. Root morphological alteration characteristics were explained, including the influence of AMF on root structure, function, and the regulation of AMF via secondary metabolites. AMF can improve the rhizosphere environment by influencing the physical and chemical proprieties of soil, enhancing the growth of other beneficial microorganisms, and by competing with pathogenic microorganisms. Two microorganism types may compete for the same invasive sites in root systems and regulate nutrition distribution. AMF can induce the host plant to form defense systems, including improving phytohormone concentrations, inducing signal substrate production, gene expression regulation, and enhancing protein production. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents)
Show Figures

Figure 1

11 pages, 1877 KiB  
Communication
Microplastics and Macroplastic Debris as Potential Physical Vectors of SARS-CoV-2: A Hypothetical Overview with Implications for Public Health
by Juan José Alava, Ana Tirapé, Karly McMullen, Miguel Uyaguari and Gustavo A. Domínguez
Microplastics 2022, 1(1), 156-166; https://doi.org/10.3390/microplastics1010010 - 1 Feb 2022
Cited by 11 | Viewed by 5593
Abstract
COVID-19, caused by SARS-CoV-2, was declared a global pandemic on 11 March 2020 by the World Health Organization. The pandemic has triggered an unprecedented increase in the production, consumption and disposal of multiple types of plastic-based personal protective equipment (PPE) as a measure [...] Read more.
COVID-19, caused by SARS-CoV-2, was declared a global pandemic on 11 March 2020 by the World Health Organization. The pandemic has triggered an unprecedented increase in the production, consumption and disposal of multiple types of plastic-based personal protective equipment (PPE) as a measure to reduce the infection. Recent research shows that plastic surfaces can serve as a fomite for coronavirus transmission as it can remain stable and be viable on polypropylene for up to 72 h or on other plastic surfaces for up to 9 days. While it is unknown whether or to what extent macroplastic debris and ubiquitous microplastics emitted into the environment can serve as physical vectors or fomites of pathogenic viruses, recent studies have reported that both macroplastic and microplastics can serve as vectors for harmful pathogens and invasive species (biological pollution). Here, hypothetical scenarios based on the weight of evidence are proposed to plausibly state the role of plastic debris (e.g., single-use-plastics), discarded PPE supplies, including facemasks, sanitizer bottles, gloves, and plastic bags, as well as microplastics as potential physical vectors of SARS-CoV-2, serving as a route of exposure to humans and wildlife in the terrestrial, freshwater and marine ecosystems. Full article
(This article belongs to the Topic Marine Micro & Nanoplastics)
Show Figures

Figure 1

12 pages, 1165 KiB  
Article
Concentration of Metals in Native and Invasive Species of Fish in the Fluvial-Lagoon-Deltaic System of the Palizada River, Campeche
by María del Refugio Castañeda-Chávez, Fabiola Lango-Reynoso, Gabycarmen Navarrete-Rodríguez and Armando Toyokazu Wakida-Kusunoki
Fishes 2021, 6(4), 72; https://doi.org/10.3390/fishes6040072 - 3 Dec 2021
Cited by 2 | Viewed by 3544
Abstract
Aquatic organisms, such as fish, are important indicators of the bioavailability of metals in coastal environments, demonstrating the capacity of different species to bioaccumulate these metallic elements. The fluvial-lagoon system of the Palizada River is an important ecosystem for its terrestrial and aquatic [...] Read more.
Aquatic organisms, such as fish, are important indicators of the bioavailability of metals in coastal environments, demonstrating the capacity of different species to bioaccumulate these metallic elements. The fluvial-lagoon system of the Palizada River is an important ecosystem for its terrestrial and aquatic biological diversity where fishing is an important productive activity in this system. The objective of this research was to evaluate the concentration of Pb and Cd in the muscle tissue of native and invasive fish species in this area. For this, the digestion of fish muscle samples was carried out with a CEM MARS 5 Digestion Microwave System, while the quantification of metals was performed with an atomic absorption equipment. All analysis muscle samples from native and invasive fish showed Pb and Cd in their content. By sampling site there was a statistically significant difference (p < 0.05), with a maximum Pb concentration of 7.760 µg g−1 at the LLAR site (Laguna Larga). In terms of species, the maximum Cd concentration was obtained in the Cyprinus carpio with 6.630 ± 0.127 and in Pterygoplichthus pardalis with 6.547 ± 0.873 µg g−1 (dry weight). The presence of metals such as Pb and Cd in muscle tissue of native and invasive fish species represents an important bioindicator of environmental exposure in the study area and a potential risk to public health, as these species are commonly consumed. Full article
(This article belongs to the Special Issue Assessment of Fisheries Impact on Species and Marine Ecosystems)
Show Figures

Graphical abstract

24 pages, 2740 KiB  
Review
Symbiotic Associations in Ascidians: Relevance for Functional Innovation and Bioactive Potential
by Ana Matos and Agostinho Antunes
Mar. Drugs 2021, 19(7), 370; https://doi.org/10.3390/md19070370 - 26 Jun 2021
Cited by 12 | Viewed by 4129
Abstract
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes [...] Read more.
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production—e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians’ microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential. Full article
Show Figures

Graphical abstract

21 pages, 5940 KiB  
Article
Mapping Opuntia stricta in the Arid and Semi-Arid Environment of Kenya Using Sentinel-2 Imagery and Ensemble Machine Learning Classifiers
by James M. Muthoka, Edward E. Salakpi, Edward Ouko, Zhuang-Fang Yi, Alexander S. Antonarakis and Pedram Rowhani
Remote Sens. 2021, 13(8), 1494; https://doi.org/10.3390/rs13081494 - 13 Apr 2021
Cited by 14 | Viewed by 5823
Abstract
Globally, grassland biomes form one of the largest terrestrial covers and present critical social–ecological benefits. In Kenya, Arid and Semi-arid Lands (ASAL) occupy 80% of the landscape and are critical for the livelihoods of millions of pastoralists. However, they have been invaded by [...] Read more.
Globally, grassland biomes form one of the largest terrestrial covers and present critical social–ecological benefits. In Kenya, Arid and Semi-arid Lands (ASAL) occupy 80% of the landscape and are critical for the livelihoods of millions of pastoralists. However, they have been invaded by Invasive Plant Species (IPS) thereby compromising their ecosystem functionality. Opuntia stricta, a well-known IPS, has invaded the ASAL in Kenya and poses a threat to pastoralism, leading to livestock mortality and land degradation. Thus, identification and detailed estimation of its cover is essential for drawing an effective management strategy. The study aimed at utilizing the Sentinel-2 multispectral sensor to detect Opuntia stricta in a heterogeneous ASAL in Laikipia County, using ensemble machine learning classifiers. To illustrate the potential of Sentinel-2, the detection of Opuntia stricta was based on only the spectral bands as well as in combination with vegetation and topographic indices using Extreme Gradient Boost (XGBoost) and Random Forest (RF) classifiers to detect the abundance. Study results showed that the overall accuracies of Sentinel 2 spectral bands were 80% and 84.4%, while that of combined spectral bands, vegetation, and topographic indices was 89.2% and 92.4% for XGBoost and RF classifiers, respectively. The inclusion of topographic indices that enhance characterization of biological processes, and vegetation indices that minimize the influence of soil and the effects of atmosphere, contributed by improving the accuracy of the classification. Qualitatively, Opuntia stricta spatially was found along river banks, flood plains, and near settlements but limited in forested areas. Our results demonstrated the potential of Sentinel-2 multispectral sensors to effectively detect and map Opuntia stricta in a complex heterogeneous ASAL, which can support conservation and rangeland management policies that aim to map and list threatened areas, and conserve the biodiversity and productivity of rangeland ecosystems. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop